blob: 0fa41cb484fc9a827fd3152292d08a9b80e11885 [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Reduced graph building
//!
//! Here we build the "reduced graph": the graph of the module tree without
//! any imports resolved.
use macros::{InvocationData, ParentScope, LegacyScope};
use resolve_imports::ImportDirective;
use resolve_imports::ImportDirectiveSubclass::{self, GlobImport, SingleImport};
use {Module, ModuleData, ModuleKind, NameBinding, NameBindingKind, Segment, ToNameBinding};
use {ModuleOrUniformRoot, PerNS, Resolver, ResolverArenas, ExternPreludeEntry};
use Namespace::{self, TypeNS, ValueNS, MacroNS};
use {resolve_error, resolve_struct_error, ResolutionError};
use rustc::hir::def::*;
use rustc::hir::def_id::{CrateNum, CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
use rustc::ty;
use rustc::middle::cstore::CrateStore;
use rustc_metadata::cstore::LoadedMacro;
use std::cell::Cell;
use std::ptr;
use rustc_data_structures::sync::Lrc;
use syntax::ast::{Name, Ident};
use syntax::attr;
use syntax::ast::{self, Block, ForeignItem, ForeignItemKind, Item, ItemKind, NodeId};
use syntax::ast::{MetaItemKind, Mutability, StmtKind, TraitItem, TraitItemKind, Variant};
use syntax::ext::base::{MacroKind, SyntaxExtension};
use syntax::ext::base::Determinacy::Undetermined;
use syntax::ext::hygiene::Mark;
use syntax::ext::tt::macro_rules;
use syntax::feature_gate::{is_builtin_attr, emit_feature_err, GateIssue};
use syntax::parse::token::{self, Token};
use syntax::std_inject::injected_crate_name;
use syntax::symbol::keywords;
use syntax::visit::{self, Visitor};
use syntax_pos::{Span, DUMMY_SP};
impl<'a> ToNameBinding<'a> for (Module<'a>, ty::Visibility, Span, Mark) {
fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Module(self.0),
vis: self.1,
span: self.2,
expansion: self.3,
})
}
}
impl<'a> ToNameBinding<'a> for (Def, ty::Visibility, Span, Mark) {
fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Def(self.0, false),
vis: self.1,
span: self.2,
expansion: self.3,
})
}
}
pub(crate) struct IsMacroExport;
impl<'a> ToNameBinding<'a> for (Def, ty::Visibility, Span, Mark, IsMacroExport) {
fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Def(self.0, true),
vis: self.1,
span: self.2,
expansion: self.3,
})
}
}
impl<'a, 'cl> Resolver<'a, 'cl> {
/// Defines `name` in namespace `ns` of module `parent` to be `def` if it is not yet defined;
/// otherwise, reports an error.
pub fn define<T>(&mut self, parent: Module<'a>, ident: Ident, ns: Namespace, def: T)
where T: ToNameBinding<'a>,
{
let binding = def.to_name_binding(self.arenas);
if let Err(old_binding) = self.try_define(parent, ident, ns, binding) {
self.report_conflict(parent, ident, ns, old_binding, &binding);
}
}
fn block_needs_anonymous_module(&mut self, block: &Block) -> bool {
// If any statements are items, we need to create an anonymous module
block.stmts.iter().any(|statement| match statement.node {
StmtKind::Item(_) | StmtKind::Mac(_) => true,
_ => false,
})
}
fn insert_field_names(&mut self, def_id: DefId, field_names: Vec<Name>) {
if !field_names.is_empty() {
self.field_names.insert(def_id, field_names);
}
}
fn build_reduced_graph_for_use_tree(
&mut self,
// This particular use tree
use_tree: &ast::UseTree,
id: NodeId,
parent_prefix: &[Segment],
nested: bool,
// The whole `use` item
parent_scope: ParentScope<'a>,
item: &Item,
vis: ty::Visibility,
root_span: Span,
) {
debug!("build_reduced_graph_for_use_tree(parent_prefix={:?}, use_tree={:?}, nested={})",
parent_prefix, use_tree, nested);
let mut prefix_iter = parent_prefix.iter().cloned()
.chain(use_tree.prefix.segments.iter().map(|seg| seg.into())).peekable();
// On 2015 edition imports are resolved as crate-relative by default,
// so prefixes are prepended with crate root segment if necessary.
// The root is prepended lazily, when the first non-empty prefix or terminating glob
// appears, so imports in braced groups can have roots prepended independently.
