blob: 5db3efee9f6a15ebc724b313998b73a9eea77f10 [file] [log] [blame]
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use {AmbiguityError, AmbiguityKind, AmbiguityErrorMisc};
use {CrateLint, Resolver, ResolutionError, ScopeSet, Weak};
use {Module, ModuleKind, NameBinding, NameBindingKind, PathResult, Segment, ToNameBinding};
use {is_known_tool, resolve_error};
use ModuleOrUniformRoot;
use Namespace::*;
use build_reduced_graph::{BuildReducedGraphVisitor, IsMacroExport};
use resolve_imports::ImportResolver;
use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX, DefIndex,
CrateNum, DefIndexAddressSpace};
use rustc::hir::def::{Def, NonMacroAttrKind};
use rustc::hir::map::{self, DefCollector};
use rustc::{ty, lint};
use syntax::ast::{self, Name, Ident};
use syntax::attr;
use syntax::errors::DiagnosticBuilder;
use syntax::ext::base::{self, Determinacy};
use syntax::ext::base::{MacroKind, SyntaxExtension, Resolver as SyntaxResolver};
use syntax::ext::expand::{AstFragment, Invocation, InvocationKind};
use syntax::ext::hygiene::{self, Mark};
use syntax::ext::tt::macro_rules;
use syntax::feature_gate::{self, feature_err, emit_feature_err, is_builtin_attr_name, GateIssue};
use syntax::feature_gate::EXPLAIN_DERIVE_UNDERSCORE;
use syntax::fold::{self, Folder};
use syntax::parse::parser::PathStyle;
use syntax::parse::token::{self, Token};
use syntax::ptr::P;
use syntax::symbol::{Symbol, keywords};
use syntax::tokenstream::{TokenStream, TokenTree, Delimited, DelimSpan};
use syntax::util::lev_distance::find_best_match_for_name;
use syntax_pos::{Span, DUMMY_SP};
use errors::Applicability;
use std::cell::Cell;
use std::{mem, ptr};
use rustc_data_structures::sync::Lrc;
#[derive(Clone, Debug)]
pub struct InvocationData<'a> {
def_index: DefIndex,
/// Module in which the macro was invoked.
crate module: Cell<Module<'a>>,
/// Legacy scope in which the macro was invoked.
/// The invocation path is resolved in this scope.
crate parent_legacy_scope: Cell<LegacyScope<'a>>,
/// Legacy scope *produced* by expanding this macro invocation,
/// includes all the macro_rules items, other invocations, etc generated by it.
/// `None` if the macro is not expanded yet.
crate output_legacy_scope: Cell<Option<LegacyScope<'a>>>,
}
impl<'a> InvocationData<'a> {
pub fn root(graph_root: Module<'a>) -> Self {
InvocationData {
module: Cell::new(graph_root),
def_index: CRATE_DEF_INDEX,
parent_legacy_scope: Cell::new(LegacyScope::Empty),
output_legacy_scope: Cell::new(Some(LegacyScope::Empty)),
}
}
}
/// Binding produced by a `macro_rules` item.
/// Not modularized, can shadow previous legacy bindings, etc.
#[derive(Debug)]
pub struct LegacyBinding<'a> {
binding: &'a NameBinding<'a>,
/// Legacy scope into which the `macro_rules` item was planted.
parent_legacy_scope: LegacyScope<'a>,
ident: Ident,
}
/// Scope introduced by a `macro_rules!` macro.
/// Starts at the macro's definition and ends at the end of the macro's parent module
/// (named or unnamed), or even further if it escapes with `#[macro_use]`.
/// Some macro invocations need to introduce legacy scopes too because they
/// potentially can expand into macro definitions.
#[derive(Copy, Clone, Debug)]
pub enum LegacyScope<'a> {
/// Created when invocation data is allocated in the arena,
/// must be replaced with a proper scope later.
Uninitialized,
/// Empty "root" scope at the crate start containing no names.
Empty,
/// Scope introduced by a `macro_rules!` macro definition.
Binding(&'a LegacyBinding<'a>),
/// Scope introduced by a macro invocation that can potentially
/// create a `macro_rules!` macro definition.
Invocation(&'a InvocationData<'a>),
}
/// Everything you need to resolve a macro or import path.
#[derive(Clone, Debug)]
pub struct ParentScope<'a> {
crate module: Module<'a>,
crate expansion: Mark,
crate legacy: LegacyScope<'a>,
crate derives: Vec<ast::Path>,
}
// Macro namespace is separated into two sub-namespaces, one for bang macros and
// one for attribute-like macros (attributes, derives).
// We ignore resolutions from one sub-namespace when searching names in scope for another.
fn sub_namespace_match(candidate: Option<MacroKind>, requirement: Option<MacroKind>) -> bool {
#[derive(PartialEq)]
enum SubNS { Bang, AttrLike }
let sub_ns = |kind| match kind {
MacroKind::Bang => Some(SubNS::Bang),
MacroKind::Attr | MacroKind::Derive => Some(SubNS::AttrLike),
MacroKind::ProcMacroStub => None,
};
let requirement = requirement.and_then(|kind| sub_ns(kind));
let candidate = candidate.and_then(|kind| sub_ns(kind));
// "No specific sub-namespace" means "matches anything" for both requirements and candidates.
