blob: 0520c9ac60cf019ed29d4cb9894234d344771abb [file] [log] [blame]
// Validate AST before lowering it to HIR.
//
// This pass is supposed to catch things that fit into AST data structures,
// but not permitted by the language. It runs after expansion when AST is frozen,
// so it can check for erroneous constructions produced by syntax extensions.
// This pass is supposed to perform only simple checks not requiring name resolution
// or type checking or some other kind of complex analysis.
use itertools::{Either, Itertools};
use rustc_ast::ptr::P;
use rustc_ast::visit::{self, AssocCtxt, BoundKind, FnCtxt, FnKind, Visitor};
use rustc_ast::walk_list;
use rustc_ast::*;
use rustc_ast_pretty::pprust::{self, State};
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{error_code, pluralize, struct_span_err, Applicability};
use rustc_parse::validate_attr;
use rustc_session::lint::builtin::{
DEPRECATED_WHERE_CLAUSE_LOCATION, MISSING_ABI, PATTERNS_IN_FNS_WITHOUT_BODY,
};
use rustc_session::lint::{BuiltinLintDiagnostics, LintBuffer};
use rustc_session::Session;
use rustc_span::source_map::Spanned;
use rustc_span::symbol::{kw, sym, Ident};
use rustc_span::Span;
use rustc_target::spec::abi;
use std::mem;
use std::ops::{Deref, DerefMut};
const MORE_EXTERN: &str =
"for more information, visit https://doc.rust-lang.org/std/keyword.extern.html";
/// Is `self` allowed semantically as the first parameter in an `FnDecl`?
enum SelfSemantic {
Yes,
No,
}
struct AstValidator<'a> {
session: &'a Session,
/// The span of the `extern` in an `extern { ... }` block, if any.
extern_mod: Option<&'a Item>,
/// Are we inside a trait impl?
in_trait_impl: bool,
in_const_trait_impl: bool,
has_proc_macro_decls: bool,
/// Used to ban nested `impl Trait`, e.g., `impl Into<impl Debug>`.
/// Nested `impl Trait` _is_ allowed in associated type position,
/// e.g., `impl Iterator<Item = impl Debug>`.
outer_impl_trait: Option<Span>,
is_tilde_const_allowed: bool,
/// Used to ban `impl Trait` in path projections like `<impl Iterator>::Item`
/// or `Foo::Bar<impl Trait>`
is_impl_trait_banned: bool,
/// Used to ban associated type bounds (i.e., `Type<AssocType: Bounds>`) in
/// certain positions.
is_assoc_ty_bound_banned: bool,
/// See [ForbiddenLetReason]
forbidden_let_reason: Option<ForbiddenLetReason>,
lint_buffer: &'a mut LintBuffer,
}
impl<'a> AstValidator<'a> {
fn with_in_trait_impl(
&mut self,
is_in: bool,
constness: Option<Const>,
f: impl FnOnce(&mut Self),
) {
let old = mem::replace(&mut self.in_trait_impl, is_in);
let old_const =
mem::replace(&mut self.in_const_trait_impl, matches!(constness, Some(Const::Yes(_))));
f(self);
self.in_trait_impl = old;
self.in_const_trait_impl = old_const;
}
fn with_banned_impl_trait(&mut self, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.is_impl_trait_banned, true);
f(self);
self.is_impl_trait_banned = old;
}
fn with_tilde_const(&mut self, allowed: bool, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.is_tilde_const_allowed, allowed);
f(self);
self.is_tilde_const_allowed = old;
}
fn with_tilde_const_allowed(&mut self, f: impl FnOnce(&mut Self)) {
self.with_tilde_const(true, f)
}
fn with_banned_tilde_const(&mut self, f: impl FnOnce(&mut Self)) {
self.with_tilde_const(false, f)
}
fn with_let_management(
&mut self,
forbidden_let_reason: Option<ForbiddenLetReason>,
f: impl FnOnce(&mut Self, Option<ForbiddenLetReason>),
) {
let old = mem::replace(&mut self.forbidden_let_reason, forbidden_let_reason);
f(self, old);
self.forbidden_let_reason = old;
}
/// Emits an error banning the `let` expression provided in the given location.
fn ban_let_expr(&self, expr: &'a Expr, forbidden_let_reason: ForbiddenLetReason) {
let sess = &self.session;
if sess.opts.unstable_features.is_nightly_build() {
let err = "`let` expressions are not supported here";
let mut diag = sess.struct_span_err(expr.span, err);
diag.note("only supported directly in conditions of `if` and `while` expressions");
match forbidden_let_reason {
ForbiddenLetReason::GenericForbidden => {}
ForbiddenLetReason::NotSupportedOr(span) => {
diag.span_note(
span,
"`||` operators are not supported in let chain expressions",
);
}
ForbiddenLetReason::NotSupportedParentheses(span) => {
diag.span_note(
span,
"`let`s wrapped in parentheses are not supported in a context with let \
chains",
);
}
}
diag.emit();
} else {
sess.struct_span_err(expr.span, "expected expression, found statement (`let`)")
.note("variable declaration using `let` is a statement")
.emit();
}
}
fn check_gat_where(
&mut self,
id: NodeId,
before_predicates: &[WherePredicate],
where_clauses: (ast::TyAliasWhereClause, ast::TyAliasWhereClause),
) {
if !before_predicates.is_empty() {
let mut state = State::new();
if !where_clauses.1.0 {
state.space();
state.word_space("where");
} else {
state.word_space(",");
}
let mut first = true;
for p in before_predicates.iter() {
if !first {
state.word_space(",");
}
first = false;
state.print_where_predicate(p);
}
let suggestion = state.s.eof();
self.lint_buffer.buffer_lint_with_diagnostic(
DEPRECATED_WHERE_CLAUSE_LOCATION,
id,
where_clauses.0.1,
"where clause not allowed here",
BuiltinLintDiagnostics::DeprecatedWhereclauseLocation(
where_clauses.1.1.shrink_to_hi(),
suggestion,
),
);
}
}
fn with_banned_assoc_ty_bound(&mut self, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.is_assoc_ty_bound_banned, true);
f(self);
self.is_assoc_ty_bound_banned = old;
}
fn with_impl_trait(&mut self, outer: Option<Span>, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.outer_impl_trait, outer);
if outer.is_some() {
self.with_banned_tilde_const(f);
} else {
f(self);
}
self.outer_impl_trait = old;
}
fn visit_assoc_constraint_from_generic_args(&mut self, constraint: &'a AssocConstraint) {
match constraint.kind {
AssocConstraintKind::Equality { .. } => {}
AssocConstraintKind::Bound { .. } => {
if self.is_assoc_ty_bound_banned {
self.err_handler().span_err(
constraint.span,
"associated type bounds are not allowed within structs, enums, or unions",
);
}
}
}
self.visit_assoc_constraint(constraint);
}
// Mirrors `visit::walk_ty`, but tracks relevant state.
fn walk_ty(&mut self, t: &'a Ty) {
match t.kind {
TyKind::ImplTrait(..) => {
self.with_impl_trait(Some(t.span), |this| visit::walk_ty(this, t))
}
TyKind::TraitObject(..) => self.with_banned_tilde_const(|this| visit::walk_ty(this, t)),
TyKind::Path(ref qself, ref path) => {
// We allow these:
// - `Option<impl Trait>`
// - `option::Option<impl Trait>`
// - `option::Option<T>::Foo<impl Trait>
//
// But not these:
// - `<impl Trait>::Foo`
// - `option::Option<impl Trait>::Foo`.
