blob: 00f0672822fc119a5feea7945fff7bb6d908044b [file] [log] [blame]
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! See `README.md` for high-level documentation
use self::SelectionCandidate::*;
use self::EvaluationResult::*;
use super::coherence;
use super::DerivedObligationCause;
use super::project;
use super::project::{normalize_with_depth, Normalized, ProjectionCacheKey};
use super::{PredicateObligation, TraitObligation, ObligationCause};
use super::{ObligationCauseCode, BuiltinDerivedObligation, ImplDerivedObligation};
use super::{SelectionError, Unimplemented, OutputTypeParameterMismatch};
use super::{ObjectCastObligation, Obligation};
use super::TraitNotObjectSafe;
use super::Selection;
use super::SelectionResult;
use super::{VtableBuiltin, VtableImpl, VtableParam, VtableClosure, VtableGenerator,
VtableFnPointer, VtableObject, VtableDefaultImpl};
use super::{VtableImplData, VtableObjectData, VtableBuiltinData, VtableGeneratorData,
VtableClosureData, VtableDefaultImplData, VtableFnPointerData};
use super::util;
use dep_graph::{DepNodeIndex, DepKind};
use hir::def_id::DefId;
use infer;
use infer::{InferCtxt, InferOk, TypeFreshener};
use ty::subst::{Kind, Subst, Substs};
use ty::{self, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
use ty::fast_reject;
use ty::relate::TypeRelation;
use middle::lang_items;
use rustc_data_structures::bitvec::BitVector;
use rustc_data_structures::snapshot_vec::{SnapshotVecDelegate, SnapshotVec};
use std::iter;
use std::cell::RefCell;
use std::cmp;
use std::fmt;
use std::marker::PhantomData;
use std::mem;
use std::rc::Rc;
use syntax::abi::Abi;
use hir;
use lint;
use util::nodemap::FxHashMap;
struct InferredObligationsSnapshotVecDelegate<'tcx> {
phantom: PhantomData<&'tcx i32>,
}
impl<'tcx> SnapshotVecDelegate for InferredObligationsSnapshotVecDelegate<'tcx> {
type Value = PredicateObligation<'tcx>;
type Undo = ();
fn reverse(_: &mut Vec<Self::Value>, _: Self::Undo) {}
}
pub struct SelectionContext<'cx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
/// Freshener used specifically for skolemizing entries on the
/// obligation stack. This ensures that all entries on the stack
/// at one time will have the same set of skolemized entries,
/// which is important for checking for trait bounds that
/// recursively require themselves.
freshener: TypeFreshener<'cx, 'gcx, 'tcx>,
/// If true, indicates that the evaluation should be conservative
/// and consider the possibility of types outside this crate.
/// This comes up primarily when resolving ambiguity. Imagine
/// there is some trait reference `$0 : Bar` where `$0` is an
/// inference variable. If `intercrate` is true, then we can never
/// say for sure that this reference is not implemented, even if
/// there are *no impls at all for `Bar`*, because `$0` could be
/// bound to some type that in a downstream crate that implements
/// `Bar`. This is the suitable mode for coherence. Elsewhere,
/// though, we set this to false, because we are only interested
/// in types that the user could actually have written --- in
/// other words, we consider `$0 : Bar` to be unimplemented if
/// there is no type that the user could *actually name* that
/// would satisfy it. This avoids crippling inference, basically.
intercrate: bool,
inferred_obligations: SnapshotVec<InferredObligationsSnapshotVecDelegate<'tcx>>,
intercrate_ambiguity_causes: Vec<IntercrateAmbiguityCause>,
}
#[derive(Clone)]
pub enum IntercrateAmbiguityCause {
DownstreamCrate {
trait_desc: String,
self_desc: Option<String>,
},
UpstreamCrateUpdate {
trait_desc: String,
self_desc: Option<String>,
},
}
impl IntercrateAmbiguityCause {
/// Emits notes when the overlap is caused by complex intercrate ambiguities.
/// See #23980 for details.
pub fn add_intercrate_ambiguity_hint<'a, 'tcx>(&self,
err: &mut ::errors::DiagnosticBuilder) {
match self {
&IntercrateAmbiguityCause::DownstreamCrate { ref trait_desc, ref self_desc } => {
let self_desc = if let &Some(ref ty) = self_desc {
format!(" for type `{}`", ty)
} else { "".to_string() };
err.note(&format!("downstream crates may implement trait `{}`{}",
trait_desc, self_desc));
}
&IntercrateAmbiguityCause::UpstreamCrateUpdate { ref trait_desc, ref self_desc } => {
let self_desc = if let &Some(ref ty) = self_desc {
format!(" for type `{}`", ty)
} else { "".to_string() };
err.note(&format!("upstream crates may add new impl of trait `{}`{} \
in future versions",
trait_desc, self_desc));
}
}
}
}
// A stack that walks back up the stack frame.
struct TraitObligationStack<'prev, 'tcx: 'prev> {
obligation: &'prev TraitObligation<'tcx>,
/// Trait ref from `obligation` but skolemized with the
/// selection-context's freshener. Used to check for recursion.
fresh_trait_ref: ty::PolyTraitRef<'tcx>,
previous: TraitObligationStackList<'prev, 'tcx>,
}
#[derive(Clone)]
pub struct SelectionCache<'tcx> {
hashmap: RefCell<FxHashMap<ty::TraitRef<'tcx>,
WithDepNode<SelectionResult<'tcx, SelectionCandidate<'tcx>>>>>,
}
/// The selection process begins by considering all impls, where
/// clauses, and so forth that might resolve an obligation. Sometimes
/// we'll be able to say definitively that (e.g.) an impl does not
/// apply to the obligation: perhaps it is defined for `usize` but the
/// obligation is for `int`. In that case, we drop the impl out of the
/// list. But the other cases are considered *candidates*.
///
/// For selection to succeed, there must be exactly one matching
/// candidate. If the obligation is fully known, this is guaranteed
/// by coherence. However, if the obligation contains type parameters
/// or variables, there may be multiple such impls.
///
/// It is not a real problem if multiple matching impls exist because
/// of type variables - it just means the obligation isn't sufficiently
/// elaborated. In that case we report an ambiguity, and the caller can
/// try again after more type information has been gathered or report a
/// "type annotations required" error.
///
/// However, with type parameters, this can be a real problem - type
/// parameters don't unify with regular types, but they *can* unify
/// with variables from blanket impls, and (unless we know its bounds
/// will always be satisfied) picking the blanket impl will be wrong
/// for at least *some* substitutions. To make this concrete, if we have
///
/// trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
/// impl<T: fmt::Debug> AsDebug for T {
/// type Out = T;
/// fn debug(self) -> fmt::Debug { self }
/// }
/// fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
///
/// we can't just use the impl to resolve the <T as AsDebug> obligation
/// - a type from another crate (that doesn't implement fmt::Debug) could
/// implement AsDebug.
///
/// Because where-clauses match the type exactly, multiple clauses can
/// only match if there are unresolved variables, and we can mostly just
/// report this ambiguity in that case. This is still a problem - we can't
/// *do anything* with ambiguities that involve only regions. This is issue
/// #21974.
///
/// If a single where-clause matches and there are no inference
/// variables left, then it definitely matches and we can just select
/// it.
///
/// In fact, we even select the where-clause when the obligation contains
/// inference variables. The can lead to inference making "leaps of logic",
/// for example in this situation:
///
/// pub trait Foo<T> { fn foo(&self) -> T; }
/// impl<T> Foo<()> for T { fn foo(&self) { } }
/// impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
///
/// pub fn foo<T>(t: T) where T: Foo<bool> {
/// println!("{:?}", <T as Foo<_>>::foo(&t));
/// }
/// fn main() { foo(false); }
///
/// Here the obligation <T as Foo<$0>> can be matched by both the blanket
/// impl and the where-clause. We select the where-clause and unify $0=bool,
/// so the program prints "false". However, if the where-clause is omitted,
/// the blanket impl is selected, we unify $0=(), and the program prints
/// "()".
///
/// Exactly the same issues apply to projection and object candidates, except
/// that we can have both a projection candidate and a where-clause candidate
/// for the same obligation. In that case either would do (except that
/// different "leaps of logic" would occur if inference variables are
/// present), and we just pick the where-clause. This is, for example,
/// required for associated types to work in default impls, as the bounds
/// are visible both as projection bounds and as where-clauses from the
/// parameter environment.
#[derive(PartialEq,Eq,Debug,Clone)]
enum SelectionCandidate<'tcx> {
BuiltinCandidate { has_nested: bool },
ParamCandidate(ty::PolyTraitRef<'tcx>),
ImplCandidate(DefId),
DefaultImplCandidate(DefId),
/// This is a trait matching with a projected type as `Self`, and
/// we found an applicable bound in the trait definition.
ProjectionCandidate,
/// Implementation of a `Fn`-family trait by one of the anonymous types
/// generated for a `||` expression.
ClosureCandidate,
/// Implementation of a `Generator` trait by one of the anonymous types
/// generated for a generator.
GeneratorCandidate,
/// Implementation of a `Fn`-family trait by one of the anonymous
/// types generated for a fn pointer type (e.g., `fn(int)->int`)
FnPointerCandidate,
ObjectCandidate,
BuiltinObjectCandidate,
BuiltinUnsizeCandidate,
}
impl<'a, 'tcx> ty::Lift<'tcx> for SelectionCandidate<'a> {
type Lifted = SelectionCandidate<'tcx>;
fn lift_to_tcx<'b, 'gcx>(&self, tcx: TyCtxt<'b, 'gcx, 'tcx>) -> Option<Self::Lifted> {
Some(match *self {
BuiltinCandidate { has_nested } => {
BuiltinCandidate {
has_nested,
}
}
ImplCandidate(def_id) => ImplCandidate(def_id),
DefaultImplCandidate(def_id) => DefaultImplCandidate(def_id),
ProjectionCandidate => ProjectionCandidate,
FnPointerCandidate => FnPointerCandidate,
ObjectCandidate => ObjectCandidate,
BuiltinObjectCandidate => BuiltinObjectCandidate,
BuiltinUnsizeCandidate => BuiltinUnsizeCandidate,
ClosureCandidate => ClosureCandidate,
GeneratorCandidate => GeneratorCandidate,
ParamCandidate(ref trait_ref) => {
return tcx.lift(trait_ref).map(ParamCandidate);
}
})
}
}
struct SelectionCandidateSet<'tcx> {
// a list of candidates that definitely apply to the current
// obligation (meaning: types unify).
vec: Vec<SelectionCandidate<'tcx>>,
// if this is true, then there were candidates that might or might
// not have applied, but we couldn't tell. This occurs when some
// of the input types are type variables, in which case there are
// various "builtin" rules that might or might not trigger.
ambiguous: bool,
}
#[derive(PartialEq,Eq,Debug,Clone)]
struct EvaluatedCandidate<'tcx> {
candidate: SelectionCandidate<'tcx>,
evaluation: EvaluationResult,
}
/// When does the builtin impl for `T: Trait` apply?
enum BuiltinImplConditions<'tcx> {
/// The impl is conditional on T1,T2,.. : Trait
Where(ty::Binder<Vec<Ty<'tcx>>>),
/// There is no built-in impl. There may be some other
/// candidate (a where-clause or user-defined impl).
None,
/// There is *no* impl for this, builtin or not. Ignore
/// all where-clauses.
Never,
/// It is unknown whether there is an impl.
Ambiguous
}
#[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
/// The result of trait evaluation. The order is important
/// here as the evaluation of a list is the maximum of the
/// evaluations.