// 2015 identifiers used on global 2018 edition enter special "virtual 2015 mode", don't
// get crate root prepended, but get special treatment during in-scope resolution instead.
let is_glob = if let ast::UseTreeKind::Glob = use_tree.kind { true } else { false };
let crate_root = match prefix_iter.peek() {
Some(seg) if !seg.ident.is_path_segment_keyword() &&
seg.ident.span.rust_2015() && self.session.rust_2015() => {
Some(seg.ident.span.ctxt())
}
None if is_glob && use_tree.span.rust_2015() => {
Some(use_tree.span.ctxt())
}
_ => None,
}.map(|ctxt| Segment::from_ident(Ident::new(
keywords::CrateRoot.name(), use_tree.prefix.span.shrink_to_lo().with_ctxt(ctxt)
)));
let prefix = crate_root.into_iter().chain(prefix_iter).collect::<Vec<_>>();
debug!("build_reduced_graph_for_use_tree: prefix={:?}", prefix);
let empty_for_self = |prefix: &[Segment]| {
prefix.is_empty() ||
prefix.len() == 1 && prefix[0].ident.name == keywords::CrateRoot.name()
};
match use_tree.kind {
ast::UseTreeKind::Simple(rename, ..) => {
let mut ident = use_tree.ident();
let mut module_path = prefix;
let mut source = module_path.pop().unwrap();
let mut type_ns_only = false;
if nested {
// Correctly handle `self`
if source.ident.name == keywords::SelfValue.name() {
type_ns_only = true;
if empty_for_self(&module_path) {
resolve_error(
self,
use_tree.span,
ResolutionError::
SelfImportOnlyInImportListWithNonEmptyPrefix
);
return;
}
// Replace `use foo::self;` with `use foo;`
source = module_path.pop().unwrap();
if rename.is_none() {
ident = source.ident;
}
}
} else {
// Disallow `self`
if source.ident.name == keywords::SelfValue.name() {
resolve_error(self,
use_tree.span,
ResolutionError::SelfImportsOnlyAllowedWithin);
}
// Disallow `use $crate;`
if source.ident.name == keywords::DollarCrate.name() && module_path.is_empty() {
let crate_root = self.resolve_crate_root(source.ident);
let crate_name = match crate_root.kind {
ModuleKind::Def(_, name) => name,
ModuleKind::Block(..) => unreachable!(),
};
// HACK(eddyb) unclear how good this is, but keeping `$crate`
// in `source` breaks `src/test/compile-fail/import-crate-var.rs`,
// while the current crate doesn't have a valid `crate_name`.
if crate_name != keywords::Invalid.name() {
// `crate_name` should not be interpreted as relative.
module_path.push(Segment {
ident: Ident {
name: keywords::CrateRoot.name(),
span: source.ident.span,
},
id: Some(self.session.next_node_id()),
});
source.ident.name = crate_name;
}
if rename.is_none() {
ident.name = crate_name;
}
self.session.struct_span_warn(item.span, "`$crate` may not be imported")
.note("`use $crate;` was erroneously allowed and \
will become a hard error in a future release")
.emit();
}
}
if ident.name == keywords::Crate.name() {
self.session.span_err(ident.span,
"crate root imports need to be explicitly named: \
`use crate as name;`");
}
let subclass = SingleImport {
target: ident,
source: source.ident,
result: PerNS {
type_ns: Cell::new(Err(Undetermined)),
value_ns: Cell::new(Err(Undetermined)),
macro_ns: Cell::new(Err(Undetermined)),
},
type_ns_only,
};
self.add_import_directive(
module_path,
subclass,
use_tree.span,
id,
root_span,
item.id,
vis,
parent_scope,
);
}
ast::UseTreeKind::Glob => {
let subclass = GlobImport {
is_prelude: attr::contains_name(&item.attrs, "prelude_import"),
max_vis: Cell::new(ty::Visibility::Invisible),
};
self.add_import_directive(
prefix,
subclass,
use_tree.span,
id,
root_span,
item.id,
vis,
parent_scope,
);
}
ast::UseTreeKind::Nested(ref items) => {
// Ensure there is at most one `self` in the list
let self_spans = items.iter().filter_map(|&(ref use_tree, _)| {
if let ast::UseTreeKind::Simple(..) = use_tree.kind {
if use_tree.ident().name == keywords::SelfValue.name() {
return Some(use_tree.span);
}
}
None
}).collect::<Vec<_>>();
if self_spans.len() > 1 {
let mut e = resolve_struct_error(self,
self_spans[0],
ResolutionError::SelfImportCanOnlyAppearOnceInTheList);
for other_span in self_spans.iter().skip(1) {
e.span_label(*other_span, "another `self` import appears here");
}
e.emit();
}
for &(ref tree, id) in items {
self.build_reduced_graph_for_use_tree(
// This particular use tree
tree, id, &prefix, true,
// The whole `use` item
parent_scope.clone(), item, vis, root_span,
);
}
// Empty groups `a::b::{}` are turned into synthetic `self` imports
// `a::b::c::{self as _}`, so that their prefixes are correctly
// resolved and checked for privacy/stability/etc.