//
// To implement this, we disallow `impl Trait` from `qself`
// (for cases like `<impl Trait>::Foo>`)
// but we allow `impl Trait` in `GenericArgs`
// iff there are no more PathSegments.
if let Some(ref qself) = *qself {
// `impl Trait` in `qself` is always illegal
self.with_banned_impl_trait(|this| this.visit_ty(&qself.ty));
}
// Note that there should be a call to visit_path here,
// so if any logic is added to process `Path`s a call to it should be
// added both in visit_path and here. This code mirrors visit::walk_path.
for (i, segment) in path.segments.iter().enumerate() {
// Allow `impl Trait` iff we're on the final path segment
if i == path.segments.len() - 1 {
self.visit_path_segment(path.span, segment);
} else {
self.with_banned_impl_trait(|this| {
this.visit_path_segment(path.span, segment)
});
}
}
}
_ => visit::walk_ty(self, t),
}
}
fn visit_struct_field_def(&mut self, field: &'a FieldDef) {
if let Some(ident) = field.ident {
if ident.name == kw::Underscore {
self.visit_vis(&field.vis);
self.visit_ident(ident);
self.visit_ty_common(&field.ty);
self.walk_ty(&field.ty);
walk_list!(self, visit_attribute, &field.attrs);
return;
}
}
self.visit_field_def(field);
}
fn err_handler(&self) -> &rustc_errors::Handler {
&self.session.diagnostic()
}
fn check_lifetime(&self, ident: Ident) {
let valid_names = [kw::UnderscoreLifetime, kw::StaticLifetime, kw::Empty];
if !valid_names.contains(&ident.name) && ident.without_first_quote().is_reserved() {
self.err_handler().span_err(ident.span, "lifetimes cannot use keyword names");
}
}
fn check_label(&self, ident: Ident) {
if ident.without_first_quote().is_reserved() {
self.err_handler()
.span_err(ident.span, &format!("invalid label name `{}`", ident.name));
}
}
fn invalid_visibility(&self, vis: &Visibility, note: Option<&str>) {
if let VisibilityKind::Inherited = vis.kind {
return;
}
let mut err =
struct_span_err!(self.session, vis.span, E0449, "unnecessary visibility qualifier");
if vis.kind.is_pub() {
err.span_label(vis.span, "`pub` not permitted here because it's implied");
}
if let Some(note) = note {
err.note(note);
}
err.emit();
}
fn check_decl_no_pat(decl: &FnDecl, mut report_err: impl FnMut(Span, Option<Ident>, bool)) {
for Param { pat, .. } in &decl.inputs {
match pat.kind {
PatKind::Ident(BindingMode::ByValue(Mutability::Not), _, None) | PatKind::Wild => {}
PatKind::Ident(BindingMode::ByValue(Mutability::Mut), ident, None) => {
report_err(pat.span, Some(ident), true)
}
_ => report_err(pat.span, None, false),
}
}
}
fn check_trait_fn_not_async(&self, fn_span: Span, asyncness: Async) {
if let Async::Yes { span, .. } = asyncness {
struct_span_err!(
self.session,
fn_span,
E0706,
"functions in traits cannot be declared `async`"
)
.span_label(span, "`async` because of this")
.note("`async` trait functions are not currently supported")
.note("consider using the `async-trait` crate: https://crates.io/crates/async-trait")
.emit();
}
}
fn check_trait_fn_not_const(&self, constness: Const) {
if let Const::Yes(span) = constness {
struct_span_err!(
self.session,
span,
E0379,
"functions in traits cannot be declared const"
)
.span_label(span, "functions in traits cannot be const")
.emit();
}
}
fn check_late_bound_lifetime_defs(&self, params: &[GenericParam]) {
// Check only lifetime parameters are present and that the lifetime
// parameters that are present have no bounds.
let non_lt_param_spans: Vec<_> = params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
if !param.bounds.is_empty() {
let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
self.err_handler()
.span_err(spans, "lifetime bounds cannot be used in this context");
}
None
}
_ => Some(param.ident.span),
})
.collect();
if !non_lt_param_spans.is_empty() {
self.err_handler().span_err(
non_lt_param_spans,
"only lifetime parameters can be used in this context",
);
}
}
fn check_fn_decl(&self, fn_decl: &FnDecl, self_semantic: SelfSemantic) {
self.check_decl_num_args(fn_decl);
self.check_decl_cvaradic_pos(fn_decl);
self.check_decl_attrs(fn_decl);
self.check_decl_self_param(fn_decl, self_semantic);
}
/// Emits fatal error if function declaration has more than `u16::MAX` arguments
/// Error is fatal to prevent errors during typechecking
fn check_decl_num_args(&self, fn_decl: &FnDecl) {
let max_num_args: usize = u16::MAX.into();
if fn_decl.inputs.len() > max_num_args {
let Param { span, .. } = fn_decl.inputs[0];
self.err_handler().span_fatal(
span,
&format!("function can not have more than {} arguments", max_num_args),
);
}
}
fn check_decl_cvaradic_pos(&self, fn_decl: &FnDecl) {
match &*fn_decl.inputs {
[Param { ty, span, .. }] => {
if let TyKind::CVarArgs = ty.kind {
self.err_handler().span_err(
*span,
"C-variadic function must be declared with at least one named argument",
);
}
}
[ps @ .., _] => {
for Param { ty, span, .. } in ps {
if let TyKind::CVarArgs = ty.kind {
self.err_handler().span_err(
*span,
"`...` must be the last argument of a C-variadic function",
);
}
}
}
_ => {}
}
}
fn check_decl_attrs(&self, fn_decl: &FnDecl) {
fn_decl
.inputs
.iter()
.flat_map(|i| i.attrs.as_ref())
.filter(|attr| {
let arr = [sym::allow, sym::cfg, sym::cfg_attr, sym::deny, sym::forbid, sym::warn];
!arr.contains(&attr.name_or_empty()) && rustc_attr::is_builtin_attr(attr)
})
.for_each(|attr| {
if attr.is_doc_comment() {
self.err_handler()
.struct_span_err(
attr.span,
"documentation comments cannot be applied to function parameters",
)
.span_label(attr.span, "doc comments are not allowed here")
.emit();
} else {
self.err_handler().span_err(
attr.span,
"allow, cfg, cfg_attr, deny, \
forbid, and warn are the only allowed built-in attributes in function parameters",
);
}
});
}
fn check_decl_self_param(&self, fn_decl: &FnDecl, self_semantic: SelfSemantic) {
if let (SelfSemantic::No, [param, ..]) = (self_semantic, &*fn_decl.inputs) {
if param.is_self() {
self.err_handler()
.struct_span_err(
param.span,
"`self` parameter is only allowed in associated functions",
)
.span_label(param.span, "not semantically valid as function parameter")
.note("associated functions are those in `impl` or `trait` definitions")
.emit();
}
}
}
fn check_defaultness(&self, span: Span, defaultness: Defaultness) {
if let Defaultness::Default(def_span) = defaultness {
let span = self.session.source_map().guess_head_span(span);
self.err_handler()
.struct_span_err(span, "`default` is only allowed on items in trait impls")
.span_label(def_span, "`default` because of this")
.emit();
}
}
fn error_item_without_body(&self, sp: Span, ctx: &str, msg: &str, sugg: &str) {
let source_map = self.session.source_map();
let end = source_map.end_point(sp);
let replace_span = if source_map.span_to_snippet(end).map(|s| s == ";").unwrap_or(false) {
end
} else {
sp.shrink_to_hi()
};
self.err_handler()
.struct_span_err(sp, msg)
.span_suggestion(
replace_span,
&format!("provide a definition for the {}", ctx),
sugg.to_string(),
Applicability::HasPlaceholders,
)
.emit();
}