///
/// The evaluation results are ordered:
/// - `EvaluatedToOk` implies `EvaluatedToAmbig` implies `EvaluatedToUnknown`
/// - `EvaluatedToErr` implies `EvaluatedToRecur`
/// - the "union" of evaluation results is equal to their maximum -
/// all the "potential success" candidates can potentially succeed,
/// so they are no-ops when unioned with a definite error, and within
/// the categories it's easy to see that the unions are correct.
enum EvaluationResult {
/// Evaluation successful
EvaluatedToOk,
/// Evaluation is known to be ambiguous - it *might* hold for some
/// assignment of inference variables, but it might not.
///
/// While this has the same meaning as `EvaluatedToUnknown` - we can't
/// know whether this obligation holds or not - it is the result we
/// would get with an empty stack, and therefore is cacheable.
EvaluatedToAmbig,
/// Evaluation failed because of recursion involving inference
/// variables. We are somewhat imprecise there, so we don't actually
/// know the real result.
///
/// This can't be trivially cached for the same reason as `EvaluatedToRecur`.
EvaluatedToUnknown,
/// Evaluation failed because we encountered an obligation we are already
/// trying to prove on this branch.
///
/// We know this branch can't be a part of a minimal proof-tree for
/// the "root" of our cycle, because then we could cut out the recursion
/// and maintain a valid proof tree. However, this does not mean
/// that all the obligations on this branch do not hold - it's possible
/// that we entered this branch "speculatively", and that there
/// might be some other way to prove this obligation that does not
/// go through this cycle - so we can't cache this as a failure.
///
/// For example, suppose we have this:
///
/// ```rust,ignore (pseudo-Rust)
/// pub trait Trait { fn xyz(); }
/// // This impl is "useless", but we can still have
/// // an `impl Trait for SomeUnsizedType` somewhere.
/// impl<T: Trait + Sized> Trait for T { fn xyz() {} }
///
/// pub fn foo<T: Trait + ?Sized>() {
/// <T as Trait>::xyz();
/// }
/// ```
///
/// When checking `foo`, we have to prove `T: Trait`. This basically
/// translates into this:
///
/// (T: Trait + Sized →_\impl T: Trait), T: Trait ⊢ T: Trait
///
/// When we try to prove it, we first go the first option, which
/// recurses. This shows us that the impl is "useless" - it won't
/// tell us that `T: Trait` unless it already implemented `Trait`
/// by some other means. However, that does not prevent `T: Trait`
/// does not hold, because of the bound (which can indeed be satisfied
/// by `SomeUnsizedType` from another crate).
///
/// FIXME: when an `EvaluatedToRecur` goes past its parent root, we
/// ought to convert it to an `EvaluatedToErr`, because we know
/// there definitely isn't a proof tree for that obligation. Not
/// doing so is still sound - there isn't any proof tree, so the
/// branch still can't be a part of a minimal one - but does not
/// re-enable caching.
EvaluatedToRecur,
/// Evaluation failed
EvaluatedToErr,
}
impl EvaluationResult {
fn may_apply(self) -> bool {
match self {
EvaluatedToOk |
EvaluatedToAmbig |
EvaluatedToUnknown => true,
EvaluatedToErr |
EvaluatedToRecur => false
}
}
fn is_stack_dependent(self) -> bool {
match self {
EvaluatedToUnknown |
EvaluatedToRecur => true,
EvaluatedToOk |
EvaluatedToAmbig |
EvaluatedToErr => false,
}
}
}
#[derive(Clone)]
pub struct EvaluationCache<'tcx> {
hashmap: RefCell<FxHashMap<ty::PolyTraitRef<'tcx>, WithDepNode<EvaluationResult>>>
}
impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
pub fn new(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
SelectionContext {
infcx,
freshener: infcx.freshener(),
intercrate: false,
inferred_obligations: SnapshotVec::new(),
intercrate_ambiguity_causes: Vec::new(),
}
}
pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
SelectionContext {
infcx,
freshener: infcx.freshener(),
intercrate: true,
inferred_obligations: SnapshotVec::new(),
intercrate_ambiguity_causes: Vec::new(),
}
}
pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
self.infcx
}
pub fn tcx(&self) -> TyCtxt<'cx, 'gcx, 'tcx> {
self.infcx.tcx
}
pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
self.infcx
}
pub fn intercrate_ambiguity_causes(&self) -> &[IntercrateAmbiguityCause] {
&self.intercrate_ambiguity_causes
}
/// Wraps the inference context's in_snapshot s.t. snapshot handling is only from the selection
/// context's self.
fn in_snapshot<R, F>(&mut self, f: F) -> R
where F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> R
{
// The irrefutable nature of the operation means we don't need to snapshot the
// inferred_obligations vector.
self.infcx.in_snapshot(|snapshot| f(self, snapshot))
}
/// Wraps a probe s.t. obligations collected during it are ignored and old obligations are
/// retained.
fn probe<R, F>(&mut self, f: F) -> R
where F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> R
{
let inferred_obligations_snapshot = self.inferred_obligations.start_snapshot();
let result = self.infcx.probe(|snapshot| f(self, snapshot));
self.inferred_obligations.rollback_to(inferred_obligations_snapshot);
result
}
/// Wraps a commit_if_ok s.t. obligations collected during it are not returned in selection if
/// the transaction fails and s.t. old obligations are retained.
fn commit_if_ok<T, E, F>(&mut self, f: F) -> Result<T, E> where
F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> Result<T, E>
{
let inferred_obligations_snapshot = self.inferred_obligations.start_snapshot();
match self.infcx.commit_if_ok(|snapshot| f(self, snapshot)) {
Ok(ok) => {
self.inferred_obligations.commit(inferred_obligations_snapshot);
Ok(ok)
},
Err(err) => {
self.inferred_obligations.rollback_to(inferred_obligations_snapshot);
Err(err)
}
}
}
///////////////////////////////////////////////////////////////////////////
// Selection
//
// The selection phase tries to identify *how* an obligation will
// be resolved. For example, it will identify which impl or
// parameter bound is to be used. The process can be inconclusive
// if the self type in the obligation is not fully inferred. Selection
// can result in an error in one of two ways:
//
// 1. If no applicable impl or parameter bound can be found.
// 2. If the output type parameters in the obligation do not match
// those specified by the impl/bound. For example, if the obligation
// is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
// `impl<T> Iterable<T> for Vec<T>`, than an error would result.
/// Attempts to satisfy the obligation. If successful, this will affect the surrounding
/// type environment by performing unification.
pub fn select(&mut self, obligation: &TraitObligation<'tcx>)
-> SelectionResult<'tcx, Selection<'tcx>> {
debug!("select({:?})", obligation);
assert!(!obligation.predicate.has_escaping_regions());
let tcx = self.tcx();
let stack = self.push_stack(TraitObligationStackList::empty(), obligation);
let ret = match self.candidate_from_obligation(&stack)? {
None => None,
Some(candidate) => {
let mut candidate = self.confirm_candidate(obligation, candidate)?;
let inferred_obligations = (*self.inferred_obligations).into_iter().cloned();
candidate.nested_obligations_mut().extend(inferred_obligations);
Some(candidate)
},
};
// Test whether this is a `()` which was produced by defaulting a
// diverging type variable with `!` disabled. If so, we may need
// to raise a warning.
if obligation.predicate.skip_binder().self_ty().is_defaulted_unit() {
let mut raise_warning = true;
// Don't raise a warning if the trait is implemented for ! and only
// permits a trivial implementation for !. This stops us warning
// about (for example) `(): Clone` becoming `!: Clone` because such
// a switch can't cause code to stop compiling or execute
// differently.
let mut never_obligation = obligation.clone();
let def_id = never_obligation.predicate.skip_binder().trait_ref.def_id;
never_obligation.predicate = never_obligation.predicate.map_bound(|mut trait_pred| {
// Swap out () with ! so we can check if the trait is impld for !
{
let trait_ref = &mut trait_pred.trait_ref;
let unit_substs = trait_ref.substs;
let mut never_substs = Vec::with_capacity(unit_substs.len());
never_substs.push(From::from(tcx.types.never));
never_substs.extend(&unit_substs[1..]);
trait_ref.substs = tcx.intern_substs(&never_substs);
}
trait_pred
});
if let Ok(Some(..)) = self.select(&never_obligation) {
if !tcx.trait_relevant_for_never(def_id) {
// The trait is also implemented for ! and the resulting
// implementation cannot actually be invoked in any way.
raise_warning = false;
}
}
if raise_warning {
tcx.lint_node(lint::builtin::RESOLVE_TRAIT_ON_DEFAULTED_UNIT,
obligation.cause.body_id,
obligation.cause.span,
&format!("code relies on type inference rules which are likely \
to change"));
}
}
Ok(ret)
}
///////////////////////////////////////////////////////////////////////////
// EVALUATION
//
// Tests whether an obligation can be selected or whether an impl
// can be applied to particular types. It skips the "confirmation"
// step and hence completely ignores output type parameters.
//
// The result is "true" if the obligation *may* hold and "false" if
// we can be sure it does not.
/// Evaluates whether the obligation `obligation` can be satisfied (by any means).
pub fn evaluate_obligation(&mut self,
obligation: &PredicateObligation<'tcx>)
-> bool
{
debug!("evaluate_obligation({:?})",
obligation);
self.probe(|this, _| {
this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
.may_apply()
})
}
/// Evaluates whether the obligation `obligation` can be satisfied,
/// and returns `false` if not certain. However, this is not entirely
/// accurate if inference variables are involved.
pub fn evaluate_obligation_conservatively(&mut self,
obligation: &PredicateObligation<'tcx>)
-> bool
{
debug!("evaluate_obligation_conservatively({:?})",
obligation);
self.probe(|this, _| {
this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
== EvaluatedToOk
})
}
/// Evaluates the predicates in `predicates` recursively. Note that
/// this applies projections in the predicates, and therefore
/// is run within an inference probe.
fn evaluate_predicates_recursively<'a,'o,I>(&mut self,
stack: TraitObligationStackList<'o, 'tcx>,
predicates: I)
-> EvaluationResult
where I : Iterator<Item=&'a PredicateObligation<'tcx>>, 'tcx:'a
{
let mut result = EvaluatedToOk;
for obligation in predicates {
let eval = self.evaluate_predicate_recursively(stack, obligation);
debug!("evaluate_predicate_recursively({:?}) = {:?}",
obligation, eval);
if let EvaluatedToErr = eval {
// fast-path - EvaluatedToErr is the top of the lattice,
// so we don't need to look on the other predicates.
return EvaluatedToErr;
} else {
result = cmp::max(result, eval);
}
}
result
}
fn evaluate_predicate_recursively<'o>(&mut self,
previous_stack: TraitObligationStackList<'o, 'tcx>,
obligation: &PredicateObligation<'tcx>)
-> EvaluationResult
{
debug!("evaluate_predicate_recursively({:?})",
obligation);
match obligation.predicate {
ty::Predicate::Trait(ref t) => {
assert!(!t.has_escaping_regions());
let obligation = obligation.with(t.clone());
self.evaluate_trait_predicate_recursively(previous_stack, obligation)
}
ty::Predicate::Equate(ref p) => {
// does this code ever run?
match self.infcx.equality_predicate(&obligation.cause, obligation.param_env, p) {
Ok(InferOk { obligations, .. }) => {
self.inferred_obligations.extend(obligations);
EvaluatedToOk
},
Err(_) => EvaluatedToErr
}
}
ty::Predicate::Subtype(ref p) => {
// does this code ever run?
match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
Some(Ok(InferOk { obligations, .. })) => {
self.inferred_obligations.extend(obligations);
EvaluatedToOk
},
Some(Err(_)) => EvaluatedToErr,
None => EvaluatedToAmbig,
}
}
ty::Predicate::WellFormed(ty) => {
match ty::wf::obligations(self.infcx,
obligation.param_env,
obligation.cause.body_id,
ty, obligation.cause.span) {
Some(obligations) =>
self.evaluate_predicates_recursively(previous_stack, obligations.iter()),
None =>
EvaluatedToAmbig,
}
}
ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
// we do not consider region relationships when
// evaluating trait matches
EvaluatedToOk
}
ty::Predicate::ObjectSafe(trait_def_id) => {
if self.tcx().is_object_safe(trait_def_id) {
EvaluatedToOk
} else {
EvaluatedToErr
}
}
ty::Predicate::Projection(ref data) => {
let project_obligation = obligation.with(data.clone());
match project::poly_project_and_unify_type(self, &project_obligation) {
Ok(Some(subobligations)) => {
let result = self.evaluate_predicates_recursively(previous_stack,
subobligations.iter());
if let Some(key) =
ProjectionCacheKey::from_poly_projection_predicate(self, data)
{
self.infcx.projection_cache.borrow_mut().complete(key);
}
result
}
Ok(None) => {
EvaluatedToAmbig
}
Err(_) => {
EvaluatedToErr
}
}
}
ty::Predicate::ClosureKind(closure_def_id, kind) => {
match self.infcx.closure_kind(closure_def_id) {
Some(closure_kind) => {
if closure_kind.extends(kind) {
EvaluatedToOk
} else {
EvaluatedToErr
}
}
None => {
EvaluatedToAmbig
}
}
}
ty::Predicate::ConstEvaluatable(def_id, substs) => {
match self.tcx().lift_to_global(&(obligation.param_env, substs)) {
Some((param_env, substs)) => {
match self.tcx().const_eval(param_env.and((def_id, substs))) {
Ok(_) => EvaluatedToOk,
Err(_) => EvaluatedToErr
}
}
None => {
// Inference variables still left in param_env or substs.
