blob: 637f6459525a2853df22fc02f2adf9092e65bd71 [file] [log] [blame]
//! Code related to processing overloaded binary and unary operators.
use super::method::MethodCallee;
use super::{has_expected_num_generic_args, FnCtxt};
use rustc_ast as ast;
use rustc_errors::{self, struct_span_err, Applicability, Diagnostic};
use rustc_hir as hir;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_middle::ty::adjustment::{
Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability,
};
use rustc_middle::ty::fold::TypeFolder;
use rustc_middle::ty::TyKind::{Adt, Array, Char, FnDef, Never, Ref, Str, Tuple, Uint};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable, TypeVisitor};
use rustc_span::source_map::Spanned;
use rustc_span::symbol::{sym, Ident};
use rustc_span::Span;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::error_reporting::suggestions::InferCtxtExt as _;
use rustc_trait_selection::traits::{FulfillmentError, TraitEngine, TraitEngineExt};
use std::ops::ControlFlow;
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
/// Checks a `a <op>= b`
pub fn check_binop_assign(
&self,
expr: &'tcx hir::Expr<'tcx>,
op: hir::BinOp,
lhs: &'tcx hir::Expr<'tcx>,
rhs: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let (lhs_ty, rhs_ty, return_ty) =
self.check_overloaded_binop(expr, lhs, rhs, op, IsAssign::Yes);
let ty =
if !lhs_ty.is_ty_var() && !rhs_ty.is_ty_var() && is_builtin_binop(lhs_ty, rhs_ty, op) {
self.enforce_builtin_binop_types(lhs.span, lhs_ty, rhs.span, rhs_ty, op);
self.tcx.mk_unit()
} else {
return_ty
};
self.check_lhs_assignable(lhs, "E0067", op.span, |err| {
if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
if self
.lookup_op_method(
lhs_deref_ty,
Some(rhs_ty),
Some(rhs),
Op::Binary(op, IsAssign::Yes),
)
.is_ok()
{
// Suppress this error, since we already emitted
// a deref suggestion in check_overloaded_binop
err.delay_as_bug();
}
}
});
ty
}
/// Checks a potentially overloaded binary operator.
pub fn check_binop(
&self,
expr: &'tcx hir::Expr<'tcx>,
op: hir::BinOp,
lhs_expr: &'tcx hir::Expr<'tcx>,
rhs_expr: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
debug!(
"check_binop(expr.hir_id={}, expr={:?}, op={:?}, lhs_expr={:?}, rhs_expr={:?})",
expr.hir_id, expr, op, lhs_expr, rhs_expr
);
match BinOpCategory::from(op) {
BinOpCategory::Shortcircuit => {
// && and || are a simple case.
self.check_expr_coercable_to_type(lhs_expr, tcx.types.bool, None);
let lhs_diverges = self.diverges.get();
self.check_expr_coercable_to_type(rhs_expr, tcx.types.bool, None);
// Depending on the LHS' value, the RHS can never execute.
self.diverges.set(lhs_diverges);
tcx.types.bool
}
_ => {
// Otherwise, we always treat operators as if they are
// overloaded. This is the way to be most flexible w/r/t
// types that get inferred.
let (lhs_ty, rhs_ty, return_ty) =
self.check_overloaded_binop(expr, lhs_expr, rhs_expr, op, IsAssign::No);
// Supply type inference hints if relevant. Probably these
// hints should be enforced during select as part of the
// `consider_unification_despite_ambiguity` routine, but this
// more convenient for now.
//
// The basic idea is to help type inference by taking
// advantage of things we know about how the impls for
// scalar types are arranged. This is important in a
// scenario like `1_u32 << 2`, because it lets us quickly
// deduce that the result type should be `u32`, even
// though we don't know yet what type 2 has and hence
// can't pin this down to a specific impl.
if !lhs_ty.is_ty_var()
&& !rhs_ty.is_ty_var()
&& is_builtin_binop(lhs_ty, rhs_ty, op)
{
let builtin_return_ty = self.enforce_builtin_binop_types(
lhs_expr.span,
lhs_ty,
rhs_expr.span,
rhs_ty,
op,
);
self.demand_suptype(expr.span, builtin_return_ty, return_ty);
}
return_ty
}
}
}
fn enforce_builtin_binop_types(
&self,
lhs_span: Span,
lhs_ty: Ty<'tcx>,
rhs_span: Span,
rhs_ty: Ty<'tcx>,
op: hir::BinOp,
) -> Ty<'tcx> {
debug_assert!(is_builtin_binop(lhs_ty, rhs_ty, op));
// Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work.