candidate.is_none() || requirement.is_none() || candidate == requirement
}
impl<'a, 'crateloader: 'a> base::Resolver for Resolver<'a, 'crateloader> {
fn next_node_id(&mut self) -> ast::NodeId {
self.session.next_node_id()
}
fn get_module_scope(&mut self, id: ast::NodeId) -> Mark {
let mark = Mark::fresh(Mark::root());
let module = self.module_map[&self.definitions.local_def_id(id)];
self.invocations.insert(mark, self.arenas.alloc_invocation_data(InvocationData {
module: Cell::new(module),
def_index: module.def_id().unwrap().index,
parent_legacy_scope: Cell::new(LegacyScope::Empty),
output_legacy_scope: Cell::new(Some(LegacyScope::Empty)),
}));
mark
}
fn eliminate_crate_var(&mut self, item: P<ast::Item>) -> P<ast::Item> {
struct EliminateCrateVar<'b, 'a: 'b, 'crateloader: 'a>(
&'b mut Resolver<'a, 'crateloader>, Span
);
impl<'a, 'b, 'crateloader> Folder for EliminateCrateVar<'a, 'b, 'crateloader> {
fn fold_path(&mut self, path: ast::Path) -> ast::Path {
match self.fold_qpath(None, path) {
(None, path) => path,
_ => unreachable!(),
}
}
fn fold_qpath(&mut self, mut qself: Option<ast::QSelf>, mut path: ast::Path)
-> (Option<ast::QSelf>, ast::Path) {
qself = qself.map(|ast::QSelf { ty, path_span, position }| {
ast::QSelf {
ty: self.fold_ty(ty),
path_span: self.new_span(path_span),
position,
}
});
if path.segments[0].ident.name == keywords::DollarCrate.name() {
let module = self.0.resolve_crate_root(path.segments[0].ident);
path.segments[0].ident.name = keywords::CrateRoot.name();
if !module.is_local() {
let span = path.segments[0].ident.span;
path.segments.insert(1, match module.kind {
ModuleKind::Def(_, name) => ast::PathSegment::from_ident(
ast::Ident::with_empty_ctxt(name).with_span_pos(span)
),
_ => unreachable!(),
});
if let Some(qself) = &mut qself {
qself.position += 1;
}
}
}
(qself, path)
}
fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac {
fold::noop_fold_mac(mac, self)
}
}
let ret = EliminateCrateVar(self, item.span).fold_item(item);
assert!(ret.len() == 1);
ret.into_iter().next().unwrap()
}
fn is_whitelisted_legacy_custom_derive(&self, name: Name) -> bool {
self.whitelisted_legacy_custom_derives.contains(&name)
}
fn visit_ast_fragment_with_placeholders(&mut self, mark: Mark, fragment: &AstFragment,
derives: &[Mark]) {
let invocation = self.invocations[&mark];
self.collect_def_ids(mark, invocation, fragment);
self.current_module = invocation.module.get();
self.current_module.unresolved_invocations.borrow_mut().remove(&mark);
self.current_module.unresolved_invocations.borrow_mut().extend(derives);
self.invocations.extend(derives.iter().map(|&derive| (derive, invocation)));
let mut visitor = BuildReducedGraphVisitor {
resolver: self,
current_legacy_scope: invocation.parent_legacy_scope.get(),
expansion: mark,
};
fragment.visit_with(&mut visitor);
invocation.output_legacy_scope.set(Some(visitor.current_legacy_scope));
}
fn add_builtin(&mut self, ident: ast::Ident, ext: Lrc<SyntaxExtension>) {
let def_id = DefId {
krate: CrateNum::BuiltinMacros,
index: DefIndex::from_array_index(self.macro_map.len(),
DefIndexAddressSpace::Low),
};
let kind = ext.kind();
self.macro_map.insert(def_id, ext);
let binding = self.arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Def(Def::Macro(def_id, kind), false),
span: DUMMY_SP,
vis: ty::Visibility::Public,
expansion: Mark::root(),
});
if self.builtin_macros.insert(ident.name, binding).is_some() {
self.session.span_err(ident.span,
&format!("built-in macro `{}` was already defined", ident));
}
}
fn resolve_imports(&mut self) {
ImportResolver { resolver: self }.resolve_imports()
}
// Resolves attribute and derive legacy macros from `#![plugin(..)]`.
fn find_legacy_attr_invoc(&mut self, attrs: &mut Vec<ast::Attribute>, allow_derive: bool)
-> Option<ast::Attribute> {
if !allow_derive {
return None;
}
// Check for legacy derives
for i in 0..attrs.len() {
let name = attrs[i].name();
if name == "derive" {
let result = attrs[i].parse_list(&self.session.parse_sess, |parser| {
parser.parse_path_allowing_meta(PathStyle::Mod)
});
let mut traits = match result {
Ok(traits) => traits,
Err(mut e) => {
e.cancel();
continue
}
};
for j in 0..traits.len() {
if traits[j].segments.len() > 1 {
continue
}
let trait_name = traits[j].segments[0].ident.name;
let legacy_name = Symbol::intern(&format!("derive_{}", trait_name));
if !self.builtin_macros.contains_key(&legacy_name) {
continue
}
let span = traits.remove(j).span;
self.gate_legacy_custom_derive(legacy_name, span);
if traits.is_empty() {
attrs.remove(i);
} else {
let mut tokens = Vec::with_capacity(traits.len() - 1);
for (j, path) in traits.iter().enumerate() {
if j > 0 {
tokens.push(TokenTree::Token(attrs[i].span, Token::Comma).into());
}
tokens.reserve((path.segments.len() * 2).saturating_sub(1));
for (k, segment) in path.segments.iter().enumerate() {
if k > 0 {
tokens.push(TokenTree::Token(path.span, Token::ModSep).into());
}
let tok = Token::from_ast_ident(segment.ident);
tokens.push(TokenTree::Token(path.span, tok).into());
}
}