EvaluatedToAmbig
}
}
}
}
}
fn evaluate_trait_predicate_recursively<'o>(&mut self,
previous_stack: TraitObligationStackList<'o, 'tcx>,
mut obligation: TraitObligation<'tcx>)
-> EvaluationResult
{
debug!("evaluate_trait_predicate_recursively({:?})",
obligation);
if !self.intercrate && obligation.is_global() {
// If a param env is consistent, global obligations do not depend on its particular
// value in order to work, so we can clear out the param env and get better
// caching. (If the current param env is inconsistent, we don't care what happens).
debug!("evaluate_trait_predicate_recursively({:?}) - in global", obligation);
obligation.param_env = ty::ParamEnv::empty(obligation.param_env.reveal);
}
let stack = self.push_stack(previous_stack, &obligation);
let fresh_trait_ref = stack.fresh_trait_ref;
if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
debug!("CACHE HIT: EVAL({:?})={:?}",
fresh_trait_ref,
result);
return result;
}
let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
debug!("CACHE MISS: EVAL({:?})={:?}",
fresh_trait_ref,
result);
self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
result
}
fn evaluate_stack<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> EvaluationResult
{
// In intercrate mode, whenever any of the types are unbound,
// there can always be an impl. Even if there are no impls in
// this crate, perhaps the type would be unified with
// something from another crate that does provide an impl.
//
// In intra mode, we must still be conservative. The reason is
// that we want to avoid cycles. Imagine an impl like:
//
// impl<T:Eq> Eq for Vec<T>
//
// and a trait reference like `$0 : Eq` where `$0` is an
// unbound variable. When we evaluate this trait-reference, we
// will unify `$0` with `Vec<$1>` (for some fresh variable
// `$1`), on the condition that `$1 : Eq`. We will then wind
// up with many candidates (since that are other `Eq` impls
// that apply) and try to winnow things down. This results in
// a recursive evaluation that `$1 : Eq` -- as you can
// imagine, this is just where we started. To avoid that, we
// check for unbound variables and return an ambiguous (hence possible)
// match if we've seen this trait before.
//
// This suffices to allow chains like `FnMut` implemented in
// terms of `Fn` etc, but we could probably make this more
// precise still.
let unbound_input_types = stack.fresh_trait_ref.input_types().any(|ty| ty.is_fresh());
if unbound_input_types && self.intercrate {
debug!("evaluate_stack({:?}) --> unbound argument, intercrate --> ambiguous",
stack.fresh_trait_ref);
// Heuristics: show the diagnostics when there are no candidates in crate.
if let Ok(candidate_set) = self.assemble_candidates(stack) {
if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
let self_ty = trait_ref.self_ty();
let cause = IntercrateAmbiguityCause::DownstreamCrate {
trait_desc: trait_ref.to_string(),
self_desc: if self_ty.has_concrete_skeleton() {
Some(self_ty.to_string())
} else {
None
},
};
self.intercrate_ambiguity_causes.push(cause);
}
}
return EvaluatedToAmbig;
}
if unbound_input_types &&
stack.iter().skip(1).any(
|prev| stack.obligation.param_env == prev.obligation.param_env &&
self.match_fresh_trait_refs(&stack.fresh_trait_ref,
&prev.fresh_trait_ref))
{
debug!("evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
stack.fresh_trait_ref);
return EvaluatedToUnknown;
}
// If there is any previous entry on the stack that precisely
// matches this obligation, then we can assume that the
// obligation is satisfied for now (still all other conditions
// must be met of course). One obvious case this comes up is
// marker traits like `Send`. Think of a linked list:
//
// struct List<T> { data: T, next: Option<Box<List<T>>> {
//
// `Box<List<T>>` will be `Send` if `T` is `Send` and
// `Option<Box<List<T>>>` is `Send`, and in turn
// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
// `Send`.
//
// Note that we do this comparison using the `fresh_trait_ref`
// fields. Because these have all been skolemized using
// `self.freshener`, we can be sure that (a) this will not
// affect the inferencer state and (b) that if we see two
// skolemized types with the same index, they refer to the
// same unbound type variable.
if let Some(rec_index) =
stack.iter()
.skip(1) // skip top-most frame
.position(|prev| stack.obligation.param_env == prev.obligation.param_env &&
stack.fresh_trait_ref == prev.fresh_trait_ref)
{
debug!("evaluate_stack({:?}) --> recursive",
stack.fresh_trait_ref);
let cycle = stack.iter().skip(1).take(rec_index+1);
let cycle = cycle.map(|stack| ty::Predicate::Trait(stack.obligation.predicate));
if self.coinductive_match(cycle) {
debug!("evaluate_stack({:?}) --> recursive, coinductive",
stack.fresh_trait_ref);
return EvaluatedToOk;
} else {
debug!("evaluate_stack({:?}) --> recursive, inductive",
stack.fresh_trait_ref);
return EvaluatedToRecur;
}
}
match self.candidate_from_obligation(stack) {
Ok(Some(c)) => self.evaluate_candidate(stack, &c),
Ok(None) => EvaluatedToAmbig,
Err(..) => EvaluatedToErr
}
}
/// For defaulted traits, we use a co-inductive strategy to solve, so
/// that recursion is ok. This routine returns true if the top of the
/// stack (`cycle[0]`):
/// - is a defaulted trait, and
/// - it also appears in the backtrace at some position `X`; and,
/// - all the predicates at positions `X..` between `X` an the top are
/// also defaulted traits.
pub fn coinductive_match<I>(&mut self, cycle: I) -> bool
where I: Iterator<Item=ty::Predicate<'tcx>>
{
let mut cycle = cycle;
cycle.all(|predicate| self.coinductive_predicate(predicate))
}
fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
let result = match predicate {
ty::Predicate::Trait(ref data) => {
self.tcx().trait_has_default_impl(data.def_id())
}
_ => {
false
}
};
debug!("coinductive_predicate({:?}) = {:?}", predicate, result);
result
}
/// Further evaluate `candidate` to decide whether all type parameters match and whether nested
/// obligations are met. Returns true if `candidate` remains viable after this further
/// scrutiny.
fn evaluate_candidate<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidate: &SelectionCandidate<'tcx>)
-> EvaluationResult
{
debug!("evaluate_candidate: depth={} candidate={:?}",
stack.obligation.recursion_depth, candidate);
let result = self.probe(|this, _| {
let candidate = (*candidate).clone();
match this.confirm_candidate(stack.obligation, candidate) {
Ok(selection) => {
this.evaluate_predicates_recursively(
stack.list(),
selection.nested_obligations().iter())
}
Err(..) => EvaluatedToErr
}
});
debug!("evaluate_candidate: depth={} result={:?}",
stack.obligation.recursion_depth, result);
result
}
fn check_evaluation_cache(&self,
param_env: ty::ParamEnv<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>)
-> Option<EvaluationResult>
{
let tcx = self.tcx();
if self.can_use_global_caches(param_env) {
let cache = tcx.evaluation_cache.hashmap.borrow();
if let Some(cached) = cache.get(&trait_ref) {
return Some(cached.get(tcx));
}
}
self.infcx.evaluation_cache.hashmap
.borrow()
.get(&trait_ref)
.map(|v| v.get(tcx))
}
fn insert_evaluation_cache(&mut self,
param_env: ty::ParamEnv<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
dep_node: DepNodeIndex,
result: EvaluationResult)
{
// Avoid caching results that depend on more than just the trait-ref
// - the stack can create recursion.
if result.is_stack_dependent() {
return;
}
if self.can_use_global_caches(param_env) {
let mut cache = self.tcx().evaluation_cache.hashmap.borrow_mut();
if let Some(trait_ref) = self.tcx().lift_to_global(&trait_ref) {
cache.insert(trait_ref, WithDepNode::new(dep_node, result));
return;
}
}
self.infcx.evaluation_cache.hashmap
.borrow_mut()
.insert(trait_ref, WithDepNode::new(dep_node, result));
}
///////////////////////////////////////////////////////////////////////////
// CANDIDATE ASSEMBLY
//
// The selection process begins by examining all in-scope impls,
// caller obligations, and so forth and assembling a list of
// candidates. See `README.md` and the `Candidate` type for more
// details.
fn candidate_from_obligation<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> SelectionResult<'tcx, SelectionCandidate<'tcx>>
{
// Watch out for overflow. This intentionally bypasses (and does
// not update) the cache.
let recursion_limit = self.infcx.tcx.sess.recursion_limit.get();
if stack.obligation.recursion_depth >= recursion_limit {
self.infcx().report_overflow_error(&stack.obligation, true);
}
// Check the cache. Note that we skolemize the trait-ref
// separately rather than using `stack.fresh_trait_ref` -- this
// is because we want the unbound variables to be replaced
// with fresh skolemized types starting from index 0.
let cache_fresh_trait_pred =
self.infcx.freshen(stack.obligation.predicate.clone());
debug!("candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
cache_fresh_trait_pred,
stack);
assert!(!stack.obligation.predicate.has_escaping_regions());
if let Some(c) = self.check_candidate_cache(stack.obligation.param_env,
&cache_fresh_trait_pred) {
debug!("CACHE HIT: SELECT({:?})={:?}",
cache_fresh_trait_pred,
c);
return c;
}
// If no match, compute result and insert into cache.
let (candidate, dep_node) = self.in_task(|this| {
this.candidate_from_obligation_no_cache(stack)
});
debug!("CACHE MISS: SELECT({:?})={:?}",
cache_fresh_trait_pred, candidate);
self.insert_candidate_cache(stack.obligation.param_env,
cache_fresh_trait_pred,
dep_node,
candidate.clone());
candidate
}
fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
where OP: FnOnce(&mut Self) -> R
{
let (result, dep_node) = self.tcx().dep_graph.with_anon_task(DepKind::TraitSelect, || {
op(self)
});
self.tcx().dep_graph.read_index(dep_node);
(result, dep_node)
}
// Treat negative impls as unimplemented
fn filter_negative_impls(&self, candidate: SelectionCandidate<'tcx>)
-> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
if let ImplCandidate(def_id) = candidate {
if self.tcx().impl_polarity(def_id) == hir::ImplPolarity::Negative {
return Err(Unimplemented)
}
}
Ok(Some(candidate))
}
fn candidate_from_obligation_no_cache<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> SelectionResult<'tcx, SelectionCandidate<'tcx>>
{
if stack.obligation.predicate.references_error() {
// If we encounter a `TyError`, we generally prefer the
// most "optimistic" result in response -- that is, the
// one least likely to report downstream errors. But
// because this routine is shared by coherence and by
// trait selection, there isn't an obvious "right" choice
// here in that respect, so we opt to just return
// ambiguity and let the upstream clients sort it out.
return Ok(None);
}
if !self.is_knowable(stack) {
debug!("coherence stage: not knowable");
// Heuristics: show the diagnostics when there are no candidates in crate.
let candidate_set = self.assemble_candidates(stack)?;
if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
let self_ty = trait_ref.self_ty();
let trait_desc = trait_ref.to_string();
let self_desc = if self_ty.has_concrete_skeleton() {
Some(self_ty.to_string())
} else {
None
};
let cause = if !coherence::trait_ref_is_local_or_fundamental(self.tcx(),
trait_ref) {
IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
} else {
IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
};
self.intercrate_ambiguity_causes.push(cause);
}
return Ok(None);
}
let candidate_set = self.assemble_candidates(stack)?;
if candidate_set.ambiguous {
debug!("candidate set contains ambig");
return Ok(None);
}
let mut candidates = candidate_set.vec;
debug!("assembled {} candidates for {:?}: {:?}",
candidates.len(),
stack,
candidates);
// At this point, we know that each of the entries in the
// candidate set is *individually* applicable. Now we have to
// figure out if they contain mutual incompatibilities. This
// frequently arises if we have an unconstrained input type --
// for example, we are looking for $0:Eq where $0 is some
// unconstrained type variable. In that case, we'll get a
// candidate which assumes $0 == int, one that assumes $0 ==
// usize, etc. This spells an ambiguity.