if items.is_empty() && !empty_for_self(&prefix) {
let new_span = prefix[prefix.len() - 1].ident.span;
let tree = ast::UseTree {
prefix: ast::Path::from_ident(
Ident::new(keywords::SelfValue.name(), new_span)
),
kind: ast::UseTreeKind::Simple(
Some(Ident::new(keywords::Underscore.name().gensymed(), new_span)),
ast::DUMMY_NODE_ID,
ast::DUMMY_NODE_ID,
),
span: use_tree.span,
};
self.build_reduced_graph_for_use_tree(
// This particular use tree
&tree, id, &prefix, true,
// The whole `use` item
parent_scope.clone(), item, ty::Visibility::Invisible, root_span,
);
}
}
}
}
/// Constructs the reduced graph for one item.
fn build_reduced_graph_for_item(&mut self, item: &Item, parent_scope: ParentScope<'a>) {
let parent = parent_scope.module;
let expansion = parent_scope.expansion;
let ident = item.ident;
let sp = item.span;
let vis = self.resolve_visibility(&item.vis);
match item.node {
ItemKind::Use(ref use_tree) => {
self.build_reduced_graph_for_use_tree(
// This particular use tree
use_tree, item.id, &[], false,
// The whole `use` item
parent_scope, item, vis, use_tree.span,
);
}
ItemKind::ExternCrate(orig_name) => {
let module = if orig_name.is_none() && ident.name == keywords::SelfValue.name() {
self.session
.struct_span_err(item.span, "`extern crate self;` requires renaming")
.span_suggestion(item.span, "try", "extern crate self as name;".into())
.emit();
return;
} else if orig_name == Some(keywords::SelfValue.name()) {
if !self.session.features_untracked().extern_crate_self {
emit_feature_err(&self.session.parse_sess, "extern_crate_self", item.span,
GateIssue::Language, "`extern crate self` is unstable");
}
self.graph_root
} else {
let crate_id = self.crate_loader.process_extern_crate(item, &self.definitions);
self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX })
};
self.populate_module_if_necessary(module);
if injected_crate_name().map_or(false, |name| ident.name == name) {
self.injected_crate = Some(module);
}
let used = self.process_legacy_macro_imports(item, module, &parent_scope);
let binding =
(module, ty::Visibility::Public, sp, expansion).to_name_binding(self.arenas);
let directive = self.arenas.alloc_import_directive(ImportDirective {
root_id: item.id,
id: item.id,
parent_scope,
imported_module: Cell::new(Some(ModuleOrUniformRoot::Module(module))),
subclass: ImportDirectiveSubclass::ExternCrate {
source: orig_name,
target: ident,
},
root_span: item.span,
span: item.span,
module_path: Vec::new(),
vis: Cell::new(vis),
used: Cell::new(used),
});
self.potentially_unused_imports.push(directive);
let imported_binding = self.import(binding, directive);
if ptr::eq(self.current_module, self.graph_root) {
if let Some(entry) = self.extern_prelude.get(&ident.modern()) {
if expansion != Mark::root() && orig_name.is_some() &&
entry.extern_crate_item.is_none() {
self.session.span_err(item.span, "macro-expanded `extern crate` items \
cannot shadow names passed with \
`--extern`");
}
}
let entry = self.extern_prelude.entry(ident.modern())
.or_insert(ExternPreludeEntry {
extern_crate_item: None,
introduced_by_item: true,
});
entry.extern_crate_item = Some(imported_binding);
if orig_name.is_some() {
entry.introduced_by_item = true;
}
}
self.define(parent, ident, TypeNS, imported_binding);
}
ItemKind::GlobalAsm(..) => {}
ItemKind::Mod(..) if ident == keywords::Invalid.ident() => {} // Crate root
ItemKind::Mod(..) => {
let def_id = self.definitions.local_def_id(item.id);
let module_kind = ModuleKind::Def(Def::Mod(def_id), ident.name);
let module = self.arenas.alloc_module(ModuleData {
no_implicit_prelude: parent.no_implicit_prelude || {
attr::contains_name(&item.attrs, "no_implicit_prelude")
},
..ModuleData::new(Some(parent), module_kind, def_id, expansion, item.span)
});
self.define(parent, ident, TypeNS, (module, vis, sp, expansion));
self.module_map.insert(def_id, module);
// Descend into the module.
self.current_module = module;
}
// Handled in `rustc_metadata::{native_libs,link_args}`
ItemKind::ForeignMod(..) => {}
// These items live in the value namespace.