// (See https://github.com/rust-lang/rust/issues/57447.)
let (lhs_ty, rhs_ty) = (deref_ty_if_possible(lhs_ty), deref_ty_if_possible(rhs_ty));
let tcx = self.tcx;
match BinOpCategory::from(op) {
BinOpCategory::Shortcircuit => {
self.demand_suptype(lhs_span, tcx.types.bool, lhs_ty);
self.demand_suptype(rhs_span, tcx.types.bool, rhs_ty);
tcx.types.bool
}
BinOpCategory::Shift => {
// result type is same as LHS always
lhs_ty
}
BinOpCategory::Math | BinOpCategory::Bitwise => {
// both LHS and RHS and result will have the same type
self.demand_suptype(rhs_span, lhs_ty, rhs_ty);
lhs_ty
}
BinOpCategory::Comparison => {
// both LHS and RHS and result will have the same type
self.demand_suptype(rhs_span, lhs_ty, rhs_ty);
tcx.types.bool
}
}
}
fn check_overloaded_binop(
&self,
expr: &'tcx hir::Expr<'tcx>,
lhs_expr: &'tcx hir::Expr<'tcx>,
rhs_expr: &'tcx hir::Expr<'tcx>,
op: hir::BinOp,
is_assign: IsAssign,
) -> (Ty<'tcx>, Ty<'tcx>, Ty<'tcx>) {
debug!(
"check_overloaded_binop(expr.hir_id={}, op={:?}, is_assign={:?})",
expr.hir_id, op, is_assign
);
let lhs_ty = match is_assign {
IsAssign::No => {
// Find a suitable supertype of the LHS expression's type, by coercing to
// a type variable, to pass as the `Self` to the trait, avoiding invariant
// trait matching creating lifetime constraints that are too strict.
// e.g., adding `&'a T` and `&'b T`, given `&'x T: Add<&'x T>`, will result
// in `&'a T <: &'x T` and `&'b T <: &'x T`, instead of `'a = 'b = 'x`.
let lhs_ty = self.check_expr(lhs_expr);
let fresh_var = self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: lhs_expr.span,
});
self.demand_coerce(lhs_expr, lhs_ty, fresh_var, Some(rhs_expr), AllowTwoPhase::No)
}
IsAssign::Yes => {
// rust-lang/rust#52126: We have to use strict
// equivalence on the LHS of an assign-op like `+=`;
// overwritten or mutably-borrowed places cannot be
// coerced to a supertype.
self.check_expr(lhs_expr)
}
};
let lhs_ty = self.resolve_vars_with_obligations(lhs_ty);
// N.B., as we have not yet type-checked the RHS, we don't have the
// type at hand. Make a variable to represent it. The whole reason
// for this indirection is so that, below, we can check the expr
// using this variable as the expected type, which sometimes lets
// us do better coercions than we would be able to do otherwise,
// particularly for things like `String + &String`.
let rhs_ty_var = self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: rhs_expr.span,
});
let result = self.lookup_op_method(
lhs_ty,
Some(rhs_ty_var),
Some(rhs_expr),
Op::Binary(op, is_assign),
);
// see `NB` above
let rhs_ty = self.check_expr_coercable_to_type(rhs_expr, rhs_ty_var, Some(lhs_expr));
let rhs_ty = self.resolve_vars_with_obligations(rhs_ty);
let return_ty = match result {
Ok(method) => {
let by_ref_binop = !op.node.is_by_value();
if is_assign == IsAssign::Yes || by_ref_binop {
if let ty::Ref(region, _, mutbl) = method.sig.inputs()[0].kind() {
let mutbl = match mutbl {
hir::Mutability::Not => AutoBorrowMutability::Not,
hir::Mutability::Mut => AutoBorrowMutability::Mut {
// Allow two-phase borrows for binops in initial deployment
// since they desugar to methods
allow_two_phase_borrow: AllowTwoPhase::Yes,
},
};
let autoref = Adjustment {
kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
target: method.sig.inputs()[0],
};
self.apply_adjustments(lhs_expr, vec![autoref]);
}
}
if by_ref_binop {
if let ty::Ref(region, _, mutbl) = method.sig.inputs()[1].kind() {
let mutbl = match mutbl {
hir::Mutability::Not => AutoBorrowMutability::Not,
hir::Mutability::Mut => AutoBorrowMutability::Mut {
// Allow two-phase borrows for binops in initial deployment
// since they desugar to methods
allow_two_phase_borrow: AllowTwoPhase::Yes,
},
};
let autoref = Adjustment {
kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
target: method.sig.inputs()[1],
};
// HACK(eddyb) Bypass checks due to reborrows being in
// some cases applied on the RHS, on top of which we need
// to autoref, which is not allowed by apply_adjustments.