// If there is more than one candidate, first winnow them down
// by considering extra conditions (nested obligations and so
// forth). We don't winnow if there is exactly one
// candidate. This is a relatively minor distinction but it
// can lead to better inference and error-reporting. An
// example would be if there was an impl:
//
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
//
// and we were to see some code `foo.push_clone()` where `boo`
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
// we were to winnow, we'd wind up with zero candidates.
// Instead, we select the right impl now but report `Bar does
// not implement Clone`.
if candidates.len() == 1 {
return self.filter_negative_impls(candidates.pop().unwrap());
}
// Winnow, but record the exact outcome of evaluation, which
// is needed for specialization.
let mut candidates: Vec<_> = candidates.into_iter().filter_map(|c| {
let eval = self.evaluate_candidate(stack, &c);
if eval.may_apply() {
Some(EvaluatedCandidate {
candidate: c,
evaluation: eval,
})
} else {
None
}
}).collect();
// If there are STILL multiple candidate, we can further
// reduce the list by dropping duplicates -- including
// resolving specializations.
if candidates.len() > 1 {
let mut i = 0;
while i < candidates.len() {
let is_dup =
(0..candidates.len())
.filter(|&j| i != j)
.any(|j| self.candidate_should_be_dropped_in_favor_of(&candidates[i],
&candidates[j]));
if is_dup {
debug!("Dropping candidate #{}/{}: {:?}",
i, candidates.len(), candidates[i]);
candidates.swap_remove(i);
} else {
debug!("Retaining candidate #{}/{}: {:?}",
i, candidates.len(), candidates[i]);
i += 1;
// If there are *STILL* multiple candidates, give up
// and report ambiguity.
if i > 1 {
debug!("multiple matches, ambig");
return Ok(None);
}
}
}
}
// If there are *NO* candidates, then there are no impls --
// that we know of, anyway. Note that in the case where there
// are unbound type variables within the obligation, it might
// be the case that you could still satisfy the obligation
// from another crate by instantiating the type variables with
// a type from another crate that does have an impl. This case
// is checked for in `evaluate_stack` (and hence users
// who might care about this case, like coherence, should use
// that function).
if candidates.is_empty() {
return Err(Unimplemented);
}
// Just one candidate left.
self.filter_negative_impls(candidates.pop().unwrap().candidate)
}
fn is_knowable<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> bool
{
debug!("is_knowable(intercrate={})", self.intercrate);
if !self.intercrate {
return true;
}
let obligation = &stack.obligation;
let predicate = self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
// ok to skip binder because of the nature of the
// trait-ref-is-knowable check, which does not care about
// bound regions
let trait_ref = predicate.skip_binder().trait_ref;
coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
}
/// Returns true if the global caches can be used.
/// Do note that if the type itself is not in the
/// global tcx, the local caches will be used.
fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
// If there are any where-clauses in scope, then we always use
// a cache local to this particular scope. Otherwise, we
// switch to a global cache. We used to try and draw
// finer-grained distinctions, but that led to a serious of
// annoying and weird bugs like #22019 and #18290. This simple
// rule seems to be pretty clearly safe and also still retains
// a very high hit rate (~95% when compiling rustc).
if !param_env.caller_bounds.is_empty() {
return false;
}
// Avoid using the master cache during coherence and just rely
// on the local cache. This effectively disables caching
// during coherence. It is really just a simplification to
// avoid us having to fear that coherence results "pollute"
// the master cache. Since coherence executes pretty quickly,
// it's not worth going to more trouble to increase the
// hit-rate I don't think.
if self.intercrate {
return false;
}
// Otherwise, we can use the global cache.
true
}
fn check_candidate_cache(&mut self,
param_env: ty::ParamEnv<'tcx>,
cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>)
-> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>>
{
let tcx = self.tcx();
let trait_ref = &cache_fresh_trait_pred.0.trait_ref;
if self.can_use_global_caches(param_env) {
let cache = tcx.selection_cache.hashmap.borrow();
if let Some(cached) = cache.get(&trait_ref) {
return Some(cached.get(tcx));
}
}
self.infcx.selection_cache.hashmap
.borrow()
.get(trait_ref)
.map(|v| v.get(tcx))
}
fn insert_candidate_cache(&mut self,
param_env: ty::ParamEnv<'tcx>,
cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
dep_node: DepNodeIndex,
candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>)
{
let tcx = self.tcx();
let trait_ref = cache_fresh_trait_pred.0.trait_ref;
if self.can_use_global_caches(param_env) {
let mut cache = tcx.selection_cache.hashmap.borrow_mut();
if let Some(trait_ref) = tcx.lift_to_global(&trait_ref) {
if let Some(candidate) = tcx.lift_to_global(&candidate) {
cache.insert(trait_ref, WithDepNode::new(dep_node, candidate));
return;
}
}
}
self.infcx.selection_cache.hashmap
.borrow_mut()
.insert(trait_ref, WithDepNode::new(dep_node, candidate));
}
fn assemble_candidates<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>>
{
let TraitObligationStack { obligation, .. } = *stack;
let ref obligation = Obligation {
param_env: obligation.param_env,
cause: obligation.cause.clone(),
recursion_depth: obligation.recursion_depth,
predicate: self.infcx().resolve_type_vars_if_possible(&obligation.predicate)
};
if obligation.predicate.skip_binder().self_ty().is_ty_var() {
// FIXME(#20297): Self is a type variable (e.g. `_: AsRef<str>`).
//
// This is somewhat problematic, as the current scheme can't really
// handle it turning to be a projection. This does end up as truly
// ambiguous in most cases anyway.
//
// Until this is fixed, take the fast path out - this also improves
// performance by preventing assemble_candidates_from_impls from
// matching every impl for this trait.
return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
}
let mut candidates = SelectionCandidateSet {
vec: Vec::new(),
ambiguous: false
};
// Other bounds. Consider both in-scope bounds from fn decl
// and applicable impls. There is a certain set of precedence rules here.
let def_id = obligation.predicate.def_id();
let lang_items = self.tcx().lang_items();
if lang_items.copy_trait() == Some(def_id) {
debug!("obligation self ty is {:?}",
obligation.predicate.0.self_ty());
// User-defined copy impls are permitted, but only for
// structs and enums.
self.assemble_candidates_from_impls(obligation, &mut candidates)?;
// For other types, we'll use the builtin rules.
let copy_conditions = self.copy_clone_conditions(obligation);
self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
} else if lang_items.sized_trait() == Some(def_id) {
// Sized is never implementable by end-users, it is
// always automatically computed.
let sized_conditions = self.sized_conditions(obligation);
self.assemble_builtin_bound_candidates(sized_conditions,
&mut candidates)?;
} else if lang_items.unsize_trait() == Some(def_id) {
self.assemble_candidates_for_unsizing(obligation, &mut candidates);
} else {
if lang_items.clone_trait() == Some(def_id) {
// Same builtin conditions as `Copy`, i.e. every type which has builtin support
// for `Copy` also has builtin support for `Clone`, + tuples and arrays of `Clone`
// types have builtin support for `Clone`.
let clone_conditions = self.copy_clone_conditions(obligation);
self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
}
self.assemble_generator_candidates(obligation, &mut candidates)?;
self.assemble_closure_candidates(obligation, &mut candidates)?;
self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
self.assemble_candidates_from_impls(obligation, &mut candidates)?;
self.assemble_candidates_from_object_ty(obligation, &mut candidates);
}
self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
// Default implementations have lower priority, so we only
// consider triggering a default if there is no other impl that can apply.
if candidates.vec.is_empty() {
self.assemble_candidates_from_default_impls(obligation, &mut candidates)?;
}
debug!("candidate list size: {}", candidates.vec.len());
Ok(candidates)
}
fn assemble_candidates_from_projected_tys(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
{
debug!("assemble_candidates_for_projected_tys({:?})", obligation);
// FIXME(#20297) -- just examining the self-type is very simplistic
// before we go into the whole skolemization thing, just
// quickly check if the self-type is a projection at all.
match obligation.predicate.0.trait_ref.self_ty().sty {
ty::TyProjection(_) | ty::TyAnon(..) => {}
ty::TyInfer(ty::TyVar(_)) => {
span_bug!(obligation.cause.span,
"Self=_ should have been handled by assemble_candidates");
}
_ => return
}
let result = self.probe(|this, snapshot| {
this.match_projection_obligation_against_definition_bounds(obligation,
snapshot)
});
if result {
candidates.vec.push(ProjectionCandidate);
}
}
fn match_projection_obligation_against_definition_bounds(
&mut self,
obligation: &TraitObligation<'tcx>,
snapshot: &infer::CombinedSnapshot)
-> bool
{
let poly_trait_predicate =
self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
let (skol_trait_predicate, skol_map) =
self.infcx().skolemize_late_bound_regions(&poly_trait_predicate, snapshot);
debug!("match_projection_obligation_against_definition_bounds: \
skol_trait_predicate={:?} skol_map={:?}",
skol_trait_predicate,
skol_map);
let (def_id, substs) = match skol_trait_predicate.trait_ref.self_ty().sty {
ty::TyProjection(ref data) =>
(data.trait_ref(self.tcx()).def_id, data.substs),
ty::TyAnon(def_id, substs) => (def_id, substs),
_ => {
span_bug!(
obligation.cause.span,
"match_projection_obligation_against_definition_bounds() called \
but self-ty not a projection: {:?}",
skol_trait_predicate.trait_ref.self_ty());
}
};
debug!("match_projection_obligation_against_definition_bounds: \
def_id={:?}, substs={:?}",
def_id, substs);
let predicates_of = self.tcx().predicates_of(def_id);
let bounds = predicates_of.instantiate(self.tcx(), substs);
debug!("match_projection_obligation_against_definition_bounds: \
bounds={:?}",
bounds);
let matching_bound =
util::elaborate_predicates(self.tcx(), bounds.predicates)
.filter_to_traits()
.find(
|bound| self.probe(
|this, _| this.match_projection(obligation,
bound.clone(),
skol_trait_predicate.trait_ref.clone(),
&skol_map,
snapshot)));
debug!("match_projection_obligation_against_definition_bounds: \
matching_bound={:?}",
matching_bound);
match matching_bound {
None => false,
Some(bound) => {
// Repeat the successful match, if any, this time outside of a probe.
let result = self.match_projection(obligation,
bound,
skol_trait_predicate.trait_ref.clone(),
&skol_map,
snapshot);
self.infcx.pop_skolemized(skol_map, snapshot);
assert!(result);
true
}
}
}
fn match_projection(&mut self,
obligation: &TraitObligation<'tcx>,
trait_bound: ty::PolyTraitRef<'tcx>,
skol_trait_ref: ty::TraitRef<'tcx>,
skol_map: &infer::SkolemizationMap<'tcx>,
snapshot: &infer::CombinedSnapshot)
-> bool
{
assert!(!skol_trait_ref.has_escaping_regions());
match self.infcx.at(&obligation.cause, obligation.param_env)
.sup(ty::Binder(skol_trait_ref), trait_bound) {
Ok(InferOk { obligations, .. }) => {
self.inferred_obligations.extend(obligations);
}
Err(_) => { return false; }
}
self.infcx.leak_check(false, obligation.cause.span, skol_map, snapshot).is_ok()
}
/// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
/// supplied to find out whether it is listed among them.
