| use std::cmp; |
| |
| use libc::c_uint; |
| use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue}; |
| use rustc_codegen_ssa::mir::place::{PlaceRef, PlaceValue}; |
| use rustc_codegen_ssa::traits::*; |
| use rustc_codegen_ssa::MemFlags; |
| use rustc_middle::ty::layout::LayoutOf; |
| pub use rustc_middle::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA}; |
| use rustc_middle::ty::Ty; |
| use rustc_middle::{bug, ty}; |
| use rustc_session::config; |
| pub use rustc_target::abi::call::*; |
| use rustc_target::abi::{self, HasDataLayout, Int, Size}; |
| pub use rustc_target::spec::abi::Abi; |
| use rustc_target::spec::SanitizerSet; |
| use smallvec::SmallVec; |
| |
| use crate::attributes::llfn_attrs_from_instance; |
| use crate::builder::Builder; |
| use crate::context::CodegenCx; |
| use crate::llvm::{self, Attribute, AttributePlace}; |
| use crate::type_::Type; |
| use crate::type_of::LayoutLlvmExt; |
| use crate::value::Value; |
| use crate::{attributes, llvm_util}; |
| |
| pub trait ArgAttributesExt { |
| fn apply_attrs_to_llfn(&self, idx: AttributePlace, cx: &CodegenCx<'_, '_>, llfn: &Value); |
| fn apply_attrs_to_callsite( |
| &self, |
| idx: AttributePlace, |
| cx: &CodegenCx<'_, '_>, |
| callsite: &Value, |
| ); |
| } |
| |
| const ABI_AFFECTING_ATTRIBUTES: [(ArgAttribute, llvm::AttributeKind); 1] = |
| [(ArgAttribute::InReg, llvm::AttributeKind::InReg)]; |
| |
| const OPTIMIZATION_ATTRIBUTES: [(ArgAttribute, llvm::AttributeKind); 5] = [ |
| (ArgAttribute::NoAlias, llvm::AttributeKind::NoAlias), |
| (ArgAttribute::NoCapture, llvm::AttributeKind::NoCapture), |
| (ArgAttribute::NonNull, llvm::AttributeKind::NonNull), |
| (ArgAttribute::ReadOnly, llvm::AttributeKind::ReadOnly), |
| (ArgAttribute::NoUndef, llvm::AttributeKind::NoUndef), |
| ]; |
| |
| fn get_attrs<'ll>(this: &ArgAttributes, cx: &CodegenCx<'ll, '_>) -> SmallVec<[&'ll Attribute; 8]> { |
| let mut regular = this.regular; |
| |
| let mut attrs = SmallVec::new(); |
| |
| // ABI-affecting attributes must always be applied |
| for (attr, llattr) in ABI_AFFECTING_ATTRIBUTES { |
| if regular.contains(attr) { |
| attrs.push(llattr.create_attr(cx.llcx)); |
| } |
| } |
| if let Some(align) = this.pointee_align { |
| attrs.push(llvm::CreateAlignmentAttr(cx.llcx, align.bytes())); |
| } |
| match this.arg_ext { |
| ArgExtension::None => {} |
| ArgExtension::Zext => attrs.push(llvm::AttributeKind::ZExt.create_attr(cx.llcx)), |
| ArgExtension::Sext => attrs.push(llvm::AttributeKind::SExt.create_attr(cx.llcx)), |
| } |
| |
| // Only apply remaining attributes when optimizing |
| if cx.sess().opts.optimize != config::OptLevel::No { |
| let deref = this.pointee_size.bytes(); |
| if deref != 0 { |
| if regular.contains(ArgAttribute::NonNull) { |
| attrs.push(llvm::CreateDereferenceableAttr(cx.llcx, deref)); |
| } else { |
| attrs.push(llvm::CreateDereferenceableOrNullAttr(cx.llcx, deref)); |
| } |
| regular -= ArgAttribute::NonNull; |
| } |
| for (attr, llattr) in OPTIMIZATION_ATTRIBUTES { |
| if regular.contains(attr) { |
| attrs.push(llattr.create_attr(cx.llcx)); |
| } |
| } |
| } else if cx.tcx.sess.opts.unstable_opts.sanitizer.contains(SanitizerSet::MEMORY) { |
| // If we're not optimising, *but* memory sanitizer is on, emit noundef, since it affects |
| // memory sanitizer's behavior. |
| |
| if regular.contains(ArgAttribute::NoUndef) { |