// self.apply_adjustments(rhs_expr, vec![autoref]);
self.typeck_results
.borrow_mut()
.adjustments_mut()
.entry(rhs_expr.hir_id)
.or_default()
.push(autoref);
}
}
self.write_method_call(expr.hir_id, method);
method.sig.output()
}
// error types are considered "builtin"
Err(_) if lhs_ty.references_error() || rhs_ty.references_error() => self.tcx.ty_error(),
Err(errors) => {
let source_map = self.tcx.sess.source_map();
let (mut err, missing_trait, _use_output) = match is_assign {
IsAssign::Yes => {
let mut err = struct_span_err!(
self.tcx.sess,
expr.span,
E0368,
"binary assignment operation `{}=` cannot be applied to type `{}`",
op.node.as_str(),
lhs_ty,
);
err.span_label(
lhs_expr.span,
format!("cannot use `{}=` on type `{}`", op.node.as_str(), lhs_ty),
);
let missing_trait = match op.node {
hir::BinOpKind::Add => Some("std::ops::AddAssign"),
hir::BinOpKind::Sub => Some("std::ops::SubAssign"),
hir::BinOpKind::Mul => Some("std::ops::MulAssign"),
hir::BinOpKind::Div => Some("std::ops::DivAssign"),
hir::BinOpKind::Rem => Some("std::ops::RemAssign"),
hir::BinOpKind::BitAnd => Some("std::ops::BitAndAssign"),
hir::BinOpKind::BitXor => Some("std::ops::BitXorAssign"),
hir::BinOpKind::BitOr => Some("std::ops::BitOrAssign"),
hir::BinOpKind::Shl => Some("std::ops::ShlAssign"),
hir::BinOpKind::Shr => Some("std::ops::ShrAssign"),
_ => None,
};
self.note_unmet_impls_on_type(&mut err, errors);
(err, missing_trait, false)
}
IsAssign::No => {
let (message, missing_trait, use_output) = match op.node {
hir::BinOpKind::Add => (
format!("cannot add `{rhs_ty}` to `{lhs_ty}`"),
Some("std::ops::Add"),
true,
),
hir::BinOpKind::Sub => (
format!("cannot subtract `{rhs_ty}` from `{lhs_ty}`"),
Some("std::ops::Sub"),
true,
),
hir::BinOpKind::Mul => (
format!("cannot multiply `{lhs_ty}` by `{rhs_ty}`"),
Some("std::ops::Mul"),
true,
),
hir::BinOpKind::Div => (
format!("cannot divide `{lhs_ty}` by `{rhs_ty}`"),
Some("std::ops::Div"),
true,
),
hir::BinOpKind::Rem => (
format!("cannot mod `{lhs_ty}` by `{rhs_ty}`"),
Some("std::ops::Rem"),
true,
),
hir::BinOpKind::BitAnd => (
format!("no implementation for `{lhs_ty} & {rhs_ty}`"),
Some("std::ops::BitAnd"),
true,
),
hir::BinOpKind::BitXor => (
format!("no implementation for `{lhs_ty} ^ {rhs_ty}`"),
Some("std::ops::BitXor"),
true,
),
hir::BinOpKind::BitOr => (
format!("no implementation for `{lhs_ty} | {rhs_ty}`"),
Some("std::ops::BitOr"),
true,
),
hir::BinOpKind::Shl => (
format!("no implementation for `{lhs_ty} << {rhs_ty}`"),
Some("std::ops::Shl"),
true,
),
hir::BinOpKind::Shr => (
format!("no implementation for `{lhs_ty} >> {rhs_ty}`"),
Some("std::ops::Shr"),
true,
),
hir::BinOpKind::Eq | hir::BinOpKind::Ne => (
format!(
"binary operation `{}` cannot be applied to type `{}`",
op.node.as_str(),
lhs_ty
),
Some("std::cmp::PartialEq"),
false,
),
hir::BinOpKind::Lt
| hir::BinOpKind::Le
| hir::BinOpKind::Gt
| hir::BinOpKind::Ge => (
format!(
"binary operation `{}` cannot be applied to type `{}`",
op.node.as_str(),
lhs_ty
),
Some("std::cmp::PartialOrd"),
false,
),
_ => (
format!(
"binary operation `{}` cannot be applied to type `{}`",