///
/// Never affects inference environment.
fn assemble_candidates_from_caller_bounds<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
debug!("assemble_candidates_from_caller_bounds({:?})",
stack.obligation);
let all_bounds =
stack.obligation.param_env.caller_bounds
.iter()
.filter_map(|o| o.to_opt_poly_trait_ref());
// micro-optimization: filter out predicates relating to different
// traits.
let matching_bounds =
all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
let matching_bounds =
matching_bounds.filter(
|bound| self.evaluate_where_clause(stack, bound.clone()).may_apply());
let param_candidates =
matching_bounds.map(|bound| ParamCandidate(bound));
candidates.vec.extend(param_candidates);
Ok(())
}
fn evaluate_where_clause<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
-> EvaluationResult
{
self.probe(move |this, _| {
match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
Ok(obligations) => {
this.evaluate_predicates_recursively(stack.list(), obligations.iter())
}
Err(()) => EvaluatedToErr
}
})
}
fn assemble_generator_candidates(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
return Ok(());
}
// ok to skip binder because the substs on generator types never
// touch bound regions, they just capture the in-scope
// type/region parameters
let self_ty = *obligation.self_ty().skip_binder();
match self_ty.sty {
ty::TyGenerator(..) => {
debug!("assemble_generator_candidates: self_ty={:?} obligation={:?}",
self_ty,
obligation);
candidates.vec.push(GeneratorCandidate);
Ok(())
}
ty::TyInfer(ty::TyVar(_)) => {
debug!("assemble_generator_candidates: ambiguous self-type");
candidates.ambiguous = true;
return Ok(());
}
_ => { return Ok(()); }
}
}
/// Check for the artificial impl that the compiler will create for an obligation like `X :
/// FnMut<..>` where `X` is a closure type.
///
/// Note: the type parameters on a closure candidate are modeled as *output* type
/// parameters and hence do not affect whether this trait is a match or not. They will be
/// unified during the confirmation step.
fn assemble_closure_candidates(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
let kind = match self.tcx().lang_items().fn_trait_kind(obligation.predicate.0.def_id()) {
Some(k) => k,
None => { return Ok(()); }
};
// ok to skip binder because the substs on closure types never
// touch bound regions, they just capture the in-scope
// type/region parameters
match obligation.self_ty().skip_binder().sty {
ty::TyClosure(closure_def_id, _) => {
debug!("assemble_unboxed_candidates: kind={:?} obligation={:?}",
kind, obligation);
match self.infcx.closure_kind(closure_def_id) {
Some(closure_kind) => {
debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
if closure_kind.extends(kind) {
candidates.vec.push(ClosureCandidate);
}
}
None => {
debug!("assemble_unboxed_candidates: closure_kind not yet known");
candidates.vec.push(ClosureCandidate);
}
};
Ok(())
}
ty::TyInfer(ty::TyVar(_)) => {
debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
candidates.ambiguous = true;
return Ok(());
}
_ => { return Ok(()); }
}
}
/// Implement one of the `Fn()` family for a fn pointer.
fn assemble_fn_pointer_candidates(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
// We provide impl of all fn traits for fn pointers.
if self.tcx().lang_items().fn_trait_kind(obligation.predicate.def_id()).is_none() {
return Ok(());
}
// ok to skip binder because what we are inspecting doesn't involve bound regions
let self_ty = *obligation.self_ty().skip_binder();
match self_ty.sty {
ty::TyInfer(ty::TyVar(_)) => {
debug!("assemble_fn_pointer_candidates: ambiguous self-type");
candidates.ambiguous = true; // could wind up being a fn() type
}
// provide an impl, but only for suitable `fn` pointers
ty::TyFnDef(..) | ty::TyFnPtr(_) => {
if let ty::Binder(ty::FnSig {
unsafety: hir::Unsafety::Normal,
abi: Abi::Rust,
variadic: false,
..
}) = self_ty.fn_sig(self.tcx()) {
candidates.vec.push(FnPointerCandidate);
}
}
_ => { }
}
Ok(())
}
/// Search for impls that might apply to `obligation`.
fn assemble_candidates_from_impls(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(), SelectionError<'tcx>>
{
debug!("assemble_candidates_from_impls(obligation={:?})", obligation);
self.tcx().for_each_relevant_impl(
obligation.predicate.def_id(),
obligation.predicate.0.trait_ref.self_ty(),
|impl_def_id| {
self.probe(|this, snapshot| { /* [1] */
match this.match_impl(impl_def_id, obligation, snapshot) {
Ok(skol_map) => {
candidates.vec.push(ImplCandidate(impl_def_id));
// NB: we can safely drop the skol map
// since we are in a probe [1]
mem::drop(skol_map);
}
Err(_) => { }
}
});
}
);
Ok(())
}
fn assemble_candidates_from_default_impls(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(), SelectionError<'tcx>>
{
// OK to skip binder here because the tests we do below do not involve bound regions
let self_ty = *obligation.self_ty().skip_binder();
debug!("assemble_candidates_from_default_impls(self_ty={:?})", self_ty);
let def_id = obligation.predicate.def_id();
if self.tcx().trait_has_default_impl(def_id) {
match self_ty.sty {
ty::TyDynamic(..) => {
// For object types, we don't know what the closed
// over types are. This means we conservatively
// say nothing; a candidate may be added by
// `assemble_candidates_from_object_ty`.
}
ty::TyParam(..) |
ty::TyProjection(..) => {
// In these cases, we don't know what the actual
// type is. Therefore, we cannot break it down
// into its constituent types. So we don't
// consider the `..` impl but instead just add no
// candidates: this means that typeck will only
// succeed if there is another reason to believe
// that this obligation holds. That could be a
// where-clause or, in the case of an object type,
// it could be that the object type lists the
// trait (e.g. `Foo+Send : Send`). See
// `compile-fail/typeck-default-trait-impl-send-param.rs`
// for an example of a test case that exercises
// this path.
}
ty::TyInfer(ty::TyVar(_)) => {
// the defaulted impl might apply, we don't know
candidates.ambiguous = true;
}
_ => {
candidates.vec.push(DefaultImplCandidate(def_id.clone()))
}
}
}
Ok(())
}
/// Search for impls that might apply to `obligation`.
fn assemble_candidates_from_object_ty(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
{
debug!("assemble_candidates_from_object_ty(self_ty={:?})",
obligation.self_ty().skip_binder());
// Object-safety candidates are only applicable to object-safe
// traits. Including this check is useful because it helps
// inference in cases of traits like `BorrowFrom`, which are
// not object-safe, and which rely on being able to infer the
// self-type from one of the other inputs. Without this check,
// these cases wind up being considered ambiguous due to a
// (spurious) ambiguity introduced here.
let predicate_trait_ref = obligation.predicate.to_poly_trait_ref();
if !self.tcx().is_object_safe(predicate_trait_ref.def_id()) {
return;
}
self.probe(|this, _snapshot| {
// the code below doesn't care about regions, and the
// self-ty here doesn't escape this probe, so just erase
// any LBR.
let self_ty = this.tcx().erase_late_bound_regions(&obligation.self_ty());
let poly_trait_ref = match self_ty.sty {
ty::TyDynamic(ref data, ..) => {
if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
debug!("assemble_candidates_from_object_ty: matched builtin bound, \
pushing candidate");
candidates.vec.push(BuiltinObjectCandidate);
return;
}
match data.principal() {
Some(p) => p.with_self_ty(this.tcx(), self_ty),
None => return,
}
}
ty::TyInfer(ty::TyVar(_)) => {
debug!("assemble_candidates_from_object_ty: ambiguous");
candidates.ambiguous = true; // could wind up being an object type
return;
}
_ => {
return;
}
};
debug!("assemble_candidates_from_object_ty: poly_trait_ref={:?}",
poly_trait_ref);
// Count only those upcast versions that match the trait-ref
// we are looking for. Specifically, do not only check for the
// correct trait, but also the correct type parameters.
// For example, we may be trying to upcast `Foo` to `Bar<i32>`,
// but `Foo` is declared as `trait Foo : Bar<u32>`.
let upcast_trait_refs =
util::supertraits(this.tcx(), poly_trait_ref)
.filter(|upcast_trait_ref| {
this.probe(|this, _| {
let upcast_trait_ref = upcast_trait_ref.clone();
this.match_poly_trait_ref(obligation, upcast_trait_ref).is_ok()
})
})
.count();
if upcast_trait_refs > 1 {
// can be upcast in many ways; need more type information
candidates.ambiguous = true;
} else if upcast_trait_refs == 1 {
candidates.vec.push(ObjectCandidate);
}
})
}
/// Search for unsizing that might apply to `obligation`.
fn assemble_candidates_for_unsizing(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>) {
// We currently never consider higher-ranked obligations e.g.
// `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
// because they are a priori invalid, and we could potentially add support
// for them later, it's just that there isn't really a strong need for it.
// A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
// impl, and those are generally applied to concrete types.
//
// That said, one might try to write a fn with a where clause like
// for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
// where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
// Still, you'd be more likely to write that where clause as
// T: Trait
// so it seems ok if we (conservatively) fail to accept that `Unsize`
// obligation above. Should be possible to extend this in the future.
let source = match self.tcx().no_late_bound_regions(&obligation.self_ty()) {
Some(t) => t,
None => {
// Don't add any candidates if there are bound regions.
return;
}
};
let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
debug!("assemble_candidates_for_unsizing(source={:?}, target={:?})",
source, target);
let may_apply = match (&source.sty, &target.sty) {
// Trait+Kx+'a -> Trait+Ky+'b (upcasts).
(&ty::TyDynamic(ref data_a, ..), &ty::TyDynamic(ref data_b, ..)) => {
// Upcasts permit two things:
//
// 1. Dropping builtin bounds, e.g. `Foo+Send` to `Foo`
// 2. Tightening the region bound, e.g. `Foo+'a` to `Foo+'b` if `'a : 'b`
//
// Note that neither of these changes requires any
// change at runtime. Eventually this will be
// generalized.
//
// We always upcast when we can because of reason
// #2 (region bounds).
match (data_a.principal(), data_b.principal()) {
(Some(a), Some(b)) => a.def_id() == b.def_id() &&
data_b.auto_traits()
// All of a's auto traits need to be in b's auto traits.
.all(|b| data_a.auto_traits().any(|a| a == b)),
_ => false
}
}
// T -> Trait.
(_, &ty::TyDynamic(..)) => true,
// Ambiguous handling is below T -> Trait, because inference
// variables can still implement Unsize<Trait> and nested
// obligations will have the final say (likely deferred).
(&ty::TyInfer(ty::TyVar(_)), _) |
(_, &ty::TyInfer(ty::TyVar(_))) => {
debug!("assemble_candidates_for_unsizing: ambiguous");
candidates.ambiguous = true;
false
}
// [T; n] -> [T].