| attrs.push(llvm::AttributeKind::NoUndef.create_attr(cx.llcx)); |
| } |
| } |
| |
| attrs |
| } |
| |
| impl ArgAttributesExt for ArgAttributes { |
| fn apply_attrs_to_llfn(&self, idx: AttributePlace, cx: &CodegenCx<'_, '_>, llfn: &Value) { |
| let attrs = get_attrs(self, cx); |
| attributes::apply_to_llfn(llfn, idx, &attrs); |
| } |
| |
| fn apply_attrs_to_callsite( |
| &self, |
| idx: AttributePlace, |
| cx: &CodegenCx<'_, '_>, |
| callsite: &Value, |
| ) { |
| let attrs = get_attrs(self, cx); |
| attributes::apply_to_callsite(callsite, idx, &attrs); |
| } |
| } |
| |
| pub trait LlvmType { |
| fn llvm_type<'ll>(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type; |
| } |
| |
| impl LlvmType for Reg { |
| fn llvm_type<'ll>(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type { |
| match self.kind { |
| RegKind::Integer => cx.type_ix(self.size.bits()), |
| RegKind::Float => match self.size.bits() { |
| 16 => cx.type_f16(), |
| 32 => cx.type_f32(), |
| 64 => cx.type_f64(), |
| 128 => cx.type_f128(), |
| _ => bug!("unsupported float: {:?}", self), |
| }, |
| RegKind::Vector => cx.type_vector(cx.type_i8(), self.size.bytes()), |
| } |
| } |
| } |
| |
| impl LlvmType for CastTarget { |
| fn llvm_type<'ll>(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type { |
| let rest_ll_unit = self.rest.unit.llvm_type(cx); |
| let rest_count = if self.rest.total == Size::ZERO { |
| 0 |
| } else { |
| assert_ne!( |
| self.rest.unit.size, |
| Size::ZERO, |
| "total size {:?} cannot be divided into units of zero size", |
| self.rest.total |
| ); |
| if self.rest.total.bytes() % self.rest.unit.size.bytes() != 0 { |
| assert_eq!(self.rest.unit.kind, RegKind::Integer, "only int regs can be split"); |
| } |
| self.rest.total.bytes().div_ceil(self.rest.unit.size.bytes()) |
| }; |
| |
| // Simplify to a single unit or an array if there's no prefix. |
| // This produces the same layout, but using a simpler type. |
| if self.prefix.iter().all(|x| x.is_none()) { |
| // We can't do this if is_consecutive is set and the unit would get |
| // split on the target. Currently, this is only relevant for i128 |
| // registers. |
| if rest_count == 1 && (!self.rest.is_consecutive || self.rest.unit != Reg::i128()) { |
| return rest_ll_unit; |
| } |
| |
| return cx.type_array(rest_ll_unit, rest_count); |
| } |
| |
| // Generate a struct type with the prefix and the "rest" arguments. |
| let prefix_args = |
| self.prefix.iter().flat_map(|option_reg| option_reg.map(|reg| reg.llvm_type(cx))); |
| let rest_args = (0..rest_count).map(|_| rest_ll_unit); |
| let args: Vec<_> = prefix_args.chain(rest_args).collect(); |
| cx.type_struct(&args, false) |
| } |
| } |
| |
| pub trait ArgAbiExt<'ll, 'tcx> { |
| fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type; |
| fn store( |
| &self, |
| bx: &mut Builder<'_, 'll, 'tcx>, |
| val: &'ll Value, |
| dst: PlaceRef<'tcx, &'ll Value>, |
| ); |
| fn store_fn_arg( |
| &self, |
| bx: &mut Builder<'_, 'll, 'tcx>, |
| idx: &mut usize, |
| dst: PlaceRef<'tcx, &'ll Value>, |
| ); |
| } |
| |
| impl<'ll, 'tcx> ArgAbiExt<'ll, 'tcx> for ArgAbi<'tcx, Ty<'tcx>> { |
| /// Gets the LLVM type for a place of the original Rust type of |
| /// this argument/return, i.e., the result of `type_of::type_of`. |
| fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type { |
| self.layout.llvm_type(cx) |
| } |
| |