fn check_impl_item_provided<T>(&self, sp: Span, body: &Option<T>, ctx: &str, sugg: &str) {
if body.is_none() {
let msg = format!("associated {} in `impl` without body", ctx);
self.error_item_without_body(sp, ctx, &msg, sugg);
}
}
fn check_type_no_bounds(&self, bounds: &[GenericBound], ctx: &str) {
let span = match bounds {
[] => return,
[b0] => b0.span(),
[b0, .., bl] => b0.span().to(bl.span()),
};
self.err_handler()
.struct_span_err(span, &format!("bounds on `type`s in {} have no effect", ctx))
.emit();
}
fn check_foreign_ty_genericless(&self, generics: &Generics, where_span: Span) {
let cannot_have = |span, descr, remove_descr| {
self.err_handler()
.struct_span_err(
span,
&format!("`type`s inside `extern` blocks cannot have {}", descr),
)
.span_suggestion(
span,
&format!("remove the {}", remove_descr),
String::new(),
Applicability::MaybeIncorrect,
)
.span_label(self.current_extern_span(), "`extern` block begins here")
.note(MORE_EXTERN)
.emit();
};
if !generics.params.is_empty() {
cannot_have(generics.span, "generic parameters", "generic parameters");
}
if !generics.where_clause.predicates.is_empty() {
cannot_have(where_span, "`where` clauses", "`where` clause");
}
}
fn check_foreign_kind_bodyless(&self, ident: Ident, kind: &str, body: Option<Span>) {
let Some(body) = body else {
return;
};
self.err_handler()
.struct_span_err(ident.span, &format!("incorrect `{}` inside `extern` block", kind))
.span_label(ident.span, "cannot have a body")
.span_label(body, "the invalid body")
.span_label(
self.current_extern_span(),
format!(
"`extern` blocks define existing foreign {0}s and {0}s \
inside of them cannot have a body",
kind
),
)
.note(MORE_EXTERN)
.emit();
}
/// An `fn` in `extern { ... }` cannot have a body `{ ... }`.
fn check_foreign_fn_bodyless(&self, ident: Ident, body: Option<&Block>) {
let Some(body) = body else {
return;
};
self.err_handler()
.struct_span_err(ident.span, "incorrect function inside `extern` block")
.span_label(ident.span, "cannot have a body")
.span_suggestion(
body.span,
"remove the invalid body",
";".to_string(),
Applicability::MaybeIncorrect,
)
.help(
"you might have meant to write a function accessible through FFI, \
which can be done by writing `extern fn` outside of the `extern` block",
)
.span_label(
self.current_extern_span(),
"`extern` blocks define existing foreign functions and functions \
inside of them cannot have a body",
)
.note(MORE_EXTERN)
.emit();
}
fn current_extern_span(&self) -> Span {
self.session.source_map().guess_head_span(self.extern_mod.unwrap().span)
}
/// An `fn` in `extern { ... }` cannot have qualifiers, e.g. `async fn`.
fn check_foreign_fn_headerless(&self, ident: Ident, span: Span, header: FnHeader) {
if header.has_qualifiers() {
self.err_handler()
.struct_span_err(ident.span, "functions in `extern` blocks cannot have qualifiers")
.span_label(self.current_extern_span(), "in this `extern` block")
.span_suggestion_verbose(
span.until(ident.span.shrink_to_lo()),
"remove the qualifiers",
"fn ".to_string(),
Applicability::MaybeIncorrect,
)
.emit();
}
}
/// An item in `extern { ... }` cannot use non-ascii identifier.
fn check_foreign_item_ascii_only(&self, ident: Ident) {
if !ident.as_str().is_ascii() {
let n = 83942;
self.err_handler()
.struct_span_err(
ident.span,
"items in `extern` blocks cannot use non-ascii identifiers",
)
.span_label(self.current_extern_span(), "in this `extern` block")
.note(&format!(
"this limitation may be lifted in the future; see issue #{} <https://github.com/rust-lang/rust/issues/{}> for more information",
n, n,
))
.emit();
}
}
/// Reject C-variadic type unless the function is foreign,
/// or free and `unsafe extern "C"` semantically.
fn check_c_variadic_type(&self, fk: FnKind<'a>) {
match (fk.ctxt(), fk.header()) {
(Some(FnCtxt::Foreign), _) => return,
(Some(FnCtxt::Free), Some(header)) => match header.ext {
Extern::Explicit(StrLit { symbol_unescaped: sym::C, .. }) | Extern::Implicit
if matches!(header.unsafety, Unsafe::Yes(_)) =>
{
return;
}
_ => {}
},
_ => {}
};
for Param { ty, span, .. } in &fk.decl().inputs {
if let TyKind::CVarArgs = ty.kind {
self.err_handler()
.struct_span_err(
*span,
"only foreign or `unsafe extern \"C\"` functions may be C-variadic",
)
.emit();
}
}
}
fn check_item_named(&self, ident: Ident, kind: &str) {
if ident.name != kw::Underscore {
return;
}
self.err_handler()
.struct_span_err(ident.span, &format!("`{}` items in this context need a name", kind))
.span_label(ident.span, format!("`_` is not a valid name for this `{}` item", kind))
.emit();
}
fn check_nomangle_item_asciionly(&self, ident: Ident, item_span: Span) {
if ident.name.as_str().is_ascii() {
return;
}
let head_span = self.session.source_map().guess_head_span(item_span);
struct_span_err!(
self.session,
head_span,
E0754,
"`#[no_mangle]` requires ASCII identifier"
)
.emit();
}
fn check_mod_file_item_asciionly(&self, ident: Ident) {
if ident.name.as_str().is_ascii() {
return;
}
struct_span_err!(
self.session,
ident.span,
E0754,
"trying to load file for module `{}` with non-ascii identifier name",
ident.name
)
.help("consider using `#[path]` attribute to specify filesystem path")
.emit();
}
fn deny_generic_params(&self, generics: &Generics, ident_span: Span) {
if !generics.params.is_empty() {
struct_span_err!(
self.session,
generics.span,
E0567,
"auto traits cannot have generic parameters"
)
.span_label(ident_span, "auto trait cannot have generic parameters")
.span_suggestion(
generics.span,
"remove the parameters",
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
}
fn emit_e0568(&self, span: Span, ident_span: Span) {
struct_span_err!(
self.session,
span,
E0568,
"auto traits cannot have super traits or lifetime bounds"
)
.span_label(ident_span, "auto trait cannot have super traits or lifetime bounds")
.span_suggestion(
span,
"remove the super traits or lifetime bounds",
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
fn deny_super_traits(&self, bounds: &GenericBounds, ident_span: Span) {
if let [.., last] = &bounds[..] {
let span = ident_span.shrink_to_hi().to(last.span());
self.emit_e0568(span, ident_span);
}
}
fn deny_where_clause(&self, where_clause: &WhereClause, ident_span: Span) {
if !where_clause.predicates.is_empty() {
self.emit_e0568(where_clause.span, ident_span);
}
}
fn deny_items(&self, trait_items: &[P<AssocItem>], ident_span: Span) {
if !trait_items.is_empty() {
let spans: Vec<_> = trait_items.iter().map(|i| i.ident.span).collect();
let total_span = trait_items.first().unwrap().span.to(trait_items.last().unwrap().span);
struct_span_err!(
self.session,
spans,
E0380,
"auto traits cannot have associated items"
)
.span_suggestion(
total_span,
"remove these associated items",
String::new(),
Applicability::MachineApplicable,
)
.span_label(ident_span, "auto trait cannot have associated items")
.emit();
}
}
fn correct_generic_order_suggestion(&self, data: &AngleBracketedArgs) -> String {
// Lifetimes always come first.