(&ty::TyArray(..), &ty::TySlice(_)) => true,
// Struct<T> -> Struct<U>.
(&ty::TyAdt(def_id_a, _), &ty::TyAdt(def_id_b, _)) if def_id_a.is_struct() => {
def_id_a == def_id_b
}
// (.., T) -> (.., U).
(&ty::TyTuple(tys_a, _), &ty::TyTuple(tys_b, _)) => {
tys_a.len() == tys_b.len()
}
_ => false
};
if may_apply {
candidates.vec.push(BuiltinUnsizeCandidate);
}
}
///////////////////////////////////////////////////////////////////////////
// WINNOW
//
// Winnowing is the process of attempting to resolve ambiguity by
// probing further. During the winnowing process, we unify all
// type variables (ignoring skolemization) and then we also
// attempt to evaluate recursive bounds to see if they are
// satisfied.
/// Returns true if `candidate_i` should be dropped in favor of
/// `candidate_j`. Generally speaking we will drop duplicate
/// candidates and prefer where-clause candidates.
/// Returns true if `victim` should be dropped in favor of
/// `other`. Generally speaking we will drop duplicate
/// candidates and prefer where-clause candidates.
///
/// See the comment for "SelectionCandidate" for more details.
fn candidate_should_be_dropped_in_favor_of<'o>(
&mut self,
victim: &EvaluatedCandidate<'tcx>,
other: &EvaluatedCandidate<'tcx>)
-> bool
{
if victim.candidate == other.candidate {
return true;
}
match other.candidate {
ObjectCandidate |
ParamCandidate(_) | ProjectionCandidate => match victim.candidate {
DefaultImplCandidate(..) => {
bug!(
"default implementations shouldn't be recorded \
when there are other valid candidates");
}
ImplCandidate(..) |
ClosureCandidate |
GeneratorCandidate |
FnPointerCandidate |
BuiltinObjectCandidate |
BuiltinUnsizeCandidate |
BuiltinCandidate { .. } => {
// We have a where-clause so don't go around looking
// for impls.
true
}
ObjectCandidate |
ProjectionCandidate => {
// Arbitrarily give param candidates priority
// over projection and object candidates.
true
},
ParamCandidate(..) => false,
},
ImplCandidate(other_def) => {
// See if we can toss out `victim` based on specialization.
// This requires us to know *for sure* that the `other` impl applies
// i.e. EvaluatedToOk:
if other.evaluation == EvaluatedToOk {
if let ImplCandidate(victim_def) = victim.candidate {
let tcx = self.tcx().global_tcx();
return tcx.specializes((other_def, victim_def)) ||
tcx.impls_are_allowed_to_overlap(other_def, victim_def);
}
}
false
},
_ => false
}
}
///////////////////////////////////////////////////////////////////////////
// BUILTIN BOUNDS
//
// These cover the traits that are built-in to the language
// itself. This includes `Copy` and `Sized` for sure. For the
// moment, it also includes `Send` / `Sync` and a few others, but
// those will hopefully change to library-defined traits in the
// future.
// HACK: if this returns an error, selection exits without considering
// other impls.
fn assemble_builtin_bound_candidates<'o>(&mut self,
conditions: BuiltinImplConditions<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
match conditions {
BuiltinImplConditions::Where(nested) => {
debug!("builtin_bound: nested={:?}", nested);
candidates.vec.push(BuiltinCandidate {
has_nested: nested.skip_binder().len() > 0
});
Ok(())
}
BuiltinImplConditions::None => { Ok(()) }
BuiltinImplConditions::Ambiguous => {
debug!("assemble_builtin_bound_candidates: ambiguous builtin");
Ok(candidates.ambiguous = true)
}
BuiltinImplConditions::Never => { Err(Unimplemented) }
}
}
fn sized_conditions(&mut self, obligation: &TraitObligation<'tcx>)
-> BuiltinImplConditions<'tcx>
{
use self::BuiltinImplConditions::{Ambiguous, None, Never, Where};
// NOTE: binder moved to (*)
let self_ty = self.infcx.shallow_resolve(
obligation.predicate.skip_binder().self_ty());
match self_ty.sty {
ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyRawPtr(..) |
ty::TyChar | ty::TyRef(..) | ty::TyGenerator(..) |
ty::TyArray(..) | ty::TyClosure(..) | ty::TyNever |
ty::TyError => {
// safe for everything
Where(ty::Binder(Vec::new()))
}
ty::TyStr | ty::TySlice(_) | ty::TyDynamic(..) => Never,
ty::TyTuple(tys, _) => {
Where(ty::Binder(tys.last().into_iter().cloned().collect()))
}
ty::TyAdt(def, substs) => {
let sized_crit = def.sized_constraint(self.tcx());
// (*) binder moved here
Where(ty::Binder(
sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect()
))
}
ty::TyProjection(_) | ty::TyParam(_) | ty::TyAnon(..) => None,
ty::TyInfer(ty::TyVar(_)) => Ambiguous,
ty::TyInfer(ty::FreshTy(_))
| ty::TyInfer(ty::FreshIntTy(_))
| ty::TyInfer(ty::FreshFloatTy(_)) => {
bug!("asked to assemble builtin bounds of unexpected type: {:?}",
self_ty);
}
}
}
fn copy_clone_conditions(&mut self, obligation: &TraitObligation<'tcx>)
-> BuiltinImplConditions<'tcx>
{
// NOTE: binder moved to (*)
let self_ty = self.infcx.shallow_resolve(
obligation.predicate.skip_binder().self_ty());
use self::BuiltinImplConditions::{Ambiguous, None, Never, Where};
match self_ty.sty {
ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyChar |
ty::TyRawPtr(..) | ty::TyError | ty::TyNever |
ty::TyRef(_, ty::TypeAndMut { ty: _, mutbl: hir::MutImmutable }) => {
Where(ty::Binder(Vec::new()))
}
ty::TyDynamic(..) | ty::TyStr | ty::TySlice(..) | ty::TyGenerator(..) |
ty::TyRef(_, ty::TypeAndMut { ty: _, mutbl: hir::MutMutable }) => {
Never
}
ty::TyArray(element_ty, _) => {
// (*) binder moved here
Where(ty::Binder(vec![element_ty]))
}
ty::TyTuple(tys, _) => {
// (*) binder moved here
Where(ty::Binder(tys.to_vec()))
}
ty::TyClosure(def_id, substs) => {
let trait_id = obligation.predicate.def_id();
let copy_closures =
Some(trait_id) == self.tcx().lang_items().copy_trait() &&
self.tcx().has_copy_closures(def_id.krate);
let clone_closures =
Some(trait_id) == self.tcx().lang_items().clone_trait() &&
self.tcx().has_clone_closures(def_id.krate);
if copy_closures || clone_closures {
Where(ty::Binder(substs.upvar_tys(def_id, self.tcx()).collect()))
} else {
Never
}
}
ty::TyAdt(..) | ty::TyProjection(..) | ty::TyParam(..) | ty::TyAnon(..) => {
// Fallback to whatever user-defined impls exist in this case.
None
}
ty::TyInfer(ty::TyVar(_)) => {
// Unbound type variable. Might or might not have
// applicable impls and so forth, depending on what
// those type variables wind up being bound to.
Ambiguous
}
ty::TyInfer(ty::FreshTy(_))
| ty::TyInfer(ty::FreshIntTy(_))
| ty::TyInfer(ty::FreshFloatTy(_)) => {
bug!("asked to assemble builtin bounds of unexpected type: {:?}",
self_ty);
}
}
}
/// For default impls, we need to break apart a type into its
/// "constituent types" -- meaning, the types that it contains.
///
/// Here are some (simple) examples:
///
/// ```
/// (i32, u32) -> [i32, u32]
/// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
/// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
/// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
/// ```
fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
match t.sty {
ty::TyUint(_) |
ty::TyInt(_) |
ty::TyBool |
ty::TyFloat(_) |
ty::TyFnDef(..) |
ty::TyFnPtr(_) |
ty::TyStr |
ty::TyError |
ty::TyInfer(ty::IntVar(_)) |
ty::TyInfer(ty::FloatVar(_)) |
ty::TyNever |
ty::TyChar => {
Vec::new()
}
ty::TyDynamic(..) |
ty::TyParam(..) |
ty::TyProjection(..) |
ty::TyInfer(ty::TyVar(_)) |
ty::TyInfer(ty::FreshTy(_)) |
ty::TyInfer(ty::FreshIntTy(_)) |
ty::TyInfer(ty::FreshFloatTy(_)) => {
bug!("asked to assemble constituent types of unexpected type: {:?}",
t);
}
ty::TyRawPtr(ty::TypeAndMut { ty: element_ty, ..}) |
ty::TyRef(_, ty::TypeAndMut { ty: element_ty, ..}) => {
vec![element_ty]
},
ty::TyArray(element_ty, _) | ty::TySlice(element_ty) => {
vec![element_ty]
}
ty::TyTuple(ref tys, _) => {
// (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
tys.to_vec()
}
ty::TyClosure(def_id, ref substs) => {
// FIXME(#27086). We are invariant w/r/t our
// func_substs, but we don't see them as
// constituent types; this seems RIGHT but also like
// something that a normal type couldn't simulate. Is
// this just a gap with the way that PhantomData and
// OIBIT interact? That is, there is no way to say
// "make me invariant with respect to this TYPE, but
// do not act as though I can reach it"
substs.upvar_tys(def_id, self.tcx()).collect()
}
ty::TyGenerator(def_id, ref substs, interior) => {
let witness = iter::once(interior.witness);
substs.upvar_tys(def_id, self.tcx()).chain(witness).collect()
}
// for `PhantomData<T>`, we pass `T`
ty::TyAdt(def, substs) if def.is_phantom_data() => {
substs.types().collect()
}
ty::TyAdt(def, substs) => {
def.all_fields()
.map(|f| f.ty(self.tcx(), substs))
.collect()
}
ty::TyAnon(def_id, substs) => {
// We can resolve the `impl Trait` to its concrete type,
// which enforces a DAG between the functions requiring
// the auto trait bounds in question.
vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)]
}
}
}
fn collect_predicates_for_types(&mut self,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
recursion_depth: usize,
trait_def_id: DefId,
types: ty::Binder<Vec<Ty<'tcx>>>)
-> Vec<PredicateObligation<'tcx>>
{
// Because the types were potentially derived from
// higher-ranked obligations they may reference late-bound
// regions. For example, `for<'a> Foo<&'a int> : Copy` would
// yield a type like `for<'a> &'a int`. In general, we
// maintain the invariant that we never manipulate bound
// regions, so we have to process these bound regions somehow.
//
// The strategy is to:
//
// 1. Instantiate those regions to skolemized regions (e.g.,
// `for<'a> &'a int` becomes `&0 int`.