op.node.as_str(),
lhs_ty
),
None,
false,
),
};
let mut err =
struct_span_err!(self.tcx.sess, op.span, E0369, "{}", message.as_str());
if !lhs_expr.span.eq(&rhs_expr.span) {
self.add_type_neq_err_label(
&mut err,
lhs_expr.span,
lhs_ty,
rhs_ty,
rhs_expr,
op,
is_assign,
);
self.add_type_neq_err_label(
&mut err,
rhs_expr.span,
rhs_ty,
lhs_ty,
lhs_expr,
op,
is_assign,
);
}
self.note_unmet_impls_on_type(&mut err, errors);
(err, missing_trait, use_output)
}
};
let mut suggest_deref_binop = |lhs_deref_ty: Ty<'tcx>| {
if self
.lookup_op_method(
lhs_deref_ty,
Some(rhs_ty),
Some(rhs_expr),
Op::Binary(op, is_assign),
)
.is_ok()
{
if let Ok(lstring) = source_map.span_to_snippet(lhs_expr.span) {
let msg = &format!(
"`{}{}` can be used on `{}`, you can dereference `{}`",
op.node.as_str(),
match is_assign {
IsAssign::Yes => "=",
IsAssign::No => "",
},
lhs_deref_ty.peel_refs(),
lstring,
);
err.span_suggestion_verbose(
lhs_expr.span.shrink_to_lo(),
msg,
"*".to_string(),
rustc_errors::Applicability::MachineApplicable,
);
}
}
};
// We should suggest `a + b` => `*a + b` if `a` is copy, and suggest
// `a += b` => `*a += b` if a is a mut ref.
if is_assign == IsAssign::Yes
&& let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
suggest_deref_binop(lhs_deref_ty);
} else if is_assign == IsAssign::No
&& let Ref(_, lhs_deref_ty, _) = lhs_ty.kind() {
if self.infcx.type_is_copy_modulo_regions(self.param_env, *lhs_deref_ty, lhs_expr.span) {
suggest_deref_binop(*lhs_deref_ty);
}
}
if let Some(missing_trait) = missing_trait {
let mut visitor = TypeParamVisitor(vec![]);
visitor.visit_ty(lhs_ty);
if op.node == hir::BinOpKind::Add
&& self.check_str_addition(
lhs_expr, rhs_expr, lhs_ty, rhs_ty, &mut err, is_assign, op,
)
{
// This has nothing here because it means we did string
// concatenation (e.g., "Hello " + "World!"). This means
// we don't want the note in the else clause to be emitted
} else if let [ty] = &visitor.0[..] {
// Look for a TraitPredicate in the Fulfillment errors,
// and use it to generate a suggestion.
//
// Note that lookup_op_method must be called again but
// with a specific rhs_ty instead of a placeholder so
// the resulting predicate generates a more specific
// suggestion for the user.
let errors = self
.lookup_op_method(
lhs_ty,
Some(rhs_ty),
Some(rhs_expr),
Op::Binary(op, is_assign),
)
.unwrap_err();
let predicates = errors
.into_iter()
.filter_map(|error| error.obligation.predicate.to_opt_poly_trait_pred())
.collect::<Vec<_>>();
if !predicates.is_empty() {
for pred in predicates {
self.infcx.suggest_restricting_param_bound(
&mut err,
pred,
self.body_id,
);
}
} else if *ty != lhs_ty {
// When we know that a missing bound is responsible, we don't show
// this note as it is redundant.
err.note(&format!(
"the trait `{missing_trait}` is not implemented for `{lhs_ty}`"
));
}
}
}
err.emit();
self.tcx.ty_error()
}
};
(lhs_ty, rhs_ty, return_ty)
}
/// If one of the types is an uncalled function and calling it would yield the other type,
/// suggest calling the function. Returns `true` if suggestion would apply (even if not given).
