| use core::iter::FusedIterator; |
| use core::marker::PhantomData; |
| use core::mem::{self, SizedTypeProperties}; |
| use core::ptr::NonNull; |
| use core::{fmt, ptr}; |
| |
| use super::VecDeque; |
| use crate::alloc::{Allocator, Global}; |
| |
| /// A draining iterator over the elements of a `VecDeque`. |
| /// |
| /// This `struct` is created by the [`drain`] method on [`VecDeque`]. See its |
| /// documentation for more. |
| /// |
| /// [`drain`]: VecDeque::drain |
| #[stable(feature = "drain", since = "1.6.0")] |
| pub struct Drain< |
| 'a, |
| T: 'a, |
| #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, |
| > { |
| // We can't just use a &mut VecDeque<T, A>, as that would make Drain invariant over T |
| // and we want it to be covariant instead |
| deque: NonNull<VecDeque<T, A>>, |
| // drain_start is stored in deque.len |
| drain_len: usize, |
| // index into the logical array, not the physical one (always lies in [0..deque.len)) |
| idx: usize, |
| // number of elements remaining after dropping the drain |
| new_len: usize, |
| remaining: usize, |
| // Needed to make Drain covariant over T |
| _marker: PhantomData<&'a T>, |
| } |
| |
| impl<'a, T, A: Allocator> Drain<'a, T, A> { |
| pub(super) unsafe fn new( |
| deque: &'a mut VecDeque<T, A>, |
| drain_start: usize, |
| drain_len: usize, |
| ) -> Self { |
| let orig_len = mem::replace(&mut deque.len, drain_start); |
| let new_len = orig_len - drain_len; |
| Drain { |
| deque: NonNull::from(deque), |
| drain_len, |
| idx: drain_start, |
| new_len, |
| remaining: drain_len, |
| _marker: PhantomData, |
| } |
| } |
| |
| // Only returns pointers to the slices, as that's all we need |
| // to drop them. May only be called if `self.remaining != 0`. |
| unsafe fn as_slices(&self) -> (*mut [T], *mut [T]) { |
| unsafe { |
| let deque = self.deque.as_ref(); |
| |
| // We know that `self.idx + self.remaining <= deque.len <= usize::MAX`, so this won't overflow. |
| let logical_remaining_range = self.idx..self.idx + self.remaining; |
| |
| // SAFETY: `logical_remaining_range` represents the |
| // range into the logical buffer of elements that |
| // haven't been drained yet, so they're all initialized, |
| // and `slice::range(start..end, end) == start..end`, |
| // so the preconditions for `slice_ranges` are met. |
| let (a_range, b_range) = |
| deque.slice_ranges(logical_remaining_range.clone(), logical_remaining_range.end); |
| (deque.buffer_range(a_range), deque.buffer_range(b_range)) |
| } |
| } |
| } |
| |
| #[stable(feature = "collection_debug", since = "1.17.0")] |
| impl<T: fmt::Debug, A: Allocator> fmt::Debug for Drain<'_, T, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_tuple("Drain") |
| .field(&self.drain_len) |
| .field(&self.idx) |
| .field(&self.new_len) |
| .field(&self.remaining) |
| .finish() |
| } |
| } |
| |
| #[stable(feature = "drain", since = "1.6.0")] |
| unsafe impl<T: Sync, A: Allocator + Sync> Sync for Drain<'_, T, A> {} |
| #[stable(feature = "drain", since = "1.6.0")] |
| unsafe impl<T: Send, A: Allocator + Send> Send for Drain<'_, T, A> {} |
| |
| #[stable(feature = "drain", since = "1.6.0")] |
| impl<T, A: Allocator> Drop for Drain<'_, T, A> { |
| fn drop(&mut self) { |
| struct DropGuard<'r, 'a, T, A: Allocator>(&'r mut Drain<'a, T, A>); |
| |
| let guard = DropGuard(self); |
| |
| if mem::needs_drop::<T>() && guard.0.remaining != 0 { |
| unsafe { |
| // SAFETY: We just checked that `self.remaining != 0`. |
| let (front, back) = guard.0.as_slices(); |
| // since idx is a logical index, we don't need to worry about wrapping. |
| guard.0.idx += front.len(); |
| guard.0.remaining -= front.len(); |
| ptr::drop_in_place(front); |
| guard.0.remaining = 0; |
| ptr::drop_in_place(back); |
| } |
| } |
| |
| // Dropping `guard` handles moving the remaining elements into place. |
| impl<'r, 'a, T, A: Allocator> Drop for DropGuard<'r, 'a, T, A> { |
| #[inline] |
| fn drop(&mut self) { |
| if mem::needs_drop::<T>() && self.0.remaining != 0 { |
| unsafe { |
| // SAFETY: We just checked that `self.remaining != 0`. |
| let (front, back) = self.0.as_slices(); |
| ptr::drop_in_place(front); |
| ptr::drop_in_place(back); |
| } |
| } |
| |
| let source_deque = unsafe { self.0.deque.as_mut() }; |
| |
| let drain_len = self.0.drain_len; |
| let new_len = self.0.new_len; |
| |
| if T::IS_ZST { |
| // no need to copy around any memory if T is a ZST |
| source_deque.len = new_len; |
| return; |
| } |
| |