// 2. Produce something like `&'0 int : Copy`
// 3. Re-bind the regions back to `for<'a> &'a int : Copy`
types.skip_binder().into_iter().flat_map(|ty| { // binder moved -\
let ty: ty::Binder<Ty<'tcx>> = ty::Binder(ty); // <----------/
self.in_snapshot(|this, snapshot| {
let (skol_ty, skol_map) =
this.infcx().skolemize_late_bound_regions(&ty, snapshot);
let Normalized { value: normalized_ty, mut obligations } =
project::normalize_with_depth(this,
param_env,
cause.clone(),
recursion_depth,
&skol_ty);
let skol_obligation =
this.tcx().predicate_for_trait_def(param_env,
cause.clone(),
trait_def_id,
recursion_depth,
normalized_ty,
&[]);
obligations.push(skol_obligation);
this.infcx().plug_leaks(skol_map, snapshot, obligations)
})
}).collect()
}
///////////////////////////////////////////////////////////////////////////
// CONFIRMATION
//
// Confirmation unifies the output type parameters of the trait
// with the values found in the obligation, possibly yielding a
// type error. See `README.md` for more details.
fn confirm_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
candidate: SelectionCandidate<'tcx>)
-> Result<Selection<'tcx>,SelectionError<'tcx>>
{
debug!("confirm_candidate({:?}, {:?})",
obligation,
candidate);
match candidate {
BuiltinCandidate { has_nested } => {
let data = self.confirm_builtin_candidate(obligation, has_nested);
Ok(VtableBuiltin(data))
}
ParamCandidate(param) => {
let obligations = self.confirm_param_candidate(obligation, param);
Ok(VtableParam(obligations))
}
DefaultImplCandidate(trait_def_id) => {
let data = self.confirm_default_impl_candidate(obligation, trait_def_id);
Ok(VtableDefaultImpl(data))
}
ImplCandidate(impl_def_id) => {
Ok(VtableImpl(self.confirm_impl_candidate(obligation, impl_def_id)))
}
ClosureCandidate => {
let vtable_closure = self.confirm_closure_candidate(obligation)?;
Ok(VtableClosure(vtable_closure))
}
GeneratorCandidate => {
let vtable_generator = self.confirm_generator_candidate(obligation)?;
Ok(VtableGenerator(vtable_generator))
}
BuiltinObjectCandidate => {
// This indicates something like `(Trait+Send) :
// Send`. In this case, we know that this holds
// because that's what the object type is telling us,
// and there's really no additional obligations to
// prove and no types in particular to unify etc.
Ok(VtableParam(Vec::new()))
}
ObjectCandidate => {
let data = self.confirm_object_candidate(obligation);
Ok(VtableObject(data))
}
FnPointerCandidate => {
let data =
self.confirm_fn_pointer_candidate(obligation)?;
Ok(VtableFnPointer(data))
}
ProjectionCandidate => {
self.confirm_projection_candidate(obligation);
Ok(VtableParam(Vec::new()))
}
BuiltinUnsizeCandidate => {
let data = self.confirm_builtin_unsize_candidate(obligation)?;
Ok(VtableBuiltin(data))
}
}
}
fn confirm_projection_candidate(&mut self,
obligation: &TraitObligation<'tcx>)
{
self.in_snapshot(|this, snapshot| {
let result =
this.match_projection_obligation_against_definition_bounds(obligation,
snapshot);
assert!(result);
})
}
fn confirm_param_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
param: ty::PolyTraitRef<'tcx>)
-> Vec<PredicateObligation<'tcx>>
{
debug!("confirm_param_candidate({:?},{:?})",
obligation,
param);
// During evaluation, we already checked that this
// where-clause trait-ref could be unified with the obligation
// trait-ref. Repeat that unification now without any
// transactional boundary; it should not fail.
match self.match_where_clause_trait_ref(obligation, param.clone()) {
Ok(obligations) => obligations,
Err(()) => {
bug!("Where clause `{:?}` was applicable to `{:?}` but now is not",
param,
obligation);
}
}
}
fn confirm_builtin_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
has_nested: bool)
-> VtableBuiltinData<PredicateObligation<'tcx>>
{
debug!("confirm_builtin_candidate({:?}, {:?})",
obligation, has_nested);
let lang_items = self.tcx().lang_items();
let obligations = if has_nested {
let trait_def = obligation.predicate.def_id();
let conditions = match trait_def {
_ if Some(trait_def) == lang_items.sized_trait() => {
self.sized_conditions(obligation)
}
_ if Some(trait_def) == lang_items.copy_trait() => {
self.copy_clone_conditions(obligation)
}
_ if Some(trait_def) == lang_items.clone_trait() => {
self.copy_clone_conditions(obligation)
}
_ => bug!("unexpected builtin trait {:?}", trait_def)
};
let nested = match conditions {
BuiltinImplConditions::Where(nested) => nested,
_ => bug!("obligation {:?} had matched a builtin impl but now doesn't",
obligation)
};
let cause = obligation.derived_cause(BuiltinDerivedObligation);
self.collect_predicates_for_types(obligation.param_env,
cause,
obligation.recursion_depth+1,
trait_def,
nested)
} else {
vec![]
};
debug!("confirm_builtin_candidate: obligations={:?}",
obligations);
VtableBuiltinData { nested: obligations }
}
/// This handles the case where a `impl Foo for ..` impl is being used.
/// The idea is that the impl applies to `X : Foo` if the following conditions are met:
///
/// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
/// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
fn confirm_default_impl_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
trait_def_id: DefId)
-> VtableDefaultImplData<PredicateObligation<'tcx>>
{
debug!("confirm_default_impl_candidate({:?}, {:?})",
obligation,
trait_def_id);
// binder is moved below
let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
let types = self.constituent_types_for_ty(self_ty);
self.vtable_default_impl(obligation, trait_def_id, ty::Binder(types))
}
/// See `confirm_default_impl_candidate`
fn vtable_default_impl(&mut self,
obligation: &TraitObligation<'tcx>,
trait_def_id: DefId,
nested: ty::Binder<Vec<Ty<'tcx>>>)
-> VtableDefaultImplData<PredicateObligation<'tcx>>
{
debug!("vtable_default_impl: nested={:?}", nested);
let cause = obligation.derived_cause(BuiltinDerivedObligation);
let mut obligations = self.collect_predicates_for_types(
obligation.param_env,
cause,
obligation.recursion_depth+1,
trait_def_id,
nested);
let trait_obligations = self.in_snapshot(|this, snapshot| {
let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
let (trait_ref, skol_map) =
this.infcx().skolemize_late_bound_regions(&poly_trait_ref, snapshot);
let cause = obligation.derived_cause(ImplDerivedObligation);
this.impl_or_trait_obligations(cause,
obligation.recursion_depth + 1,
obligation.param_env,
trait_def_id,
&trait_ref.substs,
skol_map,
snapshot)
});
obligations.extend(trait_obligations);
debug!("vtable_default_impl: obligations={:?}", obligations);
VtableDefaultImplData {
trait_def_id,
nested: obligations
}
}
fn confirm_impl_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
impl_def_id: DefId)
-> VtableImplData<'tcx, PredicateObligation<'tcx>>
{
debug!("confirm_impl_candidate({:?},{:?})",
obligation,
impl_def_id);
// First, create the substitutions by matching the impl again,
// this time not in a probe.
self.in_snapshot(|this, snapshot| {
let (substs, skol_map) =
this.rematch_impl(impl_def_id, obligation,
snapshot);
debug!("confirm_impl_candidate substs={:?}", substs);
let cause = obligation.derived_cause(ImplDerivedObligation);
this.vtable_impl(impl_def_id,
substs,
cause,
obligation.recursion_depth + 1,
obligation.param_env,
skol_map,
snapshot)
})
}
fn vtable_impl(&mut self,
impl_def_id: DefId,
mut substs: Normalized<'tcx, &'tcx Substs<'tcx>>,
cause: ObligationCause<'tcx>,
recursion_depth: usize,
param_env: ty::ParamEnv<'tcx>,
skol_map: infer::SkolemizationMap<'tcx>,
snapshot: &infer::CombinedSnapshot)
-> VtableImplData<'tcx, PredicateObligation<'tcx>>
{
debug!("vtable_impl(impl_def_id={:?}, substs={:?}, recursion_depth={}, skol_map={:?})",
impl_def_id,
substs,
recursion_depth,
skol_map);
let mut impl_obligations =
self.impl_or_trait_obligations(cause,
recursion_depth,
param_env,
impl_def_id,
&substs.value,
skol_map,
snapshot);
debug!("vtable_impl: impl_def_id={:?} impl_obligations={:?}",
impl_def_id,
impl_obligations);
// Because of RFC447, the impl-trait-ref and obligations
// are sufficient to determine the impl substs, without
// relying on projections in the impl-trait-ref.
//
// e.g. `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
impl_obligations.append(&mut substs.obligations);
VtableImplData { impl_def_id,
substs: substs.value,
nested: impl_obligations }
}
fn confirm_object_candidate(&mut self,
obligation: &TraitObligation<'tcx>)
-> VtableObjectData<'tcx, PredicateObligation<'tcx>>
{
debug!("confirm_object_candidate({:?})",
obligation);
// FIXME skipping binder here seems wrong -- we should
// probably flatten the binder from the obligation and the
// binder from the object. Have to try to make a broken test
// case that results. -nmatsakis
let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
let poly_trait_ref = match self_ty.sty {
ty::TyDynamic(ref data, ..) => {
data.principal().unwrap().with_self_ty(self.tcx(), self_ty)
}
_ => {
span_bug!(obligation.cause.span,
"object candidate with non-object");
}
};
let mut upcast_trait_ref = None;
let vtable_base;
{
let tcx = self.tcx();
// We want to find the first supertrait in the list of
// supertraits that we can unify with, and do that
// unification. We know that there is exactly one in the list
// where we can unify because otherwise select would have
// reported an ambiguity. (When we do find a match, also
// record it for later.)
let nonmatching =
util::supertraits(tcx, poly_trait_ref)
.take_while(|&t| {
match
self.commit_if_ok(
|this, _| this.match_poly_trait_ref(obligation, t))
{
Ok(_) => { upcast_trait_ref = Some(t); false }
Err(_) => { true }
}
});
// Additionally, for each of the nonmatching predicates that
// we pass over, we sum up the set of number of vtable
// entries, so that we can compute the offset for the selected
// trait.
vtable_base =
nonmatching.map(|t| tcx.count_own_vtable_entries(t))
.sum();
}
VtableObjectData {
upcast_trait_ref: upcast_trait_ref.unwrap(),
vtable_base,
nested: vec![]
}
}
fn confirm_fn_pointer_candidate(&mut self, obligation: &TraitObligation<'tcx>)
-> Result<VtableFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>>
{
debug!("confirm_fn_pointer_candidate({:?})",
obligation);
// ok to skip binder; it is reintroduced below
let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
let sig = self_ty.fn_sig(self.tcx());
let trait_ref =
self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
self_ty,
sig,
util::TupleArgumentsFlag::Yes)
.map_bound(|(trait_ref, _)| trait_ref);
let Normalized { value: trait_ref, obligations } =
project::normalize_with_depth(self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
&trait_ref);
self.confirm_poly_trait_refs(obligation.cause.clone(),
obligation.param_env,
obligation.predicate.to_poly_trait_ref(),
trait_ref)?;
Ok(VtableFnPointerData { fn_ty: self_ty, nested: obligations })
}
fn confirm_generator_candidate(&mut self,
obligation: &TraitObligation<'tcx>)
-> Result<VtableGeneratorData<'tcx, PredicateObligation<'tcx>>,
SelectionError<'tcx>>
{
// ok to skip binder because the substs on generator types never
// touch bound regions, they just capture the in-scope
// type/region parameters
let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
let (closure_def_id, substs) = match self_ty.sty {
ty::TyGenerator(id, substs, _) => (id, substs),
_ => bug!("closure candidate for non-closure {:?}", obligation)
};
debug!("confirm_generator_candidate({:?},{:?},{:?})",
obligation,
closure_def_id,
substs);
let trait_ref =
self.generator_trait_ref_unnormalized(obligation, closure_def_id, substs);
let Normalized {
value: trait_ref,
obligations
} = normalize_with_depth(self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth+1,
&trait_ref);
debug!("confirm_generator_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
closure_def_id,
trait_ref,
obligations);
self.confirm_poly_trait_refs(obligation.cause.clone(),
obligation.param_env,
obligation.predicate.to_poly_trait_ref(),
trait_ref)?;
Ok(VtableGeneratorData {
closure_def_id: closure_def_id,
substs: substs.clone(),
nested: obligations
})
}
fn confirm_closure_candidate(&mut self,
obligation: &TraitObligation<'tcx>)
-> Result<VtableClosureData<'tcx, PredicateObligation<'tcx>>,
SelectionError<'tcx>>
{
debug!("confirm_closure_candidate({:?})", obligation);
let kind = match self.tcx().lang_items().fn_trait_kind(obligation.predicate.0.def_id()) {
Some(k) => k,
None => bug!("closure candidate for non-fn trait {:?}", obligation)
};
// ok to skip binder because the substs on closure types never
// touch bound regions, they just capture the in-scope
// type/region parameters
let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
let (closure_def_id, substs) = match self_ty.sty {
ty::TyClosure(id, substs) => (id, substs),
_ => bug!("closure candidate for non-closure {:?}", obligation)
};
let trait_ref =
self.closure_trait_ref_unnormalized(obligation, closure_def_id, substs);
let Normalized {
value: trait_ref,
mut obligations
} = normalize_with_depth(self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth+1,
&trait_ref);
debug!("confirm_closure_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
closure_def_id,
trait_ref,
obligations);
self.confirm_poly_trait_refs(obligation.cause.clone(),
obligation.param_env,
obligation.predicate.to_poly_trait_ref(),
trait_ref)?;
obligations.push(Obligation::new(
obligation.cause.clone(),
obligation.param_env,
ty::Predicate::ClosureKind(closure_def_id, kind)));
Ok(VtableClosureData {
closure_def_id,
substs: substs.clone(),
nested: obligations
})
}
/// In the case of closure types and fn pointers,
/// we currently treat the input type parameters on the trait as
/// outputs. This means that when we have a match we have only
/// considered the self type, so we have to go back and make sure
/// to relate the argument types too. This is kind of wrong, but
/// since we control the full set of impls, also not that wrong,
/// and it DOES yield better error messages (since we don't report
/// errors as if there is no applicable impl, but rather report
/// errors are about mismatched argument types.