| /// Stores a direct/indirect value described by this ArgAbi into a |
| /// place for the original Rust type of this argument/return. |
| /// Can be used for both storing formal arguments into Rust variables |
| /// or results of call/invoke instructions into their destinations. |
| fn store( |
| &self, |
| bx: &mut Builder<'_, 'll, 'tcx>, |
| val: &'ll Value, |
| dst: PlaceRef<'tcx, &'ll Value>, |
| ) { |
| match &self.mode { |
| PassMode::Ignore => {} |
| // Sized indirect arguments |
| PassMode::Indirect { attrs, meta_attrs: None, on_stack: _ } => { |
| let align = attrs.pointee_align.unwrap_or(self.layout.align.abi); |
| OperandValue::Ref(PlaceValue::new_sized(val, align)).store(bx, dst); |
| } |
| // Unsized indirect qrguments |
| PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => { |
| bug!("unsized `ArgAbi` must be handled through `store_fn_arg`"); |
| } |
| PassMode::Cast { cast, pad_i32: _ } => { |
| // The ABI mandates that the value is passed as a different struct representation. |
| // Spill and reload it from the stack to convert from the ABI representation to |
| // the Rust representation. |
| let scratch_size = cast.size(bx); |
| let scratch_align = cast.align(bx); |
| // Note that the ABI type may be either larger or smaller than the Rust type, |
| // due to the presence or absence of trailing padding. For example: |
| // - On some ABIs, the Rust layout { f64, f32, <f32 padding> } may omit padding |
| // when passed by value, making it smaller. |
| // - On some ABIs, the Rust layout { u16, u16, u16 } may be padded up to 8 bytes |
| // when passed by value, making it larger. |
| let copy_bytes = |
| cmp::min(cast.unaligned_size(bx).bytes(), self.layout.size.bytes()); |
| // Allocate some scratch space... |
| let llscratch = bx.alloca(scratch_size, scratch_align); |
| bx.lifetime_start(llscratch, scratch_size); |
| // ...store the value... |
| bx.store(val, llscratch, scratch_align); |
| // ... and then memcpy it to the intended destination. |
| bx.memcpy( |
| dst.val.llval, |
| self.layout.align.abi, |
| llscratch, |
| scratch_align, |
| bx.const_usize(copy_bytes), |
| MemFlags::empty(), |
| ); |
| bx.lifetime_end(llscratch, scratch_size); |
| } |
| _ => { |
| OperandRef::from_immediate_or_packed_pair(bx, val, self.layout).val.store(bx, dst); |
| } |
| } |
| } |
| |
| fn store_fn_arg( |
| &self, |
| bx: &mut Builder<'_, 'll, 'tcx>, |
| idx: &mut usize, |
| dst: PlaceRef<'tcx, &'ll Value>, |
| ) { |
| let mut next = || { |
| let val = llvm::get_param(bx.llfn(), *idx as c_uint); |
| *idx += 1; |
| val |
| }; |
| match self.mode { |
| PassMode::Ignore => {} |
| PassMode::Pair(..) => { |
| OperandValue::Pair(next(), next()).store(bx, dst); |
| } |
| PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => { |
| let place_val = PlaceValue { |
| llval: next(), |
| llextra: Some(next()), |
| align: self.layout.align.abi, |
| }; |
| OperandValue::Ref(place_val).store(bx, dst); |
| } |
| PassMode::Direct(_) |
| | PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ } |
| | PassMode::Cast { .. } => { |
| let next_arg = next(); |
| self.store(bx, next_arg, dst); |
| } |
| } |
| } |
| } |
| |
| impl<'ll, 'tcx> ArgAbiMethods<'tcx> for Builder<'_, 'll, 'tcx> { |
| fn store_fn_arg( |
| &mut self, |
| arg_abi: &ArgAbi<'tcx, Ty<'tcx>>, |
| idx: &mut usize, |
| dst: PlaceRef<'tcx, Self::Value>, |
| ) { |
| arg_abi.store_fn_arg(self, idx, dst) |