| let head_len = source_deque.len; // #elements in front of the drain |
| let tail_len = new_len - head_len; // #elements behind the drain |
| |
| // Next, we will fill the hole left by the drain with as few writes as possible. |
| // The code below handles the following control flow and reduces the amount of |
| // branches under the assumption that `head_len == 0 || tail_len == 0`, i.e. |
| // draining at the front or at the back of the dequeue is especially common. |
| // |
| // H = "head index" = `deque.head` |
| // h = elements in front of the drain |
| // d = elements in the drain |
| // t = elements behind the drain |
| // |
| // Note that the buffer may wrap at any point and the wrapping is handled by |
| // `wrap_copy` and `to_physical_idx`. |
| // |
| // Case 1: if `head_len == 0 && tail_len == 0` |
| // Everything was drained, reset the head index back to 0. |
| // H |
| // [ . . . . . d d d d . . . . . ] |
| // H |
| // [ . . . . . . . . . . . . . . ] |
| // |
| // Case 2: else if `tail_len == 0` |
| // Don't move data or the head index. |
| // H |
| // [ . . . h h h h d d d d . . . ] |
| // H |
| // [ . . . h h h h . . . . . . . ] |
| // |
| // Case 3: else if `head_len == 0` |
| // Don't move data, but move the head index. |
| // H |
| // [ . . . d d d d t t t t . . . ] |
| // H |
| // [ . . . . . . . t t t t . . . ] |
| // |
| // Case 4: else if `tail_len <= head_len` |
| // Move data, but not the head index. |
| // H |
| // [ . . h h h h d d d d t t . . ] |
| // H |
| // [ . . h h h h t t . . . . . . ] |
| // |
| // Case 5: else |
| // Move data and the head index. |
| // H |
| // [ . . h h d d d d t t t t . . ] |
| // H |
| // [ . . . . . . h h t t t t . . ] |
| |
| // When draining at the front (`.drain(..n)`) or at the back (`.drain(n..)`), |
| // we don't need to copy any data. The number of elements copied would be 0. |
| if head_len != 0 && tail_len != 0 { |
| join_head_and_tail_wrapping(source_deque, drain_len, head_len, tail_len); |
| // Marking this function as cold helps LLVM to eliminate it entirely if |
| // this branch is never taken. |
| // We use `#[cold]` instead of `#[inline(never)]`, because inlining this |
| // function into the general case (`.drain(n..m)`) is fine. |
| // See `tests/codegen/vecdeque-drain.rs` for a test. |
| #[cold] |
| fn join_head_and_tail_wrapping<T, A: Allocator>( |
| source_deque: &mut VecDeque<T, A>, |
| drain_len: usize, |
| head_len: usize, |
| tail_len: usize, |
| ) { |
| // Pick whether to move the head or the tail here. |
| let (src, dst, len); |
| if head_len < tail_len { |
| src = source_deque.head; |
| dst = source_deque.to_physical_idx(drain_len); |
| len = head_len; |
| } else { |
| src = source_deque.to_physical_idx(head_len + drain_len); |
| dst = source_deque.to_physical_idx(head_len); |
| len = tail_len; |
| }; |
| |
| unsafe { |
| source_deque.wrap_copy(src, dst, len); |
| } |
| } |
| } |
| |
| if new_len == 0 { |
| // Special case: If the entire dequeue was drained, reset the head back to 0, |
| // like `.clear()` does. |
| source_deque.head = 0; |
| } else if head_len < tail_len { |
| // If we moved the head above, then we need to adjust the head index here. |
| source_deque.head = source_deque.to_physical_idx(drain_len); |
| } |
| source_deque.len = new_len; |
| } |
| } |
| } |
| } |
| |
| #[stable(feature = "drain", since = "1.6.0")] |
| impl<T, A: Allocator> Iterator for Drain<'_, T, A> { |
| type Item = T; |
| |
| #[inline] |
| fn next(&mut self) -> Option<T> { |
| if self.remaining == 0 { |
| return None; |
| } |
| let wrapped_idx = unsafe { self.deque.as_ref().to_physical_idx(self.idx) }; |
| self.idx += 1; |
| self.remaining -= 1; |
| Some(unsafe { self.deque.as_mut().buffer_read(wrapped_idx) }) |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let len = self.remaining; |
| (len, Some(len)) |
| } |
| } |
| |
| #[stable(feature = "drain", since = "1.6.0")] |
| impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> { |
| #[inline] |
| fn next_back(&mut self) -> Option<T> { |
| if self.remaining == 0 { |
| return None; |
| } |
| self.remaining -= 1; |
| let wrapped_idx = unsafe { self.deque.as_ref().to_physical_idx(self.idx + self.remaining) }; |
| Some(unsafe { self.deque.as_mut().buffer_read(wrapped_idx) }) |
| } |
| } |
| |
| #[stable(feature = "drain", since = "1.6.0")] |
| impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {} |
| |
| #[stable(feature = "fused", since = "1.26.0")] |
| impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {} |