fn add_type_neq_err_label(
&self,
err: &mut Diagnostic,
span: Span,
ty: Ty<'tcx>,
other_ty: Ty<'tcx>,
other_expr: &'tcx hir::Expr<'tcx>,
op: hir::BinOp,
is_assign: IsAssign,
) -> bool /* did we suggest to call a function because of missing parentheses? */ {
err.span_label(span, ty.to_string());
if let FnDef(def_id, _) = *ty.kind() {
if !self.tcx.has_typeck_results(def_id) {
return false;
}
// FIXME: Instead of exiting early when encountering bound vars in
// the function signature, consider keeping the binder here and
// propagating it downwards.
let Some(fn_sig) = self.tcx.fn_sig(def_id).no_bound_vars() else {
return false;
};
let other_ty = if let FnDef(def_id, _) = *other_ty.kind() {
if !self.tcx.has_typeck_results(def_id) {
return false;
}
// We're emitting a suggestion, so we can just ignore regions
self.tcx.fn_sig(def_id).skip_binder().output()
} else {
other_ty
};
if self
.lookup_op_method(
fn_sig.output(),
Some(other_ty),
Some(other_expr),
Op::Binary(op, is_assign),
)
.is_ok()
{
let (variable_snippet, applicability) = if !fn_sig.inputs().is_empty() {
("( /* arguments */ )".to_string(), Applicability::HasPlaceholders)
} else {
("()".to_string(), Applicability::MaybeIncorrect)
};
err.span_suggestion_verbose(
span.shrink_to_hi(),
"you might have forgotten to call this function",
variable_snippet,
applicability,
);
return true;
}
}
false
}
/// Provide actionable suggestions when trying to add two strings with incorrect types,
/// like `&str + &str`, `String + String` and `&str + &String`.
///
/// If this function returns `true` it means a note was printed, so we don't need
/// to print the normal "implementation of `std::ops::Add` might be missing" note
fn check_str_addition(
&self,
lhs_expr: &'tcx hir::Expr<'tcx>,
rhs_expr: &'tcx hir::Expr<'tcx>,
lhs_ty: Ty<'tcx>,
rhs_ty: Ty<'tcx>,
err: &mut Diagnostic,
is_assign: IsAssign,
op: hir::BinOp,
) -> bool {
let str_concat_note = "string concatenation requires an owned `String` on the left";
let rm_borrow_msg = "remove the borrow to obtain an owned `String`";
let to_owned_msg = "create an owned `String` from a string reference";
let string_type = self.tcx.get_diagnostic_item(sym::String);
let is_std_string = |ty: Ty<'tcx>| match ty.ty_adt_def() {
Some(ty_def) => Some(ty_def.did()) == string_type,
None => false,
};
match (lhs_ty.kind(), rhs_ty.kind()) {
(&Ref(_, l_ty, _), &Ref(_, r_ty, _)) // &str or &String + &str, &String or &&str
if (*l_ty.kind() == Str || is_std_string(l_ty)) && (
*r_ty.kind() == Str || is_std_string(r_ty) ||
&format!("{:?}", rhs_ty) == "&&str"
) =>
{
if let IsAssign::No = is_assign { // Do not supply this message if `&str += &str`
err.span_label(op.span, "`+` cannot be used to concatenate two `&str` strings");
err.note(str_concat_note);
if let hir::ExprKind::AddrOf(_, _, lhs_inner_expr) = lhs_expr.kind {
err.span_suggestion_verbose(
lhs_expr.span.until(lhs_inner_expr.span),
rm_borrow_msg,
"".to_owned(),
Applicability::MachineApplicable
);
} else {
err.span_suggestion_verbose(
lhs_expr.span.shrink_to_hi(),
to_owned_msg,
".to_owned()".to_owned(),
Applicability::MachineApplicable
);
}
}
true
}
(&Ref(_, l_ty, _), &Adt(..)) // Handle `&str` & `&String` + `String`
if (*l_ty.kind() == Str || is_std_string(l_ty)) && is_std_string(rhs_ty) =>
{
err.span_label(
op.span,
"`+` cannot be used to concatenate a `&str` with a `String`",
);
match is_assign {
IsAssign::No => {
let sugg_msg;