ItemKind::Static(_, m, _) => {
let mutbl = m == Mutability::Mutable;
let def = Def::Static(self.definitions.local_def_id(item.id), mutbl);
self.define(parent, ident, ValueNS, (def, vis, sp, expansion));
}
ItemKind::Const(..) => {
let def = Def::Const(self.definitions.local_def_id(item.id));
self.define(parent, ident, ValueNS, (def, vis, sp, expansion));
}
ItemKind::Fn(..) => {
let def = Def::Fn(self.definitions.local_def_id(item.id));
self.define(parent, ident, ValueNS, (def, vis, sp, expansion));
// Functions introducing procedural macros reserve a slot
// in the macro namespace as well (see #52225).
if attr::contains_name(&item.attrs, "proc_macro") ||
attr::contains_name(&item.attrs, "proc_macro_attribute") {
let def = Def::Macro(def.def_id(), MacroKind::ProcMacroStub);
self.define(parent, ident, MacroNS, (def, vis, sp, expansion));
}
if let Some(attr) = attr::find_by_name(&item.attrs, "proc_macro_derive") {
if let Some(trait_attr) =
attr.meta_item_list().and_then(|list| list.get(0).cloned()) {
if let Some(ident) = trait_attr.name().map(Ident::with_empty_ctxt) {
let sp = trait_attr.span;
let def = Def::Macro(def.def_id(), MacroKind::ProcMacroStub);
self.define(parent, ident, MacroNS, (def, vis, sp, expansion));
}
}
}
}
// These items live in the type namespace.
ItemKind::Ty(..) => {
let def = Def::TyAlias(self.definitions.local_def_id(item.id));
self.define(parent, ident, TypeNS, (def, vis, sp, expansion));
}
ItemKind::Existential(_, _) => {
let def = Def::Existential(self.definitions.local_def_id(item.id));
self.define(parent, ident, TypeNS, (def, vis, sp, expansion));
}
ItemKind::Enum(ref enum_definition, _) => {
let def = Def::Enum(self.definitions.local_def_id(item.id));
let module_kind = ModuleKind::Def(def, ident.name);
let module = self.new_module(parent,
module_kind,
parent.normal_ancestor_id,
expansion,
item.span);
self.define(parent, ident, TypeNS, (module, vis, sp, expansion));
for variant in &(*enum_definition).variants {
self.build_reduced_graph_for_variant(variant, module, vis, expansion);
}
}
ItemKind::TraitAlias(..) => {
let def = Def::TraitAlias(self.definitions.local_def_id(item.id));
self.define(parent, ident, TypeNS, (def, vis, sp, expansion));
}
// These items live in both the type and value namespaces.
ItemKind::Struct(ref struct_def, _) => {
// Define a name in the type namespace.
let def_id = self.definitions.local_def_id(item.id);
let def = Def::Struct(def_id);
self.define(parent, ident, TypeNS, (def, vis, sp, expansion));
let mut ctor_vis = vis;
let has_non_exhaustive = attr::contains_name(&item.attrs, "non_exhaustive");
// If the structure is marked as non_exhaustive then lower the visibility
// to within the crate.
if has_non_exhaustive && vis == ty::Visibility::Public {
ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX));
}
// Record field names for error reporting.
let field_names = struct_def.fields().iter().filter_map(|field| {
let field_vis = self.resolve_visibility(&field.vis);
if ctor_vis.is_at_least(field_vis, &*self) {
ctor_vis = field_vis;
}
field.ident.map(|ident| ident.name)
}).collect();
let item_def_id = self.definitions.local_def_id(item.id);
self.insert_field_names(item_def_id, field_names);
// If this is a tuple or unit struct, define a name
// in the value namespace as well.
if !struct_def.is_struct() {
let ctor_def = Def::StructCtor(self.definitions.local_def_id(struct_def.id()),
CtorKind::from_ast(struct_def));
self.define(parent, ident, ValueNS, (ctor_def, ctor_vis, sp, expansion));
self.struct_constructors.insert(def.def_id(), (ctor_def, ctor_vis));
}
}
ItemKind::Union(ref vdata, _) => {
let def = Def::Union(self.definitions.local_def_id(item.id));
self.define(parent, ident, TypeNS, (def, vis, sp, expansion));
// Record field names for error reporting.