| } |
| fn store_arg( |
| &mut self, |
| arg_abi: &ArgAbi<'tcx, Ty<'tcx>>, |
| val: &'ll Value, |
| dst: PlaceRef<'tcx, &'ll Value>, |
| ) { |
| arg_abi.store(self, val, dst) |
| } |
| fn arg_memory_ty(&self, arg_abi: &ArgAbi<'tcx, Ty<'tcx>>) -> &'ll Type { |
| arg_abi.memory_ty(self) |
| } |
| } |
| |
| pub trait FnAbiLlvmExt<'ll, 'tcx> { |
| fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type; |
| fn ptr_to_llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type; |
| fn llvm_cconv(&self) -> llvm::CallConv; |
| |
| /// Apply attributes to a function declaration/definition. |
| fn apply_attrs_llfn( |
| &self, |
| cx: &CodegenCx<'ll, 'tcx>, |
| llfn: &'ll Value, |
| instance: Option<ty::Instance<'tcx>>, |
| ); |
| |
| /// Apply attributes to a function call. |
| fn apply_attrs_callsite(&self, bx: &mut Builder<'_, 'll, 'tcx>, callsite: &'ll Value); |
| } |
| |
| impl<'ll, 'tcx> FnAbiLlvmExt<'ll, 'tcx> for FnAbi<'tcx, Ty<'tcx>> { |
| fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type { |
| // Ignore "extra" args from the call site for C variadic functions. |
| // Only the "fixed" args are part of the LLVM function signature. |
| let args = |
| if self.c_variadic { &self.args[..self.fixed_count as usize] } else { &self.args }; |
| |
| // This capacity calculation is approximate. |
| let mut llargument_tys = Vec::with_capacity( |
| self.args.len() + if let PassMode::Indirect { .. } = self.ret.mode { 1 } else { 0 }, |
| ); |
| |
| let llreturn_ty = match &self.ret.mode { |
| PassMode::Ignore => cx.type_void(), |
| PassMode::Direct(_) | PassMode::Pair(..) => self.ret.layout.immediate_llvm_type(cx), |
| PassMode::Cast { cast, pad_i32: _ } => cast.llvm_type(cx), |
| PassMode::Indirect { .. } => { |
| llargument_tys.push(cx.type_ptr()); |
| cx.type_void() |
| } |
| }; |
| |
| for arg in args { |
| // Note that the exact number of arguments pushed here is carefully synchronized with |
| // code all over the place, both in the codegen_llvm and codegen_ssa crates. That's how |
| // other code then knows which LLVM argument(s) correspond to the n-th Rust argument. |
| let llarg_ty = match &arg.mode { |
| PassMode::Ignore => continue, |
| PassMode::Direct(_) => { |
| // ABI-compatible Rust types have the same `layout.abi` (up to validity ranges), |
| // and for Scalar ABIs the LLVM type is fully determined by `layout.abi`, |
| // guaranteeing that we generate ABI-compatible LLVM IR. |
| arg.layout.immediate_llvm_type(cx) |
| } |
| PassMode::Pair(..) => { |
| // ABI-compatible Rust types have the same `layout.abi` (up to validity ranges), |
| // so for ScalarPair we can easily be sure that we are generating ABI-compatible |
| // LLVM IR. |
| llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 0, true)); |
| llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 1, true)); |
| continue; |
| } |
| PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => { |
| // Construct the type of a (wide) pointer to `ty`, and pass its two fields. |
| // Any two ABI-compatible unsized types have the same metadata type and |
| // moreover the same metadata value leads to the same dynamic size and |
| // alignment, so this respects ABI compatibility. |
| let ptr_ty = Ty::new_mut_ptr(cx.tcx, arg.layout.ty); |
| let ptr_layout = cx.layout_of(ptr_ty); |
| llargument_tys.push(ptr_layout.scalar_pair_element_llvm_type(cx, 0, true)); |