let delim_span = DelimSpan::from_single(attrs[i].span);
attrs[i].tokens = TokenTree::Delimited(delim_span, Delimited {
delim: token::Paren,
tts: TokenStream::concat(tokens).into(),
}).into();
}
return Some(ast::Attribute {
path: ast::Path::from_ident(Ident::new(legacy_name, span)),
tokens: TokenStream::empty(),
id: attr::mk_attr_id(),
style: ast::AttrStyle::Outer,
is_sugared_doc: false,
span,
});
}
}
}
None
}
fn resolve_macro_invocation(&mut self, invoc: &Invocation, invoc_id: Mark, force: bool)
-> Result<Option<Lrc<SyntaxExtension>>, Determinacy> {
let (path, kind, derives_in_scope, after_derive) = match invoc.kind {
InvocationKind::Attr { attr: None, .. } =>
return Ok(None),
InvocationKind::Attr { attr: Some(ref attr), ref traits, after_derive, .. } =>
(&attr.path, MacroKind::Attr, traits.clone(), after_derive),
InvocationKind::Bang { ref mac, .. } =>
(&mac.node.path, MacroKind::Bang, Vec::new(), false),
InvocationKind::Derive { ref path, .. } =>
(path, MacroKind::Derive, Vec::new(), false),
};
let parent_scope = self.invoc_parent_scope(invoc_id, derives_in_scope);
let (def, ext) = self.resolve_macro_to_def(path, kind, &parent_scope, true, force)?;
if let Def::Macro(def_id, _) = def {
if after_derive {
self.session.span_err(invoc.span(),
"macro attributes must be placed before `#[derive]`");
}
self.macro_defs.insert(invoc.expansion_data.mark, def_id);
let normal_module_def_id =
self.macro_def_scope(invoc.expansion_data.mark).normal_ancestor_id;
self.definitions.add_parent_module_of_macro_def(invoc.expansion_data.mark,
normal_module_def_id);
invoc.expansion_data.mark.set_default_transparency(ext.default_transparency());
invoc.expansion_data.mark.set_is_builtin(def_id.krate == CrateNum::BuiltinMacros);
}
Ok(Some(ext))
}
fn resolve_macro_path(&mut self, path: &ast::Path, kind: MacroKind, invoc_id: Mark,
derives_in_scope: Vec<ast::Path>, force: bool)
-> Result<Lrc<SyntaxExtension>, Determinacy> {
let parent_scope = self.invoc_parent_scope(invoc_id, derives_in_scope);
Ok(self.resolve_macro_to_def(path, kind, &parent_scope, false, force)?.1)
}
fn check_unused_macros(&self) {
for did in self.unused_macros.iter() {
let id_span = match *self.macro_map[did] {
SyntaxExtension::NormalTT { def_info, .. } |
SyntaxExtension::DeclMacro { def_info, .. } => def_info,
_ => None,
};
if let Some((id, span)) = id_span {
let lint = lint::builtin::UNUSED_MACROS;
let msg = "unused macro definition";
self.session.buffer_lint(lint, id, span, msg);
} else {
bug!("attempted to create unused macro error, but span not available");
}
}
}
}
impl<'a, 'cl> Resolver<'a, 'cl> {
pub fn dummy_parent_scope(&self) -> ParentScope<'a> {
self.invoc_parent_scope(Mark::root(), Vec::new())
}
fn invoc_parent_scope(&self, invoc_id: Mark, derives: Vec<ast::Path>) -> ParentScope<'a> {
let invoc = self.invocations[&invoc_id];
ParentScope {
module: invoc.module.get().nearest_item_scope(),
expansion: invoc_id.parent(),
legacy: invoc.parent_legacy_scope.get(),
derives,
}
}
fn resolve_macro_to_def(
&mut self,
path: &ast::Path,
kind: MacroKind,
parent_scope: &ParentScope<'a>,
trace: bool,
force: bool,
) -> Result<(Def, Lrc<SyntaxExtension>), Determinacy> {
let def = self.resolve_macro_to_def_inner(path, kind, parent_scope, trace, force);
// Report errors and enforce feature gates for the resolved macro.
if def != Err(Determinacy::Undetermined) {
// Do not report duplicated errors on every undetermined resolution.
for segment in &path.segments {
if let Some(args) = &segment.args {
self.session.span_err(args.span(), "generic arguments in macro path");
}
}
}
let def = def?;
match def {
Def::Macro(def_id, macro_kind) => {
self.unused_macros.remove(&def_id);
if macro_kind == MacroKind::ProcMacroStub {
let msg = "can't use a procedural macro from the same crate that defines it";
self.session.span_err(path.span, msg);
return Err(Determinacy::Determined);
}
}
Def::NonMacroAttr(attr_kind) => {
if kind == MacroKind::Attr {
let features = self.session.features_untracked();
if attr_kind == NonMacroAttrKind::Custom {
assert!(path.segments.len() == 1);
let name = path.segments[0].ident.name.as_str();
if name.starts_with("rustc_") {
if !features.rustc_attrs {
let msg = "unless otherwise specified, attributes with the prefix \
`rustc_` are reserved for internal compiler diagnostics";
feature_err(&self.session.parse_sess, "rustc_attrs", path.span,
GateIssue::Language, &msg).emit();
}
} else if name.starts_with("derive_") {
if !features.custom_derive {
feature_err(&self.session.parse_sess, "custom_derive", path.span,
GateIssue::Language, EXPLAIN_DERIVE_UNDERSCORE).emit();
}
} else if !features.custom_attribute {
let msg = format!("The attribute `{}` is currently unknown to the \
compiler and may have meaning added to it in the \
future", path);
feature_err(&self.session.parse_sess, "custom_attribute", path.span,
GateIssue::Language, &msg).emit();
}
}
} else {
// Not only attributes, but anything in macro namespace can result in
// `Def::NonMacroAttr` definition (e.g. `inline!()`), so we must report
// an error for those cases.