let field_names = vdata.fields().iter().filter_map(|field| {
self.resolve_visibility(&field.vis);
field.ident.map(|ident| ident.name)
}).collect();
let item_def_id = self.definitions.local_def_id(item.id);
self.insert_field_names(item_def_id, field_names);
}
ItemKind::Impl(..) => {}
ItemKind::Trait(..) => {
let def_id = self.definitions.local_def_id(item.id);
// Add all the items within to a new module.
let module_kind = ModuleKind::Def(Def::Trait(def_id), ident.name);
let module = self.new_module(parent,
module_kind,
parent.normal_ancestor_id,
expansion,
item.span);
self.define(parent, ident, TypeNS, (module, vis, sp, expansion));
self.current_module = module;
}
ItemKind::MacroDef(..) | ItemKind::Mac(_) => unreachable!(),
}
}
// Constructs the reduced graph for one variant. Variants exist in the
// type and value namespaces.
fn build_reduced_graph_for_variant(&mut self,
variant: &Variant,
parent: Module<'a>,
vis: ty::Visibility,
expansion: Mark) {
let ident = variant.node.ident;
let def_id = self.definitions.local_def_id(variant.node.data.id());
// Define a name in the type namespace.
let def = Def::Variant(def_id);
self.define(parent, ident, TypeNS, (def, vis, variant.span, expansion));
// Define a constructor name in the value namespace.
// Braced variants, unlike structs, generate unusable names in
// value namespace, they are reserved for possible future use.
let ctor_kind = CtorKind::from_ast(&variant.node.data);
let ctor_def = Def::VariantCtor(def_id, ctor_kind);
self.define(parent, ident, ValueNS, (ctor_def, vis, variant.span, expansion));
}
/// Constructs the reduced graph for one foreign item.
fn build_reduced_graph_for_foreign_item(&mut self, item: &ForeignItem, expansion: Mark) {
let (def, ns) = match item.node {
ForeignItemKind::Fn(..) => {
(Def::Fn(self.definitions.local_def_id(item.id)), ValueNS)
}
ForeignItemKind::Static(_, m) => {
(Def::Static(self.definitions.local_def_id(item.id), m), ValueNS)
}
ForeignItemKind::Ty => {
(Def::ForeignTy(self.definitions.local_def_id(item.id)), TypeNS)
}
ForeignItemKind::Macro(_) => unreachable!(),
};
let parent = self.current_module;
let vis = self.resolve_visibility(&item.vis);
self.define(parent, item.ident, ns, (def, vis, item.span, expansion));
}
fn build_reduced_graph_for_block(&mut self, block: &Block, expansion: Mark) {
let parent = self.current_module;
if self.block_needs_anonymous_module(block) {
let module = self.new_module(parent,
ModuleKind::Block(block.id),
parent.normal_ancestor_id,
expansion,
block.span);
self.block_map.insert(block.id, module);
self.current_module = module; // Descend into the block.
}
}
/// Builds the reduced graph for a single item in an external crate.
fn build_reduced_graph_for_external_crate_def(&mut self, parent: Module<'a>, child: Export) {
let Export { ident, def, vis, span, .. } = child;
let def_id = def.def_id();
let expansion = Mark::root(); // FIXME(jseyfried) intercrate hygiene
match def {
Def::Mod(..) | Def::Enum(..) => {
let module = self.new_module(parent,
ModuleKind::Def(def, ident.name),
def_id,
expansion,
span);
self.define(parent, ident, TypeNS, (module, vis, DUMMY_SP, expansion));
}
Def::Variant(..) | Def::TyAlias(..) | Def::ForeignTy(..) => {
self.define(parent, ident, TypeNS, (def, vis, DUMMY_SP, expansion));
}
Def::Fn(..) | Def::Static(..) | Def::Const(..) | Def::VariantCtor(..) => {
self.define(parent, ident, ValueNS, (def, vis, DUMMY_SP, expansion));
}
Def::StructCtor(..) => {
self.define(parent, ident, ValueNS, (def, vis, DUMMY_SP, expansion));
if let Some(struct_def_id) =
self.cstore.def_key(def_id).parent
.map(|index| DefId { krate: def_id.krate, index: index }) {
self.struct_constructors.insert(struct_def_id, (def, vis));
}
}
Def::Trait(..) => {
let module_kind = ModuleKind::Def(def, ident.name);
let module = self.new_module(parent,
module_kind,
parent.normal_ancestor_id,
expansion,
span);
self.define(parent, ident, TypeNS, (module, vis, DUMMY_SP, expansion));
for child in self.cstore.item_children_untracked(def_id, self.session) {
let ns = if let Def::AssociatedTy(..) = child.def { TypeNS } else { ValueNS };
self.define(module, child.ident, ns,
(child.def, ty::Visibility::Public, DUMMY_SP, expansion));
if self.cstore.associated_item_cloned_untracked(child.def.def_id())
.method_has_self_argument {
self.has_self.insert(child.def.def_id());
}
}
module.populated.set(true);
}
Def::Struct(..) | Def::Union(..) => {
self.define(parent, ident, TypeNS, (def, vis, DUMMY_SP, expansion));
// Record field names for error reporting.