let lhs_sugg = if let hir::ExprKind::AddrOf(_, _, lhs_inner_expr) = lhs_expr.kind {
sugg_msg = "remove the borrow on the left and add one on the right";
(lhs_expr.span.until(lhs_inner_expr.span), "".to_owned())
} else {
sugg_msg = "create an owned `String` on the left and add a borrow on the right";
(lhs_expr.span.shrink_to_hi(), ".to_owned()".to_owned())
};
let suggestions = vec![
lhs_sugg,
(rhs_expr.span.shrink_to_lo(), "&".to_owned()),
];
err.multipart_suggestion_verbose(
sugg_msg,
suggestions,
Applicability::MachineApplicable,
);
}
IsAssign::Yes => {
err.note(str_concat_note);
}
}
true
}
_ => false,
}
}
pub fn check_user_unop(
&self,
ex: &'tcx hir::Expr<'tcx>,
operand_ty: Ty<'tcx>,
op: hir::UnOp,
) -> Ty<'tcx> {
assert!(op.is_by_value());
match self.lookup_op_method(operand_ty, None, None, Op::Unary(op, ex.span)) {
Ok(method) => {
self.write_method_call(ex.hir_id, method);
method.sig.output()
}
Err(errors) => {
let actual = self.resolve_vars_if_possible(operand_ty);
if !actual.references_error() {
let mut err = struct_span_err!(
self.tcx.sess,
ex.span,
E0600,
"cannot apply unary operator `{}` to type `{}`",
op.as_str(),
actual
);
err.span_label(
ex.span,
format!("cannot apply unary operator `{}`", op.as_str()),
);
let mut visitor = TypeParamVisitor(vec![]);
visitor.visit_ty(operand_ty);
if let [_] = &visitor.0[..] && let ty::Param(_) = *operand_ty.kind() {
let predicates = errors
.iter()
.filter_map(|error| {
error.obligation.predicate.to_opt_poly_trait_pred()
});
for pred in predicates {
self.infcx.suggest_restricting_param_bound(
&mut err,
pred,
self.body_id,
);
}
}
let sp = self.tcx.sess.source_map().start_point(ex.span);
if let Some(sp) =
self.tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
{
// If the previous expression was a block expression, suggest parentheses
// (turning this into a binary subtraction operation instead.)
// for example, `{2} - 2` -> `({2}) - 2` (see src\test\ui\parser\expr-as-stmt.rs)
self.tcx.sess.parse_sess.expr_parentheses_needed(&mut err, *sp);
} else {
match actual.kind() {
Uint(_) if op == hir::UnOp::Neg => {
err.note("unsigned values cannot be negated");
if let hir::ExprKind::Unary(
_,
hir::Expr {
kind:
hir::ExprKind::Lit(Spanned {
node: ast::LitKind::Int(1, _),
..
}),
..
},
) = ex.kind
{
err.span_suggestion(
ex.span,
&format!(
"you may have meant the maximum value of `{actual}`",
),
format!("{actual}::MAX"),
Applicability::MaybeIncorrect,
);
}
}
Str | Never | Char | Tuple(_) | Array(_, _) => {}
Ref(_, lty, _) if *lty.kind() == Str => {}
_ => {
self.note_unmet_impls_on_type(&mut err, errors);
}
}
}
err.emit();
}
self.tcx.ty_error()
}
}
}
fn lookup_op_method(
&self,
lhs_ty: Ty<'tcx>,
other_ty: Option<Ty<'tcx>>,
other_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
op: Op,
) -> Result<MethodCallee<'tcx>, Vec<FulfillmentError<'tcx>>> {
let lang = self.tcx.lang_items();
let span = match op {
Op::Binary(op, _) => op.span,
Op::Unary(_, span) => span,
};
let (opname, trait_did) = if let Op::Binary(op, IsAssign::Yes) = op {
match op.node {
hir::BinOpKind::Add => (sym::add_assign, lang.add_assign_trait()),
hir::BinOpKind::Sub => (sym::sub_assign, lang.sub_assign_trait()),
hir::BinOpKind::Mul => (sym::mul_assign, lang.mul_assign_trait()),
hir::BinOpKind::Div => (sym::div_assign, lang.div_assign_trait()),
hir::BinOpKind::Rem => (sym::rem_assign, lang.rem_assign_trait()),
hir::BinOpKind::BitXor => (sym::bitxor_assign, lang.bitxor_assign_trait()),