let msg = format!("expected a macro, found {}", def.kind_name());
self.session.span_err(path.span, &msg);
return Err(Determinacy::Determined);
}
}
Def::Err => {
return Err(Determinacy::Determined);
}
_ => panic!("expected `Def::Macro` or `Def::NonMacroAttr`"),
}
Ok((def, self.get_macro(def)))
}
pub fn resolve_macro_to_def_inner(
&mut self,
path: &ast::Path,
kind: MacroKind,
parent_scope: &ParentScope<'a>,
trace: bool,
force: bool,
) -> Result<Def, Determinacy> {
let path_span = path.span;
let mut path = Segment::from_path(path);
// Possibly apply the macro helper hack
if kind == MacroKind::Bang && path.len() == 1 &&
path[0].ident.span.ctxt().outer().expn_info()
.map_or(false, |info| info.local_inner_macros) {
let root = Ident::new(keywords::DollarCrate.name(), path[0].ident.span);
path.insert(0, Segment::from_ident(root));
}
if path.len() > 1 {
let def = match self.resolve_path(&path, Some(MacroNS), parent_scope,
false, path_span, CrateLint::No) {
PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => {
Ok(path_res.base_def())
}
PathResult::Indeterminate if !force => return Err(Determinacy::Undetermined),
PathResult::NonModule(..) | PathResult::Indeterminate | PathResult::Failed(..) => {
self.found_unresolved_macro = true;
Err(Determinacy::Determined)
}
PathResult::Module(..) => unreachable!(),
};
if trace {
parent_scope.module.multi_segment_macro_resolutions.borrow_mut()
.push((path, path_span, kind, parent_scope.clone(), def.ok()));
}
def
} else {
let binding = self.early_resolve_ident_in_lexical_scope(
path[0].ident, ScopeSet::Macro(kind), parent_scope, false, force, path_span
);
match binding {
Ok(..) => {}
Err(Determinacy::Determined) => self.found_unresolved_macro = true,
Err(Determinacy::Undetermined) => return Err(Determinacy::Undetermined),
}
if trace {
parent_scope.module.single_segment_macro_resolutions.borrow_mut()
.push((path[0].ident, kind, parent_scope.clone(), binding.ok()));
}
binding.map(|binding| binding.def_ignoring_ambiguity())
}
}
// Resolve an identifier in lexical scope.
// This is a variation of `fn resolve_ident_in_lexical_scope` that can be run during
// expansion and import resolution (perhaps they can be merged in the future).
// The function is used for resolving initial segments of macro paths (e.g. `foo` in
// `foo::bar!(); or `foo!();`) and also for import paths on 2018 edition.
crate fn early_resolve_ident_in_lexical_scope(
&mut self,
orig_ident: Ident,
scope_set: ScopeSet,
parent_scope: &ParentScope<'a>,
record_used: bool,
force: bool,
path_span: Span,
) -> Result<&'a NameBinding<'a>, Determinacy> {
// General principles:
// 1. Not controlled (user-defined) names should have higher priority than controlled names
// built into the language or standard library. This way we can add new names into the
// language or standard library without breaking user code.
// 2. "Closed set" below means new names cannot appear after the current resolution attempt.
// Places to search (in order of decreasing priority):
// (Type NS)
// 1. FIXME: Ribs (type parameters), there's no necessary infrastructure yet
// (open set, not controlled).
// 2. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents
// (open, not controlled).
// 3. Extern prelude (closed, not controlled).
// 4. Tool modules (closed, controlled right now, but not in the future).
// 5. Standard library prelude (de-facto closed, controlled).
// 6. Language prelude (closed, controlled).
// (Value NS)
// 1. FIXME: Ribs (local variables), there's no necessary infrastructure yet
// (open set, not controlled).
// 2. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents
// (open, not controlled).
// 3. Standard library prelude (de-facto closed, controlled).
// (Macro NS)
// 1-3. Derive helpers (open, not controlled). All ambiguities with other names
// are currently reported as errors. They should be higher in priority than preludes
// and probably even names in modules according to the "general principles" above. They
// also should be subject to restricted shadowing because are effectively produced by
// derives (you need to resolve the derive first to add helpers into scope), but they
// should be available before the derive is expanded for compatibility.
// It's mess in general, so we are being conservative for now.
// 1-3. `macro_rules` (open, not controlled), loop through legacy scopes. Have higher
// priority than prelude macros, but create ambiguities with macros in modules.
// 1-3. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents
// (open, not controlled). Have higher priority than prelude macros, but create
// ambiguities with `macro_rules`.
// 4. `macro_use` prelude (open, the open part is from macro expansions, not controlled).
// 4a. User-defined prelude from macro-use
// (open, the open part is from macro expansions, not controlled).
// 4b. Standard library prelude is currently implemented as `macro-use` (closed, controlled)
// 5. Language prelude: builtin macros (closed, controlled, except for legacy plugins).
// 6. Language prelude: builtin attributes (closed, controlled).
// 4-6. Legacy plugin helpers (open, not controlled). Similar to derive helpers,
// but introduced by legacy plugins using `register_attribute`. Priority is somewhere
// in prelude, not sure where exactly (creates ambiguities with any other prelude names).
enum WhereToResolve<'a> {
DeriveHelpers,
MacroRules(LegacyScope<'a>),
CrateRoot,
Module(Module<'a>),
MacroUsePrelude,
BuiltinMacros,
BuiltinAttrs,
LegacyPluginHelpers,
ExternPrelude,
ToolPrelude,
StdLibPrelude,
BuiltinTypes,
}
bitflags! {
struct Flags: u8 {
const MACRO_RULES = 1 << 0;
const MODULE = 1 << 1;
const PRELUDE = 1 << 2;
const MISC_SUGGEST_CRATE = 1 << 3;
const MISC_SUGGEST_SELF = 1 << 4;
const MISC_FROM_PRELUDE = 1 << 5;
}
}
assert!(force || !record_used); // `record_used` implies `force`
let mut ident = orig_ident.modern();
// Make sure `self`, `super` etc produce an error when passed to here.
if ident.is_path_segment_keyword() {
return Err(Determinacy::Determined);
}
// This is *the* result, resolution from the scope closest to the resolved identifier.
// However, sometimes this result is "weak" because it comes from a glob import or
// a macro expansion, and in this case it cannot shadow names from outer scopes, e.g.