let field_names = self.cstore.struct_field_names_untracked(def_id);
self.insert_field_names(def_id, field_names);
}
Def::Macro(..) => {
self.define(parent, ident, MacroNS, (def, vis, DUMMY_SP, expansion));
}
_ => bug!("unexpected definition: {:?}", def)
}
}
pub fn get_module(&mut self, def_id: DefId) -> Module<'a> {
if def_id.krate == LOCAL_CRATE {
return self.module_map[&def_id]
}
let macros_only = self.cstore.dep_kind_untracked(def_id.krate).macros_only();
if let Some(&module) = self.extern_module_map.get(&(def_id, macros_only)) {
return module;
}
let (name, parent) = if def_id.index == CRATE_DEF_INDEX {
(self.cstore.crate_name_untracked(def_id.krate).as_interned_str(), None)
} else {
let def_key = self.cstore.def_key(def_id);
(def_key.disambiguated_data.data.get_opt_name().unwrap(),
Some(self.get_module(DefId { index: def_key.parent.unwrap(), ..def_id })))
};
let kind = ModuleKind::Def(Def::Mod(def_id), name.as_symbol());
let module =
self.arenas.alloc_module(ModuleData::new(parent, kind, def_id, Mark::root(), DUMMY_SP));
self.extern_module_map.insert((def_id, macros_only), module);
module
}
pub fn macro_def_scope(&mut self, expansion: Mark) -> Module<'a> {
let def_id = self.macro_defs[&expansion];
if let Some(id) = self.definitions.as_local_node_id(def_id) {
self.local_macro_def_scopes[&id]
} else if def_id.krate == CrateNum::BuiltinMacros {
self.injected_crate.unwrap_or(self.graph_root)
} else {
let module_def_id = ty::DefIdTree::parent(&*self, def_id).unwrap();
self.get_module(module_def_id)
}
}
pub fn get_macro(&mut self, def: Def) -> Lrc<SyntaxExtension> {
let def_id = match def {
Def::Macro(def_id, ..) => def_id,
Def::NonMacroAttr(attr_kind) => return Lrc::new(SyntaxExtension::NonMacroAttr {
mark_used: attr_kind == NonMacroAttrKind::Tool,
}),
_ => panic!("expected `Def::Macro` or `Def::NonMacroAttr`"),
};
if let Some(ext) = self.macro_map.get(&def_id) {
return ext.clone();
}
let macro_def = match self.cstore.load_macro_untracked(def_id, &self.session) {
LoadedMacro::MacroDef(macro_def) => macro_def,
LoadedMacro::ProcMacro(ext) => return ext,
};
let ext = Lrc::new(macro_rules::compile(&self.session.parse_sess,
&self.session.features_untracked(),
&macro_def,
self.cstore.crate_edition_untracked(def_id.krate)));
self.macro_map.insert(def_id, ext.clone());
ext
}
/// Ensures that the reduced graph rooted at the given external module
/// is built, building it if it is not.
pub fn populate_module_if_necessary(&mut self, module: Module<'a>) {
if module.populated.get() { return }
let def_id = module.def_id().unwrap();
for child in self.cstore.item_children_untracked(def_id, self.session) {
self.build_reduced_graph_for_external_crate_def(module, child);
}
module.populated.set(true)
}
fn legacy_import_macro(&mut self,
name: Name,
binding: &'a NameBinding<'a>,
span: Span,
allow_shadowing: bool) {
if self.macro_use_prelude.insert(name, binding).is_some() && !allow_shadowing {
let msg = format!("`{}` is already in scope", name);
let note =
"macro-expanded `#[macro_use]`s may not shadow existing macros (see RFC 1560)";
self.session.struct_span_err(span, &msg).note(note).emit();
}
}
// This returns true if we should consider the underlying `extern crate` to be used.