let lt_sugg = data.args.iter().filter_map(|arg| match arg {
AngleBracketedArg::Arg(lt @ GenericArg::Lifetime(_)) => {
Some(pprust::to_string(|s| s.print_generic_arg(lt)))
}
_ => None,
});
let args_sugg = data.args.iter().filter_map(|a| match a {
AngleBracketedArg::Arg(GenericArg::Lifetime(_)) | AngleBracketedArg::Constraint(_) => {
None
}
AngleBracketedArg::Arg(arg) => Some(pprust::to_string(|s| s.print_generic_arg(arg))),
});
// Constraints always come last.
let constraint_sugg = data.args.iter().filter_map(|a| match a {
AngleBracketedArg::Arg(_) => None,
AngleBracketedArg::Constraint(c) => {
Some(pprust::to_string(|s| s.print_assoc_constraint(c)))
}
});
format!(
"<{}>",
lt_sugg.chain(args_sugg).chain(constraint_sugg).collect::<Vec<String>>().join(", ")
)
}
/// Enforce generic args coming before constraints in `<...>` of a path segment.
fn check_generic_args_before_constraints(&self, data: &AngleBracketedArgs) {
// Early exit in case it's partitioned as it should be.
if data.args.iter().is_partitioned(|arg| matches!(arg, AngleBracketedArg::Arg(_))) {
return;
}
// Find all generic argument coming after the first constraint...
let (constraint_spans, arg_spans): (Vec<Span>, Vec<Span>) =
data.args.iter().partition_map(|arg| match arg {
AngleBracketedArg::Constraint(c) => Either::Left(c.span),
AngleBracketedArg::Arg(a) => Either::Right(a.span()),
});
let args_len = arg_spans.len();
let constraint_len = constraint_spans.len();
// ...and then error:
self.err_handler()
.struct_span_err(
arg_spans.clone(),
"generic arguments must come before the first constraint",
)
.span_label(constraint_spans[0], &format!("constraint{}", pluralize!(constraint_len)))
.span_label(
*arg_spans.iter().last().unwrap(),
&format!("generic argument{}", pluralize!(args_len)),
)
.span_labels(constraint_spans, "")
.span_labels(arg_spans, "")
.span_suggestion_verbose(
data.span,
&format!(
"move the constraint{} after the generic argument{}",
pluralize!(constraint_len),
pluralize!(args_len)
),
self.correct_generic_order_suggestion(&data),
Applicability::MachineApplicable,
)
.emit();
}
fn visit_ty_common(&mut self, ty: &'a Ty) {
match ty.kind {
TyKind::BareFn(ref bfty) => {
self.check_fn_decl(&bfty.decl, SelfSemantic::No);
Self::check_decl_no_pat(&bfty.decl, |span, _, _| {
struct_span_err!(
self.session,
span,
E0561,
"patterns aren't allowed in function pointer types"
)
.emit();
});
self.check_late_bound_lifetime_defs(&bfty.generic_params);
if let Extern::Implicit = bfty.ext {
let sig_span = self.session.source_map().next_point(ty.span.shrink_to_lo());
self.maybe_lint_missing_abi(sig_span, ty.id);
}
}
TyKind::TraitObject(ref bounds, ..) => {
let mut any_lifetime_bounds = false;
for bound in bounds {
if let GenericBound::Outlives(ref lifetime) = *bound {
if any_lifetime_bounds {
struct_span_err!(
self.session,
lifetime.ident.span,
E0226,
"only a single explicit lifetime bound is permitted"
)
.emit();
break;
}
any_lifetime_bounds = true;
}
}
}
TyKind::ImplTrait(_, ref bounds) => {
if self.is_impl_trait_banned {
struct_span_err!(
self.session,
ty.span,
E0667,
"`impl Trait` is not allowed in path parameters"
)
.emit();
}
if let Some(outer_impl_trait_sp) = self.outer_impl_trait {
struct_span_err!(
self.session,
ty.span,
E0666,
"nested `impl Trait` is not allowed"
)
.span_label(outer_impl_trait_sp, "outer `impl Trait`")
.span_label(ty.span, "nested `impl Trait` here")
.emit();
}
if !bounds.iter().any(|b| matches!(b, GenericBound::Trait(..))) {
self.err_handler().span_err(ty.span, "at least one trait must be specified");
}
}
_ => {}
}
}
fn maybe_lint_missing_abi(&mut self, span: Span, id: NodeId) {
// FIXME(davidtwco): This is a hack to detect macros which produce spans of the
// call site which do not have a macro backtrace. See #61963.