// mod m { ... } // solution in outer scope
// {
// use prefix::*; // imports another `m` - innermost solution
// // weak, cannot shadow the outer `m`, need to report ambiguity error
// m::mac!();
// }
// So we have to save the innermost solution and continue searching in outer scopes
// to detect potential ambiguities.
let mut innermost_result: Option<(&NameBinding, Flags)> = None;
// Go through all the scopes and try to resolve the name.
let rust_2015 = orig_ident.span.rust_2015();
let (ns, macro_kind, is_import, is_absolute_path) = match scope_set {
ScopeSet::Import(ns) => (ns, None, true, false),
ScopeSet::AbsolutePath(ns) => (ns, None, false, true),
ScopeSet::Macro(macro_kind) => (MacroNS, Some(macro_kind), false, false),
ScopeSet::Module => (TypeNS, None, false, false),
};
let mut where_to_resolve = match ns {
_ if is_absolute_path || is_import && rust_2015 => WhereToResolve::CrateRoot,
TypeNS | ValueNS => WhereToResolve::Module(parent_scope.module),
MacroNS => WhereToResolve::DeriveHelpers,
};
let mut use_prelude = !parent_scope.module.no_implicit_prelude;
let mut determinacy = Determinacy::Determined;
loop {
let result = match where_to_resolve {
WhereToResolve::DeriveHelpers => {
let mut result = Err(Determinacy::Determined);
for derive in &parent_scope.derives {
let parent_scope = ParentScope { derives: Vec::new(), ..*parent_scope };
match self.resolve_macro_to_def(derive, MacroKind::Derive,
&parent_scope, true, force) {
Ok((_, ext)) => {
if let SyntaxExtension::ProcMacroDerive(_, helpers, _) = &*ext {
if helpers.contains(&ident.name) {
let binding =
(Def::NonMacroAttr(NonMacroAttrKind::DeriveHelper),
ty::Visibility::Public, derive.span, Mark::root())
.to_name_binding(self.arenas);
result = Ok((binding, Flags::empty()));
break;
}
}
}
Err(Determinacy::Determined) => {}
Err(Determinacy::Undetermined) =>
result = Err(Determinacy::Undetermined),
}
}
result
}
WhereToResolve::MacroRules(legacy_scope) => match legacy_scope {
LegacyScope::Binding(legacy_binding) if ident == legacy_binding.ident =>
Ok((legacy_binding.binding, Flags::MACRO_RULES)),
LegacyScope::Invocation(invoc) if invoc.output_legacy_scope.get().is_none() =>
Err(Determinacy::Undetermined),
_ => Err(Determinacy::Determined),
}
WhereToResolve::CrateRoot => {
let root_ident = Ident::new(keywords::CrateRoot.name(), orig_ident.span);
let root_module = self.resolve_crate_root(root_ident);
let binding = self.resolve_ident_in_module_ext(
ModuleOrUniformRoot::Module(root_module),
orig_ident,
ns,
None,
record_used,
path_span,
);
match binding {
Ok(binding) => Ok((binding, Flags::MODULE | Flags::MISC_SUGGEST_CRATE)),
Err((Determinacy::Undetermined, Weak::No)) =>
return Err(Determinacy::determined(force)),
Err((Determinacy::Undetermined, Weak::Yes)) =>
Err(Determinacy::Undetermined),
Err((Determinacy::Determined, _)) => Err(Determinacy::Determined),
}
}
WhereToResolve::Module(module) => {
let orig_current_module = mem::replace(&mut self.current_module, module);
let binding = self.resolve_ident_in_module_unadjusted_ext(
ModuleOrUniformRoot::Module(module),
ident,
ns,
None,
true,
record_used,
path_span,
);
self.current_module = orig_current_module;
match binding {
Ok(binding) => {
let misc_flags = if ptr::eq(module, self.graph_root) {
Flags::MISC_SUGGEST_CRATE
} else if module.is_normal() {
Flags::MISC_SUGGEST_SELF
} else {
Flags::empty()
};
Ok((binding, Flags::MODULE | misc_flags))
}
Err((Determinacy::Undetermined, Weak::No)) =>
return Err(Determinacy::determined(force)),
Err((Determinacy::Undetermined, Weak::Yes)) =>
Err(Determinacy::Undetermined),
Err((Determinacy::Determined, _)) => Err(Determinacy::Determined),
}
}
WhereToResolve::MacroUsePrelude => {
if use_prelude || rust_2015 {
match self.macro_use_prelude.get(&ident.name).cloned() {
Some(binding) =>
Ok((binding, Flags::PRELUDE | Flags::MISC_FROM_PRELUDE)),
None => Err(Determinacy::determined(
self.graph_root.unresolved_invocations.borrow().is_empty()
))
}
} else {
Err(Determinacy::Determined)
}
}
WhereToResolve::BuiltinMacros => {
match self.builtin_macros.get(&ident.name).cloned() {
Some(binding) => Ok((binding, Flags::PRELUDE)),
None => Err(Determinacy::Determined),
}
}
WhereToResolve::BuiltinAttrs => {
if is_builtin_attr_name(ident.name) {
let binding = (Def::NonMacroAttr(NonMacroAttrKind::Builtin),
ty::Visibility::Public, DUMMY_SP, Mark::root())
.to_name_binding(self.arenas);
Ok((binding, Flags::PRELUDE))
} else {
Err(Determinacy::Determined)
}
}
WhereToResolve::LegacyPluginHelpers => {
if (use_prelude || rust_2015) &&
self.session.plugin_attributes.borrow().iter()
.any(|(name, _)| ident.name == &**name) {
let binding = (Def::NonMacroAttr(NonMacroAttrKind::LegacyPluginHelper),
ty::Visibility::Public, DUMMY_SP, Mark::root())
.to_name_binding(self.arenas);
Ok((binding, Flags::PRELUDE))
} else {
Err(Determinacy::Determined)
}
}
WhereToResolve::ExternPrelude => {
if use_prelude || is_absolute_path {
match self.extern_prelude_get(ident, !record_used) {
Some(binding) => Ok((binding, Flags::PRELUDE)),
None => Err(Determinacy::determined(
self.graph_root.unresolved_invocations.borrow().is_empty()
)),
}
} else {
Err(Determinacy::Determined)
}
}
WhereToResolve::ToolPrelude => {
if use_prelude && is_known_tool(ident.name) {
let binding = (Def::ToolMod, ty::Visibility::Public,
DUMMY_SP, Mark::root()).to_name_binding(self.arenas);
Ok((binding, Flags::PRELUDE))
} else {
Err(Determinacy::Determined)
}
}
WhereToResolve::StdLibPrelude => {
let mut result = Err(Determinacy::Determined);
if use_prelude {
if let Some(prelude) = self.prelude {
if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(prelude),
ident,
ns,
false,
path_span,
) {
result = Ok((binding, Flags::PRELUDE | Flags::MISC_FROM_PRELUDE));
}
}
}
result
}
WhereToResolve::BuiltinTypes => {
match self.primitive_type_table.primitive_types.get(&ident.name).cloned() {
Some(prim_ty) => {
let binding = (Def::PrimTy(prim_ty), ty::Visibility::Public,
DUMMY_SP, Mark::root()).to_name_binding(self.arenas);
Ok((binding, Flags::PRELUDE))
}
None => Err(Determinacy::Determined)
}
}
};
match result {
Ok((binding, flags)) if sub_namespace_match(binding.macro_kind(), macro_kind) => {
if !record_used {
return Ok(binding);
}
if let Some((innermost_binding, innermost_flags)) = innermost_result {
// Found another solution, if the first one was "weak", report an error.