| llargument_tys.push(ptr_layout.scalar_pair_element_llvm_type(cx, 1, true)); |
| continue; |
| } |
| PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ } => cx.type_ptr(), |
| PassMode::Cast { cast, pad_i32 } => { |
| // add padding |
| if *pad_i32 { |
| llargument_tys.push(Reg::i32().llvm_type(cx)); |
| } |
| // Compute the LLVM type we use for this function from the cast type. |
| // We assume here that ABI-compatible Rust types have the same cast type. |
| cast.llvm_type(cx) |
| } |
| }; |
| llargument_tys.push(llarg_ty); |
| } |
| |
| if self.c_variadic { |
| cx.type_variadic_func(&llargument_tys, llreturn_ty) |
| } else { |
| cx.type_func(&llargument_tys, llreturn_ty) |
| } |
| } |
| |
| fn ptr_to_llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type { |
| cx.type_ptr_ext(cx.data_layout().instruction_address_space) |
| } |
| |
| fn llvm_cconv(&self) -> llvm::CallConv { |
| self.conv.into() |
| } |
| |
| fn apply_attrs_llfn( |
| &self, |
| cx: &CodegenCx<'ll, 'tcx>, |
| llfn: &'ll Value, |
| instance: Option<ty::Instance<'tcx>>, |
| ) { |
| let mut func_attrs = SmallVec::<[_; 3]>::new(); |
| if self.ret.layout.abi.is_uninhabited() { |
| func_attrs.push(llvm::AttributeKind::NoReturn.create_attr(cx.llcx)); |
| } |
| if !self.can_unwind { |
| func_attrs.push(llvm::AttributeKind::NoUnwind.create_attr(cx.llcx)); |
| } |
| if let Conv::RiscvInterrupt { kind } = self.conv { |
| func_attrs.push(llvm::CreateAttrStringValue(cx.llcx, "interrupt", kind.as_str())); |
| } |
| attributes::apply_to_llfn(llfn, llvm::AttributePlace::Function, &{ func_attrs }); |
| |
| let mut i = 0; |
| let mut apply = |attrs: &ArgAttributes| { |
| attrs.apply_attrs_to_llfn(llvm::AttributePlace::Argument(i), cx, llfn); |
| i += 1; |
| i - 1 |
| }; |
| |
| let apply_range_attr = |idx: AttributePlace, scalar: rustc_target::abi::Scalar| { |
| if cx.sess().opts.optimize != config::OptLevel::No |
| && llvm_util::get_version() >= (19, 0, 0) |
| && matches!(scalar.primitive(), Int(..)) |
| // If the value is a boolean, the range is 0..2 and that ultimately |
| // become 0..0 when the type becomes i1, which would be rejected |
| // by the LLVM verifier. |
| && !scalar.is_bool() |
| // LLVM also rejects full range. |
| && !scalar.is_always_valid(cx) |
| { |
| attributes::apply_to_llfn( |
| llfn, |
| idx, |
| &[llvm::CreateRangeAttr(cx.llcx, scalar.size(cx), scalar.valid_range(cx))], |
| ); |
| } |
| }; |
| |
| match &self.ret.mode { |
| PassMode::Direct(attrs) => { |
| attrs.apply_attrs_to_llfn(llvm::AttributePlace::ReturnValue, cx, llfn); |
| if let abi::Abi::Scalar(scalar) = self.ret.layout.abi { |
| apply_range_attr(llvm::AttributePlace::ReturnValue, scalar); |
| } |
| } |
| PassMode::Indirect { attrs, meta_attrs: _, on_stack } => { |
| assert!(!on_stack); |
| let i = apply(attrs); |
| let sret = llvm::CreateStructRetAttr( |
| cx.llcx, |
| cx.type_array(cx.type_i8(), self.ret.layout.size.bytes()), |
| ); |
| attributes::apply_to_llfn(llfn, llvm::AttributePlace::Argument(i), &[sret]); |
| if cx.sess().opts.optimize != config::OptLevel::No |
| && llvm_util::get_version() >= (18, 0, 0) |
| { |
| attributes::apply_to_llfn( |
| llfn, |
| llvm::AttributePlace::Argument(i), |
| &[ |
| llvm::AttributeKind::Writable.create_attr(cx.llcx), |
| llvm::AttributeKind::DeadOnUnwind.create_attr(cx.llcx), |
| ], |
| ); |
| } |
| } |
| PassMode::Cast { cast, pad_i32: _ } => { |