let is_macro_callsite = self
.session
.source_map()
.span_to_snippet(span)
.map(|snippet| snippet.starts_with("#["))
.unwrap_or(true);
if !is_macro_callsite {
self.lint_buffer.buffer_lint_with_diagnostic(
MISSING_ABI,
id,
span,
"extern declarations without an explicit ABI are deprecated",
BuiltinLintDiagnostics::MissingAbi(span, abi::Abi::FALLBACK),
)
}
}
}
/// Checks that generic parameters are in the correct order,
/// which is lifetimes, then types and then consts. (`<'a, T, const N: usize>`)
fn validate_generic_param_order(
handler: &rustc_errors::Handler,
generics: &[GenericParam],
span: Span,
) {
let mut max_param: Option<ParamKindOrd> = None;
let mut out_of_order = FxHashMap::default();
let mut param_idents = Vec::with_capacity(generics.len());
for (idx, param) in generics.iter().enumerate() {
let ident = param.ident;
let (kind, bounds, span) = (&param.kind, &param.bounds, ident.span);
let (ord_kind, ident) = match &param.kind {
GenericParamKind::Lifetime => (ParamKindOrd::Lifetime, ident.to_string()),
GenericParamKind::Type { default: _ } => (ParamKindOrd::Type, ident.to_string()),
GenericParamKind::Const { ref ty, kw_span: _, default: _ } => {
let ty = pprust::ty_to_string(ty);
(ParamKindOrd::Const, format!("const {}: {}", ident, ty))
}
};
param_idents.push((kind, ord_kind, bounds, idx, ident));
match max_param {
Some(max_param) if max_param > ord_kind => {
let entry = out_of_order.entry(ord_kind).or_insert((max_param, vec![]));
entry.1.push(span);
}
Some(_) | None => max_param = Some(ord_kind),
};
}
if !out_of_order.is_empty() {
let mut ordered_params = "<".to_string();
param_idents.sort_by_key(|&(_, po, _, i, _)| (po, i));
let mut first = true;
for (kind, _, bounds, _, ident) in param_idents {
if !first {
ordered_params += ", ";
}
ordered_params += &ident;
if !bounds.is_empty() {
ordered_params += ": ";
ordered_params += &pprust::bounds_to_string(&bounds);
}
match kind {
GenericParamKind::Type { default: Some(default) } => {
ordered_params += " = ";
ordered_params += &pprust::ty_to_string(default);
}
GenericParamKind::Type { default: None } => (),
GenericParamKind::Lifetime => (),
GenericParamKind::Const { ty: _, kw_span: _, default: Some(default) } => {
ordered_params += " = ";
ordered_params += &pprust::expr_to_string(&*default.value);
}
GenericParamKind::Const { ty: _, kw_span: _, default: None } => (),
}
first = false;
}
ordered_params += ">";
for (param_ord, (max_param, spans)) in &out_of_order {
let mut err = handler.struct_span_err(
spans.clone(),
&format!(
"{} parameters must be declared prior to {} parameters",
param_ord, max_param,
),
);
err.span_suggestion(
span,
"reorder the parameters: lifetimes, then consts and types",
ordered_params.clone(),
Applicability::MachineApplicable,
);
err.emit();
}
}
}
impl<'a> Visitor<'a> for AstValidator<'a> {
fn visit_attribute(&mut self, attr: &Attribute) {
validate_attr::check_meta(&self.session.parse_sess, attr);
}
fn visit_expr(&mut self, expr: &'a Expr) {
self.with_let_management(Some(ForbiddenLetReason::GenericForbidden), |this, forbidden_let_reason| {
match &expr.kind {
ExprKind::Binary(Spanned { node: BinOpKind::Or, span }, lhs, rhs) => {
let local_reason = Some(ForbiddenLetReason::NotSupportedOr(*span));
this.with_let_management(local_reason, |this, _| this.visit_expr(lhs));
this.with_let_management(local_reason, |this, _| this.visit_expr(rhs));
}
ExprKind::If(cond, then, opt_else) => {
this.visit_block(then);
walk_list!(this, visit_expr, opt_else);
this.with_let_management(None, |this, _| this.visit_expr(cond));
return;
}
ExprKind::Let(..) if let Some(elem) = forbidden_let_reason => {
this.ban_let_expr(expr, elem);
},
ExprKind::Match(scrutinee, arms) => {
this.visit_expr(scrutinee);
for arm in arms {
this.visit_expr(&arm.body);
this.visit_pat(&arm.pat);
walk_list!(this, visit_attribute, &arm.attrs);
if let Some(guard) = &arm.guard && let ExprKind::Let(_, guard_expr, _) = &guard.kind {
this.with_let_management(None, |this, _| {
this.visit_expr(guard_expr)
});
return;
}
}
}
ExprKind::Paren(local_expr) => {
fn has_let_expr(expr: &Expr) -> bool {
match expr.kind {
ExprKind::Binary(_, ref lhs, ref rhs) => has_let_expr(lhs) || has_let_expr(rhs),
ExprKind::Let(..) => true,
_ => false,
}
}
let local_reason = if has_let_expr(local_expr) {
Some(ForbiddenLetReason::NotSupportedParentheses(local_expr.span))
}
else {
forbidden_let_reason
};
this.with_let_management(local_reason, |this, _| this.visit_expr(local_expr));
}
ExprKind::Binary(Spanned { node: BinOpKind::And, .. }, ..) => {
this.with_let_management(forbidden_let_reason, |this, _| visit::walk_expr(this, expr));
return;
}
ExprKind::While(cond, then, opt_label) => {
walk_list!(this, visit_label, opt_label);
this.visit_block(then);
this.with_let_management(None, |this, _| this.visit_expr(cond));
return;
}
_ => visit::walk_expr(this, expr),
}
});
}
fn visit_ty(&mut self, ty: &'a Ty) {
self.visit_ty_common(ty);
self.walk_ty(ty)
}
fn visit_label(&mut self, label: &'a Label) {
self.check_label(label.ident);
visit::walk_label(self, label);
}
fn visit_lifetime(&mut self, lifetime: &'a Lifetime, _: visit::LifetimeCtxt) {
self.check_lifetime(lifetime.ident);
visit::walk_lifetime(self, lifetime);
}
fn visit_field_def(&mut self, s: &'a FieldDef) {
visit::walk_field_def(self, s)
}
fn visit_item(&mut self, item: &'a Item) {
if item.attrs.iter().any(|attr| self.session.is_proc_macro_attr(attr)) {
self.has_proc_macro_decls = true;
}
if self.session.contains_name(&item.attrs, sym::no_mangle) {
self.check_nomangle_item_asciionly(item.ident, item.span);
}
match item.kind {
ItemKind::Impl(box Impl {
unsafety,
polarity,
defaultness: _,
constness,
ref generics,
of_trait: Some(ref t),
ref self_ty,
ref items,
}) => {
self.with_in_trait_impl(true, Some(constness), |this| {
this.invalid_visibility(&item.vis, None);
if let TyKind::Err = self_ty.kind {
this.err_handler()
.struct_span_err(
item.span,
"`impl Trait for .. {}` is an obsolete syntax",
)
.help("use `auto trait Trait {}` instead")
.emit();
}
if let (Unsafe::Yes(span), ImplPolarity::Negative(sp)) = (unsafety, polarity) {
struct_span_err!(
this.session,
sp.to(t.path.span),
E0198,
"negative impls cannot be unsafe"
)
.span_label(sp, "negative because of this")
.span_label(span, "unsafe because of this")
.emit();
}
this.visit_vis(&item.vis);
this.visit_ident(item.ident);
if let Const::Yes(_) = constness {
this.with_tilde_const_allowed(|this| this.visit_generics(generics));
} else {
this.visit_generics(generics);
}
this.visit_trait_ref(t);
this.visit_ty(self_ty);
walk_list!(this, visit_assoc_item, items, AssocCtxt::Impl);
});
return; // Avoid visiting again.
}
ItemKind::Impl(box Impl {
unsafety,
polarity,
defaultness,
constness,
generics: _,
of_trait: None,
ref self_ty,
items: _,
}) => {
let error = |annotation_span, annotation| {
let mut err = self.err_handler().struct_span_err(
self_ty.span,
&format!("inherent impls cannot be {}", annotation),
);
err.span_label(annotation_span, &format!("{} because of this", annotation));
err.span_label(self_ty.span, "inherent impl for this type");
err
};
self.invalid_visibility(
&item.vis,
Some("place qualifiers on individual impl items instead"),
);
if let Unsafe::Yes(span) = unsafety {
error(span, "unsafe").code(error_code!(E0197)).emit();
}
if let ImplPolarity::Negative(span) = polarity {
error(span, "negative").emit();
}
if let Defaultness::Default(def_span) = defaultness {
error(def_span, "`default`")
.note("only trait implementations may be annotated with `default`")
.emit();
}
if let Const::Yes(span) = constness {
error(span, "`const`")
.note("only trait implementations may be annotated with `const`")
.emit();
}
}
ItemKind::Fn(box Fn { defaultness, ref sig, ref generics, ref body }) => {
self.check_defaultness(item.span, defaultness);
if body.is_none() {
let msg = "free function without a body";
self.error_item_without_body(item.span, "function", msg, " { <body> }");
}
self.visit_vis(&item.vis);
self.visit_ident(item.ident);
let kind =
FnKind::Fn(FnCtxt::Free, item.ident, sig, &item.vis, generics, body.as_deref());
self.visit_fn(kind, item.span, item.id);
walk_list!(self, visit_attribute, &item.attrs);
return; // Avoid visiting again.