let (def, innermost_def) = (binding.def(), innermost_binding.def());
if def != innermost_def {
let builtin = Def::NonMacroAttr(NonMacroAttrKind::Builtin);
let derive_helper = Def::NonMacroAttr(NonMacroAttrKind::DeriveHelper);
let legacy_helper =
Def::NonMacroAttr(NonMacroAttrKind::LegacyPluginHelper);
let ambiguity_error_kind = if is_import {
Some(AmbiguityKind::Import)
} else if is_absolute_path {
Some(AmbiguityKind::AbsolutePath)
} else if innermost_def == builtin || def == builtin {
Some(AmbiguityKind::BuiltinAttr)
} else if innermost_def == derive_helper || def == derive_helper {
Some(AmbiguityKind::DeriveHelper)
} else if innermost_def == legacy_helper &&
flags.contains(Flags::PRELUDE) ||
def == legacy_helper &&
innermost_flags.contains(Flags::PRELUDE) {
Some(AmbiguityKind::LegacyHelperVsPrelude)
} else if innermost_flags.contains(Flags::MACRO_RULES) &&
flags.contains(Flags::MODULE) &&
!self.disambiguate_legacy_vs_modern(innermost_binding,
binding) ||
flags.contains(Flags::MACRO_RULES) &&
innermost_flags.contains(Flags::MODULE) &&
!self.disambiguate_legacy_vs_modern(binding,
innermost_binding) {
Some(AmbiguityKind::LegacyVsModern)
} else if innermost_binding.is_glob_import() {
Some(AmbiguityKind::GlobVsOuter)
} else if innermost_binding.may_appear_after(parent_scope.expansion,
binding) {
Some(AmbiguityKind::MoreExpandedVsOuter)
} else {
None
};
if let Some(kind) = ambiguity_error_kind {
let misc = |f: Flags| if f.contains(Flags::MISC_SUGGEST_CRATE) {
AmbiguityErrorMisc::SuggestCrate
} else if f.contains(Flags::MISC_SUGGEST_SELF) {
AmbiguityErrorMisc::SuggestSelf
} else if f.contains(Flags::MISC_FROM_PRELUDE) {
AmbiguityErrorMisc::FromPrelude
} else {
AmbiguityErrorMisc::None
};
self.ambiguity_errors.push(AmbiguityError {
kind,
ident: orig_ident,
b1: innermost_binding,
b2: binding,
misc1: misc(innermost_flags),
misc2: misc(flags),
});
return Ok(innermost_binding);
}
}
} else {
// Found the first solution.
innermost_result = Some((binding, flags));
}
}
Ok(..) | Err(Determinacy::Determined) => {}
Err(Determinacy::Undetermined) => determinacy = Determinacy::Undetermined
}
where_to_resolve = match where_to_resolve {
WhereToResolve::DeriveHelpers =>
WhereToResolve::MacroRules(parent_scope.legacy),
WhereToResolve::MacroRules(legacy_scope) => match legacy_scope {
LegacyScope::Binding(binding) => WhereToResolve::MacroRules(
binding.parent_legacy_scope
),
LegacyScope::Invocation(invoc) => WhereToResolve::MacroRules(
invoc.output_legacy_scope.get().unwrap_or(invoc.parent_legacy_scope.get())
),
LegacyScope::Empty => WhereToResolve::Module(parent_scope.module),
LegacyScope::Uninitialized => unreachable!(),
}
WhereToResolve::CrateRoot if is_import => match ns {
TypeNS | ValueNS => WhereToResolve::Module(parent_scope.module),
MacroNS => WhereToResolve::DeriveHelpers,
}
WhereToResolve::CrateRoot if is_absolute_path => match ns {
TypeNS => {
ident.span.adjust(Mark::root());
WhereToResolve::ExternPrelude
}
ValueNS | MacroNS => break,
}
WhereToResolve::CrateRoot => unreachable!(),
WhereToResolve::Module(module) => {
match self.hygienic_lexical_parent(module, &mut ident.span) {
Some(parent_module) => WhereToResolve::Module(parent_module),
None => {
use_prelude = !module.no_implicit_prelude;
match ns {
TypeNS => WhereToResolve::ExternPrelude,
ValueNS => WhereToResolve::StdLibPrelude,
MacroNS => WhereToResolve::MacroUsePrelude,
}
}
}
}
WhereToResolve::MacroUsePrelude => WhereToResolve::BuiltinMacros,
WhereToResolve::BuiltinMacros => WhereToResolve::BuiltinAttrs,
WhereToResolve::BuiltinAttrs => WhereToResolve::LegacyPluginHelpers,
WhereToResolve::LegacyPluginHelpers => break, // nowhere else to search
WhereToResolve::ExternPrelude if is_absolute_path => break,
WhereToResolve::ExternPrelude => WhereToResolve::ToolPrelude,
WhereToResolve::ToolPrelude => WhereToResolve::StdLibPrelude,
WhereToResolve::StdLibPrelude => match ns {
TypeNS => WhereToResolve::BuiltinTypes,
ValueNS => break, // nowhere else to search
MacroNS => unreachable!(),
}
WhereToResolve::BuiltinTypes => break, // nowhere else to search
};
continue;
}
// The first found solution was the only one, return it.