fn process_legacy_macro_imports(&mut self, item: &Item, module: Module<'a>,
parent_scope: &ParentScope<'a>) -> bool {
let mut import_all = None;
let mut single_imports = Vec::new();
for attr in &item.attrs {
if attr.check_name("macro_use") {
if self.current_module.parent.is_some() {
span_err!(self.session, item.span, E0468,
"an `extern crate` loading macros must be at the crate root");
}
if let ItemKind::ExternCrate(Some(orig_name)) = item.node {
if orig_name == keywords::SelfValue.name() {
self.session.span_err(attr.span,
"`macro_use` is not supported on `extern crate self`");
}
}
let ill_formed = |span| span_err!(self.session, span, E0466, "bad macro import");
match attr.meta() {
Some(meta) => match meta.node {
MetaItemKind::Word => {
import_all = Some(meta.span);
break;
}
MetaItemKind::List(nested_metas) => for nested_meta in nested_metas {
match nested_meta.word() {
Some(word) => single_imports.push((word.name(), word.span)),
None => ill_formed(nested_meta.span),
}
}
MetaItemKind::NameValue(..) => ill_formed(meta.span),
}
None => ill_formed(attr.span()),
}
}
}
let arenas = self.arenas;
let macro_use_directive = |span| arenas.alloc_import_directive(ImportDirective {
root_id: item.id,
id: item.id,
parent_scope: parent_scope.clone(),
imported_module: Cell::new(Some(ModuleOrUniformRoot::Module(module))),
subclass: ImportDirectiveSubclass::MacroUse,
root_span: span,
span,
module_path: Vec::new(),
vis: Cell::new(ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))),
used: Cell::new(false),
});
let allow_shadowing = parent_scope.expansion == Mark::root();
if let Some(span) = import_all {
let directive = macro_use_directive(span);
self.potentially_unused_imports.push(directive);
module.for_each_child(|ident, ns, binding| if ns == MacroNS {
let imported_binding = self.import(binding, directive);
self.legacy_import_macro(ident.name, imported_binding, span, allow_shadowing);
});
} else {
for (name, span) in single_imports.iter().cloned() {
let ident = Ident::with_empty_ctxt(name);
let result = self.resolve_ident_in_module(
ModuleOrUniformRoot::Module(module),
ident,
MacroNS,
None,
false,
span,
);
if let Ok(binding) = result {
let directive = macro_use_directive(span);
self.potentially_unused_imports.push(directive);
let imported_binding = self.import(binding, directive);
self.legacy_import_macro(name, imported_binding, span, allow_shadowing);
} else {
span_err!(self.session, span, E0469, "imported macro not found");
}
}
}
import_all.is_some() || !single_imports.is_empty()
}
// does this attribute list contain "macro_use"?
fn contains_macro_use(&mut self, attrs: &[ast::Attribute]) -> bool {
for attr in attrs {
if attr.check_name("macro_escape") {
let msg = "macro_escape is a deprecated synonym for macro_use";
let mut err = self.session.struct_span_warn(attr.span, msg);
if let ast::AttrStyle::Inner = attr.style {
err.help("consider an outer attribute, #[macro_use] mod ...").emit();
} else {
err.emit();
}
} else if !attr.check_name("macro_use") {
continue;
}
if !attr.is_word() {
self.session.span_err(attr.span, "arguments to macro_use are not allowed here");
}
return true;
}
false
}
}
pub struct BuildReducedGraphVisitor<'a, 'b: 'a, 'c: 'b> {
pub resolver: &'a mut Resolver<'b, 'c>,
pub current_legacy_scope: LegacyScope<'b>,
pub expansion: Mark,
}
impl<'a, 'b, 'cl> BuildReducedGraphVisitor<'a, 'b, 'cl> {
fn visit_invoc(&mut self, id: ast::NodeId) -> &'b InvocationData<'b> {
let mark = id.placeholder_to_mark();
self.resolver.current_module.unresolved_invocations.borrow_mut().insert(mark);
let invocation = self.resolver.invocations[&mark];
invocation.module.set(self.resolver.current_module);
invocation.parent_legacy_scope.set(self.current_legacy_scope);
invocation
}
}
macro_rules! method {
($visit:ident: $ty:ty, $invoc:path, $walk:ident) => {
fn $visit(&mut self, node: &'a $ty) {