}
ItemKind::ForeignMod(ForeignMod { abi, unsafety, .. }) => {
let old_item = mem::replace(&mut self.extern_mod, Some(item));
self.invalid_visibility(
&item.vis,
Some("place qualifiers on individual foreign items instead"),
);
if let Unsafe::Yes(span) = unsafety {
self.err_handler().span_err(span, "extern block cannot be declared unsafe");
}
if abi.is_none() {
self.maybe_lint_missing_abi(item.span, item.id);
}
visit::walk_item(self, item);
self.extern_mod = old_item;
return; // Avoid visiting again.
}
ItemKind::Enum(ref def, _) => {
for variant in &def.variants {
self.invalid_visibility(&variant.vis, None);
for field in variant.data.fields() {
self.invalid_visibility(&field.vis, None);
}
}
}
ItemKind::Trait(box Trait { is_auto, ref generics, ref bounds, ref items, .. }) => {
if is_auto == IsAuto::Yes {
// Auto traits cannot have generics, super traits nor contain items.
self.deny_generic_params(generics, item.ident.span);
self.deny_super_traits(bounds, item.ident.span);
self.deny_where_clause(&generics.where_clause, item.ident.span);
self.deny_items(items, item.ident.span);
}
// Equivalent of `visit::walk_item` for `ItemKind::Trait` that inserts a bound
// context for the supertraits.
self.visit_vis(&item.vis);
self.visit_ident(item.ident);
self.visit_generics(generics);
self.with_banned_tilde_const(|this| {
walk_list!(this, visit_param_bound, bounds, BoundKind::SuperTraits)
});
walk_list!(self, visit_assoc_item, items, AssocCtxt::Trait);
walk_list!(self, visit_attribute, &item.attrs);
return;
}
ItemKind::Mod(unsafety, ref mod_kind) => {
if let Unsafe::Yes(span) = unsafety {
self.err_handler().span_err(span, "module cannot be declared unsafe");
}
// Ensure that `path` attributes on modules are recorded as used (cf. issue #35584).
if !matches!(mod_kind, ModKind::Loaded(_, Inline::Yes, _))
&& !self.session.contains_name(&item.attrs, sym::path)
{
self.check_mod_file_item_asciionly(item.ident);
}
}
ItemKind::Struct(ref vdata, ref generics) => match vdata {
// Duplicating the `Visitor` logic allows catching all cases
// of `Anonymous(Struct, Union)` outside of a field struct or union.
//
// Inside `visit_ty` the validator catches every `Anonymous(Struct, Union)` it
// encounters, and only on `ItemKind::Struct` and `ItemKind::Union`
// it uses `visit_ty_common`, which doesn't contain that specific check.
VariantData::Struct(ref fields, ..) => {
self.visit_vis(&item.vis);
self.visit_ident(item.ident);
self.visit_generics(generics);
self.with_banned_assoc_ty_bound(|this| {
walk_list!(this, visit_struct_field_def, fields);
});
walk_list!(self, visit_attribute, &item.attrs);
return;
}
_ => {}
},
ItemKind::Union(ref vdata, ref generics) => {
if vdata.fields().is_empty() {
self.err_handler().span_err(item.span, "unions cannot have zero fields");
}
match vdata {
VariantData::Struct(ref fields, ..) => {
self.visit_vis(&item.vis);
self.visit_ident(item.ident);
self.visit_generics(generics);
self.with_banned_assoc_ty_bound(|this| {
walk_list!(this, visit_struct_field_def, fields);
});
walk_list!(self, visit_attribute, &item.attrs);
return;
}
_ => {}
}
}
ItemKind::Const(def, .., None) => {
self.check_defaultness(item.span, def);
let msg = "free constant item without body";
self.error_item_without_body(item.span, "constant", msg, " = <expr>;");
}
ItemKind::Static(.., None) => {
let msg = "free static item without body";
self.error_item_without_body(item.span, "static", msg, " = <expr>;");
}
ItemKind::TyAlias(box TyAlias {
defaultness,
where_clauses,
ref bounds,
ref ty,
..
}) => {
self.check_defaultness(item.span, defaultness);
if ty.is_none() {
let msg = "free type alias without body";
self.error_item_without_body(item.span, "type", msg, " = <type>;");
}
self.check_type_no_bounds(bounds, "this context");
if where_clauses.1.0 {
let mut err = self.err_handler().struct_span_err(
where_clauses.1.1,
"where clauses are not allowed after the type for type aliases",
);
err.note(
"see issue #89122 <https://github.com/rust-lang/rust/issues/89122> for more information",
);
err.emit();
}
}
_ => {}
}
visit::walk_item(self, item);
}
fn visit_foreign_item(&mut self, fi: &'a ForeignItem) {
match &fi.kind {
ForeignItemKind::Fn(box Fn { defaultness, sig, body, .. }) => {
self.check_defaultness(fi.span, *defaultness);
self.check_foreign_fn_bodyless(fi.ident, body.as_deref());
self.check_foreign_fn_headerless(fi.ident, fi.span, sig.header);
self.check_foreign_item_ascii_only(fi.ident);
}
ForeignItemKind::TyAlias(box TyAlias {
defaultness,
generics,
where_clauses,
bounds,
ty,
..
}) => {
self.check_defaultness(fi.span, *defaultness);
self.check_foreign_kind_bodyless(fi.ident, "type", ty.as_ref().map(|b| b.span));
self.check_type_no_bounds(bounds, "`extern` blocks");
self.check_foreign_ty_genericless(generics, where_clauses.0.1);
self.check_foreign_item_ascii_only(fi.ident);
}
ForeignItemKind::Static(_, _, body) => {
self.check_foreign_kind_bodyless(fi.ident, "static", body.as_ref().map(|b| b.span));
self.check_foreign_item_ascii_only(fi.ident);
}
ForeignItemKind::MacCall(..) => {}
}
visit::walk_foreign_item(self, fi)
}
// Mirrors `visit::walk_generic_args`, but tracks relevant state.
fn visit_generic_args(&mut self, _: Span, generic_args: &'a GenericArgs) {
match *generic_args {
GenericArgs::AngleBracketed(ref data) => {
self.check_generic_args_before_constraints(data);
for arg in &data.args {
match arg {
AngleBracketedArg::Arg(arg) => self.visit_generic_arg(arg),
// Type bindings such as `Item = impl Debug` in `Iterator<Item = Debug>`
// are allowed to contain nested `impl Trait`.