if let Some((binding, flags)) = innermost_result {
// We get to here only if there's no ambiguity, in ambiguous cases an error will
// be reported anyway, so there's no reason to report an additional feature error.
// The `binding` can actually be introduced by something other than `--extern`,
// but its `Def` should coincide with a crate passed with `--extern`
// (otherwise there would be ambiguity) and we can skip feature error in this case.
'ok: {
if !is_import || self.session.features_untracked().uniform_paths {
break 'ok;
}
if ns == TypeNS && use_prelude && self.extern_prelude_get(ident, true).is_some() {
break 'ok;
}
if rust_2015 {
let root_ident = Ident::new(keywords::CrateRoot.name(), orig_ident.span);
let root_module = self.resolve_crate_root(root_ident);
if self.resolve_ident_in_module_ext(ModuleOrUniformRoot::Module(root_module),
orig_ident, ns, None, false, path_span)
.is_ok() {
break 'ok;
}
}
let msg = "imports can only refer to extern crate names \
passed with `--extern` on stable channel";
let mut err = feature_err(&self.session.parse_sess, "uniform_paths",
ident.span, GateIssue::Language, msg);
let what = self.binding_description(binding, ident,
flags.contains(Flags::MISC_FROM_PRELUDE));
let note_msg = format!("this import refers to {what}", what = what);
if binding.span.is_dummy() {
err.note(&note_msg);
} else {
err.span_note(binding.span, &note_msg);
err.span_label(binding.span, "not an extern crate passed with `--extern`");
}
err.emit();
}
return Ok(binding);
}
let determinacy = Determinacy::determined(determinacy == Determinacy::Determined || force);
if determinacy == Determinacy::Determined && macro_kind == Some(MacroKind::Attr) {
// For single-segment attributes interpret determinate "no resolution" as a custom
// attribute. (Lexical resolution implies the first segment and attr kind should imply
// the last segment, so we are certainly working with a single-segment attribute here.)
assert!(ns == MacroNS);
let binding = (Def::NonMacroAttr(NonMacroAttrKind::Custom),
ty::Visibility::Public, ident.span, Mark::root())
.to_name_binding(self.arenas);
Ok(binding)
} else {
Err(determinacy)
}
}
pub fn finalize_current_module_macro_resolutions(&mut self) {
let module = self.current_module;
let check_consistency = |this: &mut Self, path: &[Segment], span,
kind: MacroKind, initial_def, def| {
if let Some(initial_def) = initial_def {
if def != initial_def && def != Def::Err && this.ambiguity_errors.is_empty() {
// Make sure compilation does not succeed if preferred macro resolution
// has changed after the macro had been expanded. In theory all such
// situations should be reported as ambiguity errors, so this is a bug.
span_bug!(span, "inconsistent resolution for a macro");
}
} else {
// It's possible that the macro was unresolved (indeterminate) and silently
// expanded into a dummy fragment for recovery during expansion.
// Now, post-expansion, the resolution may succeed, but we can't change the
// past and need to report an error.
// However, non-speculative `resolve_path` can successfully return private items
// even if speculative `resolve_path` returned nothing previously, so we skip this
// less informative error if the privacy error is reported elsewhere.
if this.privacy_errors.is_empty() {
let msg = format!("cannot determine resolution for the {} `{}`",
kind.descr(), Segment::names_to_string(path));
let msg_note = "import resolution is stuck, try simplifying macro imports";
this.session.struct_span_err(span, &msg).note(msg_note).emit();
}
}
};
let macro_resolutions =
mem::replace(&mut *module.multi_segment_macro_resolutions.borrow_mut(), Vec::new());
for (mut path, path_span, kind, parent_scope, initial_def) in macro_resolutions {
// FIXME: Path resolution will ICE if segment IDs present.
for seg in &mut path { seg.id = None; }
match self.resolve_path(&path, Some(MacroNS), &parent_scope,
true, path_span, CrateLint::No) {
PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => {
let def = path_res.base_def();
check_consistency(self, &path, path_span, kind, initial_def, def);
}
path_res @ PathResult::NonModule(..) | path_res @ PathResult::Failed(..) => {
let (span, msg) = if let PathResult::Failed(span, msg, ..) = path_res {
(span, msg)
} else {
(path_span, format!("partially resolved path in {} {}",
kind.article(), kind.descr()))
};
resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
}
PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
}
}
let macro_resolutions =
mem::replace(&mut *module.single_segment_macro_resolutions.borrow_mut(), Vec::new());
for (ident, kind, parent_scope, initial_binding) in macro_resolutions {
match self.early_resolve_ident_in_lexical_scope(ident, ScopeSet::Macro(kind),
&parent_scope, true, true, ident.span) {
Ok(binding) => {
let initial_def = initial_binding.map(|initial_binding| {
self.record_use(ident, MacroNS, initial_binding, false);
initial_binding.def_ignoring_ambiguity()
});
let def = binding.def_ignoring_ambiguity();
let seg = Segment::from_ident(ident);
check_consistency(self, &[seg], ident.span, kind, initial_def, def);
}
Err(..) => {
assert!(initial_binding.is_none());
let bang = if kind == MacroKind::Bang { "!" } else { "" };
let msg =
format!("cannot find {} `{}{}` in this scope", kind.descr(), ident, bang);
let mut err = self.session.struct_span_err(ident.span, &msg);
self.suggest_macro_name(&ident.as_str(), kind, &mut err, ident.span);
err.emit();
}
}
}
let builtin_attrs = mem::replace(&mut *module.builtin_attrs.borrow_mut(), Vec::new());
for (ident, parent_scope) in builtin_attrs {
let _ = self.early_resolve_ident_in_lexical_scope(
ident, ScopeSet::Macro(MacroKind::Attr), &parent_scope, true, true, ident.span
);
}
}
fn suggest_macro_name(&mut self, name: &str, kind: MacroKind,
err: &mut DiagnosticBuilder<'a>, span: Span) {
// First check if this is a locally-defined bang macro.
