| use std::fmt::Debug; |
| |
| use rustc_hir::def_id::DefId; |
| use rustc_hir::lang_items::LangItem; |
| pub use rustc_infer::infer::*; |
| use rustc_macros::extension; |
| use rustc_middle::arena::ArenaAllocatable; |
| use rustc_middle::infer::canonical::{Canonical, CanonicalQueryResponse, QueryResponse}; |
| use rustc_middle::traits::query::NoSolution; |
| use rustc_middle::ty::{self, GenericArg, Ty, TyCtxt, TypeFoldable, TypeVisitableExt, Upcast}; |
| use rustc_span::DUMMY_SP; |
| |
| use crate::infer::at::ToTrace; |
| use crate::traits::query::evaluate_obligation::InferCtxtExt as _; |
| use crate::traits::{self, Obligation, ObligationCause, ObligationCtxt, SelectionContext}; |
| |
| #[extension(pub trait InferCtxtExt<'tcx>)] |
| impl<'tcx> InferCtxt<'tcx> { |
| fn can_eq<T: ToTrace<'tcx>>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool { |
| self.probe(|_| { |
| let ocx = ObligationCtxt::new(self); |
| let Ok(()) = ocx.eq(&ObligationCause::dummy(), param_env, a, b) else { |
| return false; |
| }; |
| ocx.select_where_possible().is_empty() |
| }) |
| } |
| |
| fn type_is_copy_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { |
| let ty = self.resolve_vars_if_possible(ty); |
| |
| if !(param_env, ty).has_infer() { |
| return ty.is_copy_modulo_regions(self.tcx, param_env); |
| } |
| |
| let copy_def_id = self.tcx.require_lang_item(LangItem::Copy, None); |
| |
| // This can get called from typeck (by euv), and `moves_by_default` |
| // rightly refuses to work with inference variables, but |
| // moves_by_default has a cache, which we want to use in other |
| // cases. |
| traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, copy_def_id) |
| } |
| |
| fn type_is_sized_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { |
| let lang_item = self.tcx.require_lang_item(LangItem::Sized, None); |
| traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, lang_item) |
| } |
| |
| /// Check whether a `ty` implements given trait(trait_def_id) without side-effects. |
| /// |
| /// The inputs are: |
| /// |
| /// - the def-id of the trait |
| /// - the type parameters of the trait, including the self-type |
| /// - the parameter environment |
| /// |
| /// Invokes `evaluate_obligation`, so in the event that evaluating |
| /// `Ty: Trait` causes overflow, EvaluatedToAmbigStackDependent will be returned. |
| #[instrument(level = "debug", skip(self, params), ret)] |
| fn type_implements_trait( |
| &self, |
| trait_def_id: DefId, |
| params: impl IntoIterator<Item: Into<GenericArg<'tcx>>>, |
| param_env: ty::ParamEnv<'tcx>, |
| ) -> traits::EvaluationResult { |
| let trait_ref = ty::TraitRef::new(self.tcx, trait_def_id, params); |
| |
| let obligation = traits::Obligation { |
| cause: traits::ObligationCause::dummy(), |
| param_env, |
| recursion_depth: 0, |
| predicate: trait_ref.upcast(self.tcx), |
| }; |
| self.evaluate_obligation(&obligation).unwrap_or(traits::EvaluationResult::EvaluatedToErr) |
| } |
| |
| /// Returns `Some` if a type implements a trait shallowly, without side-effects, |
| /// along with any errors that would have been reported upon further obligation |
| /// processing. |
| /// |
| /// - If this returns `Some([])`, then the trait holds modulo regions. |
| /// - If this returns `Some([errors..])`, then the trait has an impl for |
| /// the self type, but some nested obligations do not hold. |
| /// - If this returns `None`, no implementation that applies could be found. |
| /// |
| /// FIXME(-Znext-solver): Due to the recursive nature of the new solver, |
| /// this will probably only ever return `Some([])` or `None`. |
| fn type_implements_trait_shallow( |
| &self, |
| trait_def_id: DefId, |
| ty: Ty<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ) -> Option<Vec<traits::FulfillmentError<'tcx>>> { |
| self.probe(|_snapshot| { |
| let mut selcx = SelectionContext::new(self); |
| match selcx.select(&Obligation::new( |
| self.tcx, |
| ObligationCause::dummy(), |
| param_env, |
| ty::TraitRef::new(self.tcx, trait_def_id, [ty]), |
| )) { |
| Ok(Some(selection)) => { |
| let ocx = ObligationCtxt::new_with_diagnostics(self); |
| ocx.register_obligations(selection.nested_obligations()); |
| Some(ocx.select_all_or_error()) |
| } |
| Ok(None) | Err(_) => None, |
| } |
| }) |
| } |
| } |
| |
| #[extension(pub trait InferCtxtBuilderExt<'tcx>)] |
| impl<'tcx> InferCtxtBuilder<'tcx> { |
| /// The "main method" for a canonicalized trait query. Given the |
| /// canonical key `canonical_key`, this method will create a new |
| /// inference context, instantiate the key, and run your operation |
| /// `op`. The operation should yield up a result (of type `R`) as |
| /// well as a set of trait obligations that must be fully |
| /// satisfied. These obligations will be processed and the |
| /// canonical result created. |
| /// |
| /// Returns `NoSolution` in the event of any error. |
| /// |
| /// (It might be mildly nicer to implement this on `TyCtxt`, and |
| /// not `InferCtxtBuilder`, but that is a bit tricky right now. |
| /// In part because we would need a `for<'tcx>` sort of |
| /// bound for the closure and in part because it is convenient to |
| /// have `'tcx` be free on this function so that we can talk about |
| /// `K: TypeFoldable<TyCtxt<'tcx>>`.) |
| fn enter_canonical_trait_query<K, R>( |
| self, |
| canonical_key: &Canonical<'tcx, K>, |
| operation: impl FnOnce(&ObligationCtxt<'_, 'tcx>, K) -> Result<R, NoSolution>, |
| ) -> Result<CanonicalQueryResponse<'tcx, R>, NoSolution> |
| where |
| K: TypeFoldable<TyCtxt<'tcx>>, |
| R: Debug + TypeFoldable<TyCtxt<'tcx>>, |
| Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>, |
| { |
| let (infcx, key, canonical_inference_vars) = |
| self.build_with_canonical(DUMMY_SP, canonical_key); |
| let ocx = ObligationCtxt::new(&infcx); |
| let value = operation(&ocx, key)?; |
| ocx.make_canonicalized_query_response(canonical_inference_vars, value) |
| } |
| } |