AngleBracketedArg::Constraint(constraint) => {
self.with_impl_trait(None, |this| {
this.visit_assoc_constraint_from_generic_args(constraint);
});
}
}
}
}
GenericArgs::Parenthesized(ref data) => {
walk_list!(self, visit_ty, &data.inputs);
if let FnRetTy::Ty(ty) = &data.output {
// `-> Foo` syntax is essentially an associated type binding,
// so it is also allowed to contain nested `impl Trait`.
self.with_impl_trait(None, |this| this.visit_ty(ty));
}
}
}
}
fn visit_generics(&mut self, generics: &'a Generics) {
let mut prev_param_default = None;
for param in &generics.params {
match param.kind {
GenericParamKind::Lifetime => (),
GenericParamKind::Type { default: Some(_), .. }
| GenericParamKind::Const { default: Some(_), .. } => {
prev_param_default = Some(param.ident.span);
}
GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
if let Some(span) = prev_param_default {
let mut err = self.err_handler().struct_span_err(
span,
"generic parameters with a default must be trailing",
);
err.emit();
break;
}
}
}
}
validate_generic_param_order(self.err_handler(), &generics.params, generics.span);
for predicate in &generics.where_clause.predicates {
if let WherePredicate::EqPredicate(ref predicate) = *predicate {
deny_equality_constraints(self, predicate, generics);
}
}
walk_list!(self, visit_generic_param, &generics.params);
for predicate in &generics.where_clause.predicates {
match predicate {
WherePredicate::BoundPredicate(bound_pred) => {
// A type binding, eg `for<'c> Foo: Send+Clone+'c`
self.check_late_bound_lifetime_defs(&bound_pred.bound_generic_params);
// This is slightly complicated. Our representation for poly-trait-refs contains a single
// binder and thus we only allow a single level of quantification. However,
// the syntax of Rust permits quantification in two places in where clauses,
// e.g., `T: for <'a> Foo<'a>` and `for <'a, 'b> &'b T: Foo<'a>`. If both are
// defined, then error.
if !bound_pred.bound_generic_params.is_empty() {
for bound in &bound_pred.bounds {
match bound {
GenericBound::Trait(t, _) => {
if !t.bound_generic_params.is_empty() {
struct_span_err!(
self.err_handler(),
t.span,
E0316,
"nested quantification of lifetimes"
)
.emit();
}
}
GenericBound::Outlives(_) => {}
}
}
}
}
_ => {}
}
self.visit_where_predicate(predicate);
}
}
fn visit_generic_param(&mut self, param: &'a GenericParam) {
if let GenericParamKind::Lifetime { .. } = param.kind {
self.check_lifetime(param.ident);
}
visit::walk_generic_param(self, param);
}
fn visit_param_bound(&mut self, bound: &'a GenericBound, ctxt: BoundKind) {
if let GenericBound::Trait(ref poly, modify) = *bound {
match (ctxt, modify) {
(BoundKind::SuperTraits, TraitBoundModifier::Maybe) => {
let mut err = self
.err_handler()
.struct_span_err(poly.span, "`?Trait` is not permitted in supertraits");
let path_str = pprust::path_to_string(&poly.trait_ref.path);
err.note(&format!("traits are `?{}` by default", path_str));
err.emit();
}
(BoundKind::TraitObject, TraitBoundModifier::Maybe) => {
let mut err = self.err_handler().struct_span_err(
poly.span,
"`?Trait` is not permitted in trait object types",
);
err.emit();
}
(_, TraitBoundModifier::MaybeConst) => {
if !self.is_tilde_const_allowed {
self.err_handler()
.struct_span_err(bound.span(), "`~const` is not allowed here")
.note("only allowed on bounds on traits' associated types and functions, const fns, const impls and its associated functions")
.emit();
}
}
(_, TraitBoundModifier::MaybeConstMaybe) => {
self.err_handler()
.span_err(bound.span(), "`~const` and `?` are mutually exclusive");
}
_ => {}
}
}
visit::walk_param_bound(self, bound)
}
fn visit_poly_trait_ref(&mut self, t: &'a PolyTraitRef, m: &'a TraitBoundModifier) {
self.check_late_bound_lifetime_defs(&t.bound_generic_params);
visit::walk_poly_trait_ref(self, t, m);
}
fn visit_variant_data(&mut self, s: &'a VariantData) {
self.with_banned_assoc_ty_bound(|this| visit::walk_struct_def(this, s))
}
fn visit_enum_def(
&mut self,
enum_definition: &'a EnumDef,
generics: &'a Generics,
item_id: NodeId,
_: Span,
) {
self.with_banned_assoc_ty_bound(|this| {
visit::walk_enum_def(this, enum_definition, generics, item_id)
})
}
fn visit_fn(&mut self, fk: FnKind<'a>, span: Span, id: NodeId) {
// Only associated `fn`s can have `self` parameters.
let self_semantic = match fk.ctxt() {
Some(FnCtxt::Assoc(_)) => SelfSemantic::Yes,
_ => SelfSemantic::No,
};
self.check_fn_decl(fk.decl(), self_semantic);
self.check_c_variadic_type(fk);
// Functions cannot both be `const async`
if let Some(FnHeader {
constness: Const::Yes(cspan),
asyncness: Async::Yes { span: aspan, .. },
..
}) = fk.header()
{
self.err_handler()
.struct_span_err(
vec![*cspan, *aspan],
"functions cannot be both `const` and `async`",
)
.span_label(*cspan, "`const` because of this")
.span_label(*aspan, "`async` because of this")
.span_label(span, "") // Point at the fn header.
.emit();
}
if let FnKind::Fn(
_,
_,
FnSig { span: sig_span, header: FnHeader { ext: Extern::Implicit, .. }, .. },
_,
_,
_,
) = fk
{
self.maybe_lint_missing_abi(*sig_span, id);
}
// Functions without bodies cannot have patterns.
if let FnKind::Fn(ctxt, _, sig, _, _, None) = fk {
Self::check_decl_no_pat(&sig.decl, |span, ident, mut_ident| {
let (code, msg, label) = match ctxt {
FnCtxt::Foreign => (
error_code!(E0130),
"patterns aren't allowed in foreign function declarations",
"pattern not allowed in foreign function",
),
_ => (
error_code!(E0642),
"patterns aren't allowed in functions without bodies",
"pattern not allowed in function without body",
),
};
if mut_ident && matches!(ctxt, FnCtxt::Assoc(_)) {
if let Some(ident) = ident {
let diag = BuiltinLintDiagnostics::PatternsInFnsWithoutBody(span, ident);
self.lint_buffer.buffer_lint_with_diagnostic(
PATTERNS_IN_FNS_WITHOUT_BODY,
id,
span,
msg,
diag,
)
}
} else {
self.err_handler()
.struct_span_err(span, msg)
.span_label(span, label)
.code(code)
.emit();
}
});
}
let tilde_const_allowed =
matches!(fk.header(), Some(FnHeader { constness: Const::Yes(_), .. }))
|| matches!(fk.ctxt(), Some(FnCtxt::Assoc(_)));
self.with_tilde_const(tilde_const_allowed, |this| visit::walk_fn(this, fk, span));
}
fn visit_assoc_item(&mut self, item: &'a AssocItem, ctxt: AssocCtxt) {
if self.session.contains_name(&item.attrs, sym::no_mangle) {
self.check_nomangle_item_asciionly(item.ident, item.span);
}
if ctxt == AssocCtxt::Trait || !self.in_trait_impl {
self.check_defaultness(item.span, item.kind.defaultness());
}
if ctxt == AssocCtxt::Impl {
match &item.kind {
AssocItemKind::Const(_, _, body) => {
self.check_impl_item_provided(item.span, body, "constant", " = <expr>;");
}
AssocItemKind::Fn(box Fn { body, .. }) => {
self.check_impl_item_provided(item.span, body, "function", " { <body> }");
}
AssocItemKind::TyAlias(box TyAlias {
generics,
where_clauses,
where_predicates_split,
bounds,
ty,
..