let suggestion = if let MacroKind::Bang = kind {
find_best_match_for_name(self.macro_names.iter().map(|ident| &ident.name), name, None)
} else {
None
// Then check global macros.
}.or_else(|| {
let names = self.builtin_macros.iter().chain(self.macro_use_prelude.iter())
.filter_map(|(name, binding)| {
if binding.macro_kind() == Some(kind) { Some(name) } else { None }
});
find_best_match_for_name(names, name, None)
// Then check modules.
}).or_else(|| {
let is_macro = |def| {
if let Def::Macro(_, def_kind) = def {
def_kind == kind
} else {
false
}
};
let ident = Ident::new(Symbol::intern(name), span);
self.lookup_typo_candidate(&[Segment::from_ident(ident)], MacroNS, is_macro, span)
});
if let Some(suggestion) = suggestion {
if suggestion != name {
if let MacroKind::Bang = kind {
err.span_suggestion_with_applicability(
span,
"you could try the macro",
suggestion.to_string(),
Applicability::MaybeIncorrect
);
} else {
err.span_suggestion_with_applicability(
span,
"try",
suggestion.to_string(),
Applicability::MaybeIncorrect
);
}
} else {
err.help("have you added the `#[macro_use]` on the module/import?");
}
}
}
fn collect_def_ids(&mut self,
mark: Mark,
invocation: &'a InvocationData<'a>,
fragment: &AstFragment) {
let Resolver { ref mut invocations, arenas, graph_root, .. } = *self;
let InvocationData { def_index, .. } = *invocation;
let visit_macro_invoc = &mut |invoc: map::MacroInvocationData| {
invocations.entry(invoc.mark).or_insert_with(|| {
arenas.alloc_invocation_data(InvocationData {
def_index: invoc.def_index,
module: Cell::new(graph_root),
parent_legacy_scope: Cell::new(LegacyScope::Uninitialized),
output_legacy_scope: Cell::new(None),
})
});
};
let mut def_collector = DefCollector::new(&mut self.definitions, mark);
def_collector.visit_macro_invoc = Some(visit_macro_invoc);
def_collector.with_parent(def_index, |def_collector| {
fragment.visit_with(def_collector)
});
}
pub fn define_macro(&mut self,
item: &ast::Item,
expansion: Mark,
current_legacy_scope: &mut LegacyScope<'a>) {
self.local_macro_def_scopes.insert(item.id, self.current_module);
let ident = item.ident;
if ident.name == "macro_rules" {
self.session.span_err(item.span, "user-defined macros may not be named `macro_rules`");
}
let def_id = self.definitions.local_def_id(item.id);
let ext = Lrc::new(macro_rules::compile(&self.session.parse_sess,
&self.session.features_untracked(),
item, hygiene::default_edition()));
self.macro_map.insert(def_id, ext);
let def = match item.node { ast::ItemKind::MacroDef(ref def) => def, _ => unreachable!() };
if def.legacy {
let ident = ident.modern();
self.macro_names.insert(ident);
let def = Def::Macro(def_id, MacroKind::Bang);
let vis = ty::Visibility::Invisible; // Doesn't matter for legacy bindings
let binding = (def, vis, item.span, expansion).to_name_binding(self.arenas);
self.set_binding_parent_module(binding, self.current_module);
let legacy_binding = self.arenas.alloc_legacy_binding(LegacyBinding {
parent_legacy_scope: *current_legacy_scope, binding, ident
});
*current_legacy_scope = LegacyScope::Binding(legacy_binding);
self.all_macros.insert(ident.name, def);
if attr::contains_name(&item.attrs, "macro_export") {
let module = self.graph_root;
let vis = ty::Visibility::Public;
self.define(module, ident, MacroNS,
(def, vis, item.span, expansion, IsMacroExport));
} else {
if !attr::contains_name(&item.attrs, "rustc_doc_only_macro") {
self.check_reserved_macro_name(ident, MacroNS);
}
self.unused_macros.insert(def_id);
}
} else {
let module = self.current_module;
let def = Def::Macro(def_id, MacroKind::Bang);
let vis = self.resolve_visibility(&item.vis);
if vis != ty::Visibility::Public {
self.unused_macros.insert(def_id);
}
self.define(module, ident, MacroNS, (def, vis, item.span, expansion));
}
}
fn gate_legacy_custom_derive(&mut self, name: Symbol, span: Span) {
if !self.session.features_untracked().custom_derive {
let sess = &self.session.parse_sess;
let explain = feature_gate::EXPLAIN_CUSTOM_DERIVE;
emit_feature_err(sess, "custom_derive", span, GateIssue::Language, explain);
} else if !self.is_whitelisted_legacy_custom_derive(name) {
self.session.span_warn(span, feature_gate::EXPLAIN_DEPR_CUSTOM_DERIVE);
}
}
}