if let $invoc(..) = node.node {
self.visit_invoc(node.id);
} else {
visit::$walk(self, node);
}
}
}
}
impl<'a, 'b, 'cl> Visitor<'a> for BuildReducedGraphVisitor<'a, 'b, 'cl> {
method!(visit_impl_item: ast::ImplItem, ast::ImplItemKind::Macro, walk_impl_item);
method!(visit_expr: ast::Expr, ast::ExprKind::Mac, walk_expr);
method!(visit_pat: ast::Pat, ast::PatKind::Mac, walk_pat);
method!(visit_ty: ast::Ty, ast::TyKind::Mac, walk_ty);
fn visit_item(&mut self, item: &'a Item) {
let macro_use = match item.node {
ItemKind::MacroDef(..) => {
self.resolver.define_macro(item, self.expansion, &mut self.current_legacy_scope);
return
}
ItemKind::Mac(..) => {
self.current_legacy_scope = LegacyScope::Invocation(self.visit_invoc(item.id));
return
}
ItemKind::Mod(..) => self.resolver.contains_macro_use(&item.attrs),
_ => false,
};
let orig_current_module = self.resolver.current_module;
let orig_current_legacy_scope = self.current_legacy_scope;
let parent_scope = ParentScope {
module: self.resolver.current_module,
expansion: self.expansion,
legacy: self.current_legacy_scope,
derives: Vec::new(),
};
self.resolver.build_reduced_graph_for_item(item, parent_scope);
visit::walk_item(self, item);
self.resolver.current_module = orig_current_module;
if !macro_use {
self.current_legacy_scope = orig_current_legacy_scope;
}
}
fn visit_stmt(&mut self, stmt: &'a ast::Stmt) {
if let ast::StmtKind::Mac(..) = stmt.node {
self.current_legacy_scope = LegacyScope::Invocation(self.visit_invoc(stmt.id));
} else {
visit::walk_stmt(self, stmt);
}
}
fn visit_foreign_item(&mut self, foreign_item: &'a ForeignItem) {
if let ForeignItemKind::Macro(_) = foreign_item.node {
self.visit_invoc(foreign_item.id);
return;
}
self.resolver.build_reduced_graph_for_foreign_item(foreign_item, self.expansion);
visit::walk_foreign_item(self, foreign_item);
}
fn visit_block(&mut self, block: &'a Block) {
let orig_current_module = self.resolver.current_module;
let orig_current_legacy_scope = self.current_legacy_scope;
self.resolver.build_reduced_graph_for_block(block, self.expansion);
visit::walk_block(self, block);
self.resolver.current_module = orig_current_module;
self.current_legacy_scope = orig_current_legacy_scope;
}
fn visit_trait_item(&mut self, item: &'a TraitItem) {
let parent = self.resolver.current_module;
if let TraitItemKind::Macro(_) = item.node {
self.visit_invoc(item.id);
return
}
// Add the item to the trait info.
let item_def_id = self.resolver.definitions.local_def_id(item.id);
let (def, ns) = match item.node {
TraitItemKind::Const(..) => (Def::AssociatedConst(item_def_id), ValueNS),
TraitItemKind::Method(ref sig, _) => {
if sig.decl.has_self() {
self.resolver.has_self.insert(item_def_id);
}
(Def::Method(item_def_id), ValueNS)
}
TraitItemKind::Type(..) => (Def::AssociatedTy(item_def_id), TypeNS),
TraitItemKind::Macro(_) => bug!(), // handled above
};
let vis = ty::Visibility::Public;
self.resolver.define(parent, item.ident, ns, (def, vis, item.span, self.expansion));
self.resolver.current_module = parent.parent.unwrap(); // nearest normal ancestor
visit::walk_trait_item(self, item);
self.resolver.current_module = parent;
}
fn visit_token(&mut self, t: Token) {
if let Token::Interpolated(nt) = t {
if let token::NtExpr(ref expr) = nt.0 {
if let ast::ExprKind::Mac(..) = expr.node {
self.visit_invoc(expr.id);
}
}
}
}
fn visit_attribute(&mut self, attr: &'a ast::Attribute) {
if !attr.is_sugared_doc && is_builtin_attr(attr) {
let parent_scope = ParentScope {
module: self.resolver.current_module.nearest_item_scope(),
expansion: self.expansion,
legacy: self.current_legacy_scope,
// Let's hope discerning built-in attributes from derive helpers is not necessary
derives: Vec::new(),
};
parent_scope.module.builtin_attrs.borrow_mut().push((
attr.path.segments[0].ident, parent_scope
));
}
visit::walk_attribute(self, attr);
}
}