hir::BinOpKind::BitAnd => (sym::bitand_assign, lang.bitand_assign_trait()),
hir::BinOpKind::BitOr => (sym::bitor_assign, lang.bitor_assign_trait()),
hir::BinOpKind::Shl => (sym::shl_assign, lang.shl_assign_trait()),
hir::BinOpKind::Shr => (sym::shr_assign, lang.shr_assign_trait()),
hir::BinOpKind::Lt
| hir::BinOpKind::Le
| hir::BinOpKind::Ge
| hir::BinOpKind::Gt
| hir::BinOpKind::Eq
| hir::BinOpKind::Ne
| hir::BinOpKind::And
| hir::BinOpKind::Or => {
span_bug!(span, "impossible assignment operation: {}=", op.node.as_str())
}
}
} else if let Op::Binary(op, IsAssign::No) = op {
match op.node {
hir::BinOpKind::Add => (sym::add, lang.add_trait()),
hir::BinOpKind::Sub => (sym::sub, lang.sub_trait()),
hir::BinOpKind::Mul => (sym::mul, lang.mul_trait()),
hir::BinOpKind::Div => (sym::div, lang.div_trait()),
hir::BinOpKind::Rem => (sym::rem, lang.rem_trait()),
hir::BinOpKind::BitXor => (sym::bitxor, lang.bitxor_trait()),
hir::BinOpKind::BitAnd => (sym::bitand, lang.bitand_trait()),
hir::BinOpKind::BitOr => (sym::bitor, lang.bitor_trait()),
hir::BinOpKind::Shl => (sym::shl, lang.shl_trait()),
hir::BinOpKind::Shr => (sym::shr, lang.shr_trait()),
hir::BinOpKind::Lt => (sym::lt, lang.partial_ord_trait()),
hir::BinOpKind::Le => (sym::le, lang.partial_ord_trait()),
hir::BinOpKind::Ge => (sym::ge, lang.partial_ord_trait()),
hir::BinOpKind::Gt => (sym::gt, lang.partial_ord_trait()),
hir::BinOpKind::Eq => (sym::eq, lang.eq_trait()),
hir::BinOpKind::Ne => (sym::ne, lang.eq_trait()),
hir::BinOpKind::And | hir::BinOpKind::Or => {
span_bug!(span, "&& and || are not overloadable")
}
}
} else if let Op::Unary(hir::UnOp::Not, _) = op {
(sym::not, lang.not_trait())
} else if let Op::Unary(hir::UnOp::Neg, _) = op {
(sym::neg, lang.neg_trait())
} else {
bug!("lookup_op_method: op not supported: {:?}", op)
};
debug!(
"lookup_op_method(lhs_ty={:?}, op={:?}, opname={:?}, trait_did={:?})",
lhs_ty, op, opname, trait_did
);
// Catches cases like #83893, where a lang item is declared with the
// wrong number of generic arguments. Should have yielded an error
// elsewhere by now, but we have to catch it here so that we do not
// index `other_tys` out of bounds (if the lang item has too many
// generic arguments, `other_tys` is too short).
if !has_expected_num_generic_args(
self.tcx,
trait_did,
match op {
// Binary ops have a generic right-hand side, unary ops don't
Op::Binary(..) => 1,
Op::Unary(..) => 0,
},
) {
return Err(vec![]);
}
let opname = Ident::with_dummy_span(opname);
let method = trait_did.and_then(|trait_did| {
self.lookup_op_method_in_trait(span, opname, trait_did, lhs_ty, other_ty, other_ty_expr)
});
match (method, trait_did) {
(Some(ok), _) => {
let method = self.register_infer_ok_obligations(ok);
self.select_obligations_where_possible(false, |_| {});
Ok(method)
}
(None, None) => Err(vec![]),
(None, Some(trait_did)) => {
let (obligation, _) =
self.obligation_for_op_method(span, trait_did, lhs_ty, other_ty, other_ty_expr);
let mut fulfill = <dyn TraitEngine<'_>>::new(self.tcx);
fulfill.register_predicate_obligation(self, obligation);
Err(fulfill.select_where_possible(&self.infcx))
}
}
}
}
// Binary operator categories. These categories summarize the behavior
// with respect to the builtin operations supported.
enum BinOpCategory {
/// &&, || -- cannot be overridden
Shortcircuit,
/// <<, >> -- when shifting a single integer, rhs can be any
/// integer type. For simd, types must match.