}) => {
self.check_impl_item_provided(item.span, ty, "type", " = <type>;");
self.check_type_no_bounds(bounds, "`impl`s");
if ty.is_some() {
self.check_gat_where(
item.id,
generics.where_clause.predicates.split_at(*where_predicates_split).0,
*where_clauses,
);
}
}
_ => {}
}
}
if ctxt == AssocCtxt::Trait || self.in_trait_impl {
self.invalid_visibility(&item.vis, None);
if let AssocItemKind::Fn(box Fn { sig, .. }) = &item.kind {
self.check_trait_fn_not_const(sig.header.constness);
self.check_trait_fn_not_async(item.span, sig.header.asyncness);
}
}
if let AssocItemKind::Const(..) = item.kind {
self.check_item_named(item.ident, "const");
}
match item.kind {
AssocItemKind::TyAlias(box TyAlias { ref generics, ref bounds, ref ty, .. })
if ctxt == AssocCtxt::Trait =>
{
self.visit_vis(&item.vis);
self.visit_ident(item.ident);
walk_list!(self, visit_attribute, &item.attrs);
self.with_tilde_const_allowed(|this| {
this.visit_generics(generics);
walk_list!(this, visit_param_bound, bounds, BoundKind::Bound);
});
walk_list!(self, visit_ty, ty);
}
AssocItemKind::Fn(box Fn { ref sig, ref generics, ref body, .. })
if self.in_const_trait_impl
|| ctxt == AssocCtxt::Trait
|| matches!(sig.header.constness, Const::Yes(_)) =>
{
self.visit_vis(&item.vis);
self.visit_ident(item.ident);
let kind = FnKind::Fn(
FnCtxt::Assoc(ctxt),
item.ident,
sig,
&item.vis,
generics,
body.as_deref(),
);
self.visit_fn(kind, item.span, item.id);
}
_ => self
.with_in_trait_impl(false, None, |this| visit::walk_assoc_item(this, item, ctxt)),
}
}
}
/// When encountering an equality constraint in a `where` clause, emit an error. If the code seems
/// like it's setting an associated type, provide an appropriate suggestion.
fn deny_equality_constraints(
this: &mut AstValidator<'_>,
predicate: &WhereEqPredicate,
generics: &Generics,
) {
let mut err = this.err_handler().struct_span_err(
predicate.span,
"equality constraints are not yet supported in `where` clauses",
);
err.span_label(predicate.span, "not supported");
// Given `<A as Foo>::Bar = RhsTy`, suggest `A: Foo<Bar = RhsTy>`.
if let TyKind::Path(Some(qself), full_path) = &predicate.lhs_ty.kind {
if let TyKind::Path(None, path) = &qself.ty.kind {
match &path.segments[..] {
[PathSegment { ident, args: None, .. }] => {
for param in &generics.params {
if param.ident == *ident {
let param = ident;
match &full_path.segments[qself.position..] {
[PathSegment { ident, args, .. }] => {
// Make a new `Path` from `foo::Bar` to `Foo<Bar = RhsTy>`.
let mut assoc_path = full_path.clone();
// Remove `Bar` from `Foo::Bar`.
assoc_path.segments.pop();
let len = assoc_path.segments.len() - 1;
let gen_args = args.as_ref().map(|p| (**p).clone());
// Build `<Bar = RhsTy>`.
let arg = AngleBracketedArg::Constraint(AssocConstraint {
id: rustc_ast::node_id::DUMMY_NODE_ID,
ident: *ident,
gen_args,
kind: AssocConstraintKind::Equality {
term: predicate.rhs_ty.clone().into(),
},
span: ident.span,
});
// Add `<Bar = RhsTy>` to `Foo`.
match &mut assoc_path.segments[len].args {
Some(args) => match args.deref_mut() {
GenericArgs::Parenthesized(_) => continue,
GenericArgs::AngleBracketed(args) => {
args.args.push(arg);
}
},
empty_args => {
*empty_args = AngleBracketedArgs {
span: ident.span,
args: vec![arg],
}
.into();
}
}
err.span_suggestion_verbose(
predicate.span,
&format!(
"if `{}` is an associated type you're trying to set, \
use the associated type binding syntax",
ident
),
format!(
"{}: {}",
param,
pprust::path_to_string(&assoc_path)
),
Applicability::MaybeIncorrect,
);
}
_ => {}
};
}
}
}
_ => {}
}
}
}
// Given `A: Foo, A::Bar = RhsTy`, suggest `A: Foo<Bar = RhsTy>`.
if let TyKind::Path(None, full_path) = &predicate.lhs_ty.kind {
if let [potential_param, potential_assoc] = &full_path.segments[..] {
for param in &generics.params {
if param.ident == potential_param.ident {
for bound in &param.bounds {
if let ast::GenericBound::Trait(trait_ref, TraitBoundModifier::None) = bound
{
if let [trait_segment] = &trait_ref.trait_ref.path.segments[..] {
let assoc = pprust::path_to_string(&ast::Path::from_ident(
potential_assoc.ident,
));
let ty = pprust::ty_to_string(&predicate.rhs_ty);
let (args, span) = match &trait_segment.args {
Some(args) => match args.deref() {
ast::GenericArgs::AngleBracketed(args) => {
let Some(arg) = args.args.last() else {
continue;
};
(
format!(", {} = {}", assoc, ty),
arg.span().shrink_to_hi(),
)
}
_ => continue,
},
None => (
format!("<{} = {}>", assoc, ty),
trait_segment.span().shrink_to_hi(),
),
};
err.multipart_suggestion(
&format!(
"if `{}::{}` is an associated type you're trying to set, \
use the associated type binding syntax",
trait_segment.ident, potential_assoc.ident,
),
vec![(span, args), (predicate.span, String::new())],
Applicability::MaybeIncorrect,
);
}
}
}
}
}
}
}
err.note(
"see issue #20041 <https://github.com/rust-lang/rust/issues/20041> for more information",
);
err.emit();
}
pub fn check_crate(session: &Session, krate: &Crate, lints: &mut LintBuffer) -> bool {
let mut validator = AstValidator {
session,
extern_mod: None,
in_trait_impl: false,
in_const_trait_impl: false,
has_proc_macro_decls: false,
outer_impl_trait: None,
is_tilde_const_allowed: false,
is_impl_trait_banned: false,
is_assoc_ty_bound_banned: false,
forbidden_let_reason: Some(ForbiddenLetReason::GenericForbidden),
lint_buffer: lints,
};
visit::walk_crate(&mut validator, krate);
validator.has_proc_macro_decls
}
/// Used to forbid `let` expressions in certain syntactic locations.
#[derive(Clone, Copy)]
enum ForbiddenLetReason {
/// `let` is not valid and the source environment is not important
GenericForbidden,
/// A let chain with the `||` operator
NotSupportedOr(Span),
/// A let chain with invalid parentheses
///
/// For exemple, `let 1 = 1 && (expr && expr)` is allowed
/// but `(let 1 = 1 && (let 1 = 1 && (let 1 = 1))) && let a = 1` is not
NotSupportedParentheses(Span),
}