| cast.attrs.apply_attrs_to_llfn(llvm::AttributePlace::ReturnValue, cx, llfn); |
| } |
| _ => {} |
| } |
| for arg in self.args.iter() { |
| match &arg.mode { |
| PassMode::Ignore => {} |
| PassMode::Indirect { attrs, meta_attrs: None, on_stack: true } => { |
| let i = apply(attrs); |
| let byval = llvm::CreateByValAttr( |
| cx.llcx, |
| cx.type_array(cx.type_i8(), arg.layout.size.bytes()), |
| ); |
| attributes::apply_to_llfn(llfn, llvm::AttributePlace::Argument(i), &[byval]); |
| } |
| PassMode::Direct(attrs) => { |
| let i = apply(attrs); |
| if let abi::Abi::Scalar(scalar) = arg.layout.abi { |
| apply_range_attr(llvm::AttributePlace::Argument(i), scalar); |
| } |
| } |
| PassMode::Indirect { attrs, meta_attrs: None, on_stack: false } => { |
| apply(attrs); |
| } |
| PassMode::Indirect { attrs, meta_attrs: Some(meta_attrs), on_stack } => { |
| assert!(!on_stack); |
| apply(attrs); |
| apply(meta_attrs); |
| } |
| PassMode::Pair(a, b) => { |
| let i = apply(a); |
| let ii = apply(b); |
| if let abi::Abi::ScalarPair(scalar_a, scalar_b) = arg.layout.abi { |
| apply_range_attr(llvm::AttributePlace::Argument(i), scalar_a); |
| apply_range_attr(llvm::AttributePlace::Argument(ii), scalar_b); |
| } |
| } |
| PassMode::Cast { cast, pad_i32 } => { |
| if *pad_i32 { |
| apply(&ArgAttributes::new()); |
| } |
| apply(&cast.attrs); |
| } |
| } |
| } |
| |
| // If the declaration has an associated instance, compute extra attributes based on that. |
| if let Some(instance) = instance { |
| llfn_attrs_from_instance(cx, llfn, instance); |
| } |
| } |
| |
| fn apply_attrs_callsite(&self, bx: &mut Builder<'_, 'll, 'tcx>, callsite: &'ll Value) { |
| let mut func_attrs = SmallVec::<[_; 2]>::new(); |
| if self.ret.layout.abi.is_uninhabited() { |
| func_attrs.push(llvm::AttributeKind::NoReturn.create_attr(bx.cx.llcx)); |
| } |
| if !self.can_unwind { |
| func_attrs.push(llvm::AttributeKind::NoUnwind.create_attr(bx.cx.llcx)); |
| } |
| attributes::apply_to_callsite(callsite, llvm::AttributePlace::Function, &{ func_attrs }); |
| |
| let mut i = 0; |
| let mut apply = |cx: &CodegenCx<'_, '_>, attrs: &ArgAttributes| { |
| attrs.apply_attrs_to_callsite(llvm::AttributePlace::Argument(i), cx, callsite); |
| i += 1; |
| i - 1 |
| }; |
| match &self.ret.mode { |
| PassMode::Direct(attrs) => { |
| attrs.apply_attrs_to_callsite(llvm::AttributePlace::ReturnValue, bx.cx, callsite); |
| } |
| PassMode::Indirect { attrs, meta_attrs: _, on_stack } => { |
| assert!(!on_stack); |
| let i = apply(bx.cx, attrs); |
| let sret = llvm::CreateStructRetAttr( |
| bx.cx.llcx, |
| bx.cx.type_array(bx.cx.type_i8(), self.ret.layout.size.bytes()), |
| ); |
| attributes::apply_to_callsite(callsite, llvm::AttributePlace::Argument(i), &[sret]); |
| } |
| PassMode::Cast { cast, pad_i32: _ } => { |
| cast.attrs.apply_attrs_to_callsite( |
| llvm::AttributePlace::ReturnValue, |
| bx.cx, |
| callsite, |
| ); |
| } |
| _ => {} |
| } |
| if bx.cx.sess().opts.optimize != config::OptLevel::No |
| && llvm_util::get_version() < (19, 0, 0) |
| && let abi::Abi::Scalar(scalar) = self.ret.layout.abi |
| && matches!(scalar.primitive(), Int(..)) |
| // If the value is a boolean, the range is 0..2 and that ultimately |
| // become 0..0 when the type becomes i1, which would be rejected |
| // by the LLVM verifier. |
| && !scalar.is_bool() |
| // LLVM also rejects full range. |