Shift,
/// +, -, etc -- takes equal types, produces same type as input,
/// applicable to ints/floats/simd
Math,
/// &, |, ^ -- takes equal types, produces same type as input,
/// applicable to ints/floats/simd/bool
Bitwise,
/// ==, !=, etc -- takes equal types, produces bools, except for simd,
/// which produce the input type
Comparison,
}
impl BinOpCategory {
fn from(op: hir::BinOp) -> BinOpCategory {
match op.node {
hir::BinOpKind::Shl | hir::BinOpKind::Shr => BinOpCategory::Shift,
hir::BinOpKind::Add
| hir::BinOpKind::Sub
| hir::BinOpKind::Mul
| hir::BinOpKind::Div
| hir::BinOpKind::Rem => BinOpCategory::Math,
hir::BinOpKind::BitXor | hir::BinOpKind::BitAnd | hir::BinOpKind::BitOr => {
BinOpCategory::Bitwise
}
hir::BinOpKind::Eq
| hir::BinOpKind::Ne
| hir::BinOpKind::Lt
| hir::BinOpKind::Le
| hir::BinOpKind::Ge
| hir::BinOpKind::Gt => BinOpCategory::Comparison,
hir::BinOpKind::And | hir::BinOpKind::Or => BinOpCategory::Shortcircuit,
}
}
}
/// Whether the binary operation is an assignment (`a += b`), or not (`a + b`)
#[derive(Clone, Copy, Debug, PartialEq)]
enum IsAssign {
No,
Yes,
}
#[derive(Clone, Copy, Debug)]
enum Op {
Binary(hir::BinOp, IsAssign),
Unary(hir::UnOp, Span),
}
/// Dereferences a single level of immutable referencing.
fn deref_ty_if_possible<'tcx>(ty: Ty<'tcx>) -> Ty<'tcx> {
match ty.kind() {
ty::Ref(_, ty, hir::Mutability::Not) => *ty,
_ => ty,
}
}
/// Returns `true` if this is a built-in arithmetic operation (e.g., u32
/// + u32, i16x4 == i16x4) and false if these types would have to be
/// overloaded to be legal. There are two reasons that we distinguish
/// builtin operations from overloaded ones (vs trying to drive
/// everything uniformly through the trait system and intrinsics or
/// something like that):
///
/// 1. Builtin operations can trivially be evaluated in constants.
/// 2. For comparison operators applied to SIMD types the result is
/// not of type `bool`. For example, `i16x4 == i16x4` yields a
/// type like `i16x4`. This means that the overloaded trait
/// `PartialEq` is not applicable.
///
/// Reason #2 is the killer. I tried for a while to always use
/// overloaded logic and just check the types in constants/codegen after
/// the fact, and it worked fine, except for SIMD types. -nmatsakis
fn is_builtin_binop<'tcx>(lhs: Ty<'tcx>, rhs: Ty<'tcx>, op: hir::BinOp) -> bool {
// Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work.
// (See https://github.com/rust-lang/rust/issues/57447.)
let (lhs, rhs) = (deref_ty_if_possible(lhs), deref_ty_if_possible(rhs));
match BinOpCategory::from(op) {
BinOpCategory::Shortcircuit => true,
BinOpCategory::Shift => {
lhs.references_error()
|| rhs.references_error()
|| lhs.is_integral() && rhs.is_integral()
}
BinOpCategory::Math => {
lhs.references_error()
|| rhs.references_error()
|| lhs.is_integral() && rhs.is_integral()
|| lhs.is_floating_point() && rhs.is_floating_point()
}
BinOpCategory::Bitwise => {
lhs.references_error()
|| rhs.references_error()
|| lhs.is_integral() && rhs.is_integral()
|| lhs.is_floating_point() && rhs.is_floating_point()
|| lhs.is_bool() && rhs.is_bool()
}
BinOpCategory::Comparison => {
lhs.references_error() || rhs.references_error() || lhs.is_scalar() && rhs.is_scalar()
}
}
}
struct TypeParamVisitor<'tcx>(Vec<Ty<'tcx>>);
impl<'tcx> TypeVisitor<'tcx> for TypeParamVisitor<'tcx> {
fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
if let ty::Param(_) = ty.kind() {
self.0.push(ty);
}
ty.super_visit_with(self)
}
}
struct TypeParamEraser<'a, 'tcx>(&'a FnCtxt<'a, 'tcx>, Span);
impl<'tcx> TypeFolder<'tcx> for TypeParamEraser<'_, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.0.tcx
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match ty.kind() {
ty::Param(_) => self.0.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: self.1,
}),
_ => ty.super_fold_with(self),
}
}
}