| && !scalar.is_always_valid(bx) |
| { |
| bx.range_metadata(callsite, scalar.valid_range(bx)); |
| } |
| for arg in self.args.iter() { |
| match &arg.mode { |
| PassMode::Ignore => {} |
| PassMode::Indirect { attrs, meta_attrs: None, on_stack: true } => { |
| let i = apply(bx.cx, attrs); |
| let byval = llvm::CreateByValAttr( |
| bx.cx.llcx, |
| bx.cx.type_array(bx.cx.type_i8(), arg.layout.size.bytes()), |
| ); |
| attributes::apply_to_callsite( |
| callsite, |
| llvm::AttributePlace::Argument(i), |
| &[byval], |
| ); |
| } |
| PassMode::Direct(attrs) |
| | PassMode::Indirect { attrs, meta_attrs: None, on_stack: false } => { |
| apply(bx.cx, attrs); |
| } |
| PassMode::Indirect { attrs, meta_attrs: Some(meta_attrs), on_stack: _ } => { |
| apply(bx.cx, attrs); |
| apply(bx.cx, meta_attrs); |
| } |
| PassMode::Pair(a, b) => { |
| apply(bx.cx, a); |
| apply(bx.cx, b); |
| } |
| PassMode::Cast { cast, pad_i32 } => { |
| if *pad_i32 { |
| apply(bx.cx, &ArgAttributes::new()); |
| } |
| apply(bx.cx, &cast.attrs); |
| } |
| } |
| } |
| |
| let cconv = self.llvm_cconv(); |
| if cconv != llvm::CCallConv { |
| llvm::SetInstructionCallConv(callsite, cconv); |
| } |
| |
| if self.conv == Conv::CCmseNonSecureCall { |
| // This will probably get ignored on all targets but those supporting the TrustZone-M |
| // extension (thumbv8m targets). |
| let cmse_nonsecure_call = llvm::CreateAttrString(bx.cx.llcx, "cmse_nonsecure_call"); |
| attributes::apply_to_callsite( |
| callsite, |
| llvm::AttributePlace::Function, |
| &[cmse_nonsecure_call], |
| ); |
| } |
| |
| // Some intrinsics require that an elementtype attribute (with the pointee type of a |
| // pointer argument) is added to the callsite. |
| let element_type_index = unsafe { llvm::LLVMRustGetElementTypeArgIndex(callsite) }; |
| if element_type_index >= 0 { |
| let arg_ty = self.args[element_type_index as usize].layout.ty; |
| let pointee_ty = arg_ty.builtin_deref(true).expect("Must be pointer argument"); |
| let element_type_attr = unsafe { |
| llvm::LLVMRustCreateElementTypeAttr(bx.llcx, bx.layout_of(pointee_ty).llvm_type(bx)) |
| }; |
| attributes::apply_to_callsite( |
| callsite, |
| llvm::AttributePlace::Argument(element_type_index as u32), |
| &[element_type_attr], |
| ); |
| } |
| } |
| } |
| |
| impl<'tcx> AbiBuilderMethods<'tcx> for Builder<'_, '_, 'tcx> { |
| fn get_param(&mut self, index: usize) -> Self::Value { |
| llvm::get_param(self.llfn(), index as c_uint) |
| } |
| } |
| |
| impl From<Conv> for llvm::CallConv { |
| fn from(conv: Conv) -> Self { |
| match conv { |
| Conv::C | Conv::Rust | Conv::CCmseNonSecureCall | Conv::RiscvInterrupt { .. } => { |
| llvm::CCallConv |
| } |
| Conv::Cold => llvm::ColdCallConv, |
| Conv::PreserveMost => llvm::PreserveMost, |
| Conv::PreserveAll => llvm::PreserveAll, |
| Conv::AvrInterrupt => llvm::AvrInterrupt, |
| Conv::AvrNonBlockingInterrupt => llvm::AvrNonBlockingInterrupt, |
| Conv::ArmAapcs => llvm::ArmAapcsCallConv, |
| Conv::Msp430Intr => llvm::Msp430Intr, |
| Conv::PtxKernel => llvm::PtxKernel, |
| Conv::X86Fastcall => llvm::X86FastcallCallConv, |
| Conv::X86Intr => llvm::X86_Intr, |
| Conv::X86Stdcall => llvm::X86StdcallCallConv, |
| Conv::X86ThisCall => llvm::X86_ThisCall, |
| Conv::X86VectorCall => llvm::X86_VectorCall, |
| Conv::X86_64SysV => llvm::X86_64_SysV, |
| Conv::X86_64Win64 => llvm::X86_64_Win64, |
| } |
| } |
| } |