///
/// Here is an example. Imagine we have a closure expression
/// and we desugared it so that the type of the expression is
/// `Closure`, and `Closure` expects an int as argument. Then it
/// is "as if" the compiler generated this impl:
///
/// impl Fn(int) for Closure { ... }
///
/// Now imagine our obligation is `Fn(usize) for Closure`. So far
/// we have matched the self-type `Closure`. At this point we'll
/// compare the `int` to `usize` and generate an error.
///
/// Note that this checking occurs *after* the impl has selected,
/// because these output type parameters should not affect the
/// selection of the impl. Therefore, if there is a mismatch, we
/// report an error to the user.
fn confirm_poly_trait_refs(&mut self,
obligation_cause: ObligationCause<'tcx>,
obligation_param_env: ty::ParamEnv<'tcx>,
obligation_trait_ref: ty::PolyTraitRef<'tcx>,
expected_trait_ref: ty::PolyTraitRef<'tcx>)
-> Result<(), SelectionError<'tcx>>
{
let obligation_trait_ref = obligation_trait_ref.clone();
self.infcx
.at(&obligation_cause, obligation_param_env)
.sup(obligation_trait_ref, expected_trait_ref)
.map(|InferOk { obligations, .. }| self.inferred_obligations.extend(obligations))
.map_err(|e| OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
}
fn confirm_builtin_unsize_candidate(&mut self,
obligation: &TraitObligation<'tcx>,)
-> Result<VtableBuiltinData<PredicateObligation<'tcx>>, SelectionError<'tcx>>
{
let tcx = self.tcx();
// assemble_candidates_for_unsizing should ensure there are no late bound
// regions here. See the comment there for more details.
let source = self.infcx.shallow_resolve(
tcx.no_late_bound_regions(&obligation.self_ty()).unwrap());
let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
let target = self.infcx.shallow_resolve(target);
debug!("confirm_builtin_unsize_candidate(source={:?}, target={:?})",
source, target);
let mut nested = vec![];
match (&source.sty, &target.sty) {
// Trait+Kx+'a -> Trait+Ky+'b (upcasts).
(&ty::TyDynamic(ref data_a, r_a), &ty::TyDynamic(ref data_b, r_b)) => {
// See assemble_candidates_for_unsizing for more info.
// Binders reintroduced below in call to mk_existential_predicates.
let principal = data_a.skip_binder().principal();
let iter = principal.into_iter().map(ty::ExistentialPredicate::Trait)
.chain(data_a.skip_binder().projection_bounds()
.map(|x| ty::ExistentialPredicate::Projection(x)))
.chain(data_b.auto_traits().map(ty::ExistentialPredicate::AutoTrait));
let new_trait = tcx.mk_dynamic(
ty::Binder(tcx.mk_existential_predicates(iter)), r_b);
let InferOk { obligations, .. } =
self.infcx.at(&obligation.cause, obligation.param_env)
.eq(target, new_trait)
.map_err(|_| Unimplemented)?;
self.inferred_obligations.extend(obligations);
// Register one obligation for 'a: 'b.
let cause = ObligationCause::new(obligation.cause.span,
obligation.cause.body_id,
ObjectCastObligation(target));
let outlives = ty::OutlivesPredicate(r_a, r_b);
nested.push(Obligation::with_depth(cause,
obligation.recursion_depth + 1,
obligation.param_env,
ty::Binder(outlives).to_predicate()));
}
// T -> Trait.
(_, &ty::TyDynamic(ref data, r)) => {
let mut object_dids =
data.auto_traits().chain(data.principal().map(|p| p.def_id()));
if let Some(did) = object_dids.find(|did| {
!tcx.is_object_safe(*did)
}) {
return Err(TraitNotObjectSafe(did))
}
let cause = ObligationCause::new(obligation.cause.span,
obligation.cause.body_id,
ObjectCastObligation(target));
let mut push = |predicate| {
nested.push(Obligation::with_depth(cause.clone(),
obligation.recursion_depth + 1,
obligation.param_env,
predicate));
};
// Create obligations:
// - Casting T to Trait
// - For all the various builtin bounds attached to the object cast. (In other
// words, if the object type is Foo+Send, this would create an obligation for the
// Send check.)
// - Projection predicates
for predicate in data.iter() {
push(predicate.with_self_ty(tcx, source));
}
// We can only make objects from sized types.
let tr = ty::TraitRef {
def_id: tcx.require_lang_item(lang_items::SizedTraitLangItem),
substs: tcx.mk_substs_trait(source, &[]),
};
push(tr.to_predicate());
// If the type is `Foo+'a`, ensures that the type
// being cast to `Foo+'a` outlives `'a`:
let outlives = ty::OutlivesPredicate(source, r);
push(ty::Binder(outlives).to_predicate());
}
// [T; n] -> [T].
(&ty::TyArray(a, _), &ty::TySlice(b)) => {
let InferOk { obligations, .. } =
self.infcx.at(&obligation.cause, obligation.param_env)
.eq(b, a)
.map_err(|_| Unimplemented)?;
self.inferred_obligations.extend(obligations);
}
// Struct<T> -> Struct<U>.
(&ty::TyAdt(def, substs_a), &ty::TyAdt(_, substs_b)) => {
let fields = def
.all_fields()
.map(|f| tcx.type_of(f.did))
.collect::<Vec<_>>();
// The last field of the structure has to exist and contain type parameters.
let field = if let Some(&field) = fields.last() {
field
} else {
return Err(Unimplemented);
};
let mut ty_params = BitVector::new(substs_a.types().count());
let mut found = false;
for ty in field.walk() {
if let ty::TyParam(p) = ty.sty {
ty_params.insert(p.idx as usize);
found = true;
}
}
if !found {
return Err(Unimplemented);
}
// Replace type parameters used in unsizing with
// TyError and ensure they do not affect any other fields.
// This could be checked after type collection for any struct
// with a potentially unsized trailing field.
let params = substs_a.iter().enumerate().map(|(i, &k)| {
if ty_params.contains(i) {
Kind::from(tcx.types.err)
} else {
k
}
});
let substs = tcx.mk_substs(params);
for &ty in fields.split_last().unwrap().1 {
if ty.subst(tcx, substs).references_error() {
return Err(Unimplemented);
}
}
// Extract Field<T> and Field<U> from Struct<T> and Struct<U>.
let inner_source = field.subst(tcx, substs_a);
let inner_target = field.subst(tcx, substs_b);
// Check that the source struct with the target's
// unsized parameters is equal to the target.
let params = substs_a.iter().enumerate().map(|(i, &k)| {
if ty_params.contains(i) {
Kind::from(substs_b.type_at(i))
} else {
k
}
});
let new_struct = tcx.mk_adt(def, tcx.mk_substs(params));
let InferOk { obligations, .. } =
self.infcx.at(&obligation.cause, obligation.param_env)
.eq(target, new_struct)
.map_err(|_| Unimplemented)?;
self.inferred_obligations.extend(obligations);
// Construct the nested Field<T>: Unsize<Field<U>> predicate.
nested.push(tcx.predicate_for_trait_def(
obligation.param_env,
obligation.cause.clone(),
obligation.predicate.def_id(),
obligation.recursion_depth + 1,
inner_source,
&[inner_target]));
}
// (.., T) -> (.., U).
(&ty::TyTuple(tys_a, _), &ty::TyTuple(tys_b, _)) => {
assert_eq!(tys_a.len(), tys_b.len());
// The last field of the tuple has to exist.
let (a_last, a_mid) = if let Some(x) = tys_a.split_last() {
x
} else {
return Err(Unimplemented);
};
let b_last = tys_b.last().unwrap();
// Check that the source tuple with the target's
// last element is equal to the target.
let new_tuple = tcx.mk_tup(a_mid.iter().chain(Some(b_last)), false);
let InferOk { obligations, .. } =
self.infcx.at(&obligation.cause, obligation.param_env)
.eq(target, new_tuple)
.map_err(|_| Unimplemented)?;
self.inferred_obligations.extend(obligations);
// Construct the nested T: Unsize<U> predicate.
nested.push(tcx.predicate_for_trait_def(
obligation.param_env,
obligation.cause.clone(),
obligation.predicate.def_id(),
obligation.recursion_depth + 1,
a_last,
&[b_last]));
}
_ => bug!()
};
Ok(VtableBuiltinData { nested: nested })
}
///////////////////////////////////////////////////////////////////////////
// Matching
//
// Matching is a common path used for both evaluation and
// confirmation. It basically unifies types that appear in impls
// and traits. This does affect the surrounding environment;
// therefore, when used during evaluation, match routines must be
// run inside of a `probe()` so that their side-effects are
// contained.
fn rematch_impl(&mut self,
impl_def_id: DefId,
obligation: &TraitObligation<'tcx>,
snapshot: &infer::CombinedSnapshot)
-> (Normalized<'tcx, &'tcx Substs<'tcx>>,
infer::SkolemizationMap<'tcx>)
{
match self.match_impl(impl_def_id, obligation, snapshot) {
Ok((substs, skol_map)) => (substs, skol_map),
Err(()) => {
bug!("Impl {:?} was matchable against {:?} but now is not",
impl_def_id,
obligation);
}
}
}
fn match_impl(&mut self,
impl_def_id: DefId,
obligation: &TraitObligation<'tcx>,
snapshot: &infer::CombinedSnapshot)
-> Result<(Normalized<'tcx, &'tcx Substs<'tcx>>,
infer::SkolemizationMap<'tcx>), ()>
{
let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
// Before we create the substitutions and everything, first
// consider a "quick reject". This avoids creating more types
// and so forth that we need to.
if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
return Err(());
}
let (skol_obligation, skol_map) = self.infcx().skolemize_late_bound_regions(
&obligation.predicate,
snapshot);
let skol_obligation_trait_ref = skol_obligation.trait_ref;
let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span,
impl_def_id);
let impl_trait_ref = impl_trait_ref.subst(self.tcx(),
impl_substs);
let impl_trait_ref =
project::normalize_with_depth(self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
&impl_trait_ref);
debug!("match_impl(impl_def_id={:?}, obligation={:?}, \
impl_trait_ref={:?}, skol_obligation_trait_ref={:?})",
impl_def_id,
obligation,
impl_trait_ref,
skol_obligation_trait_ref);
let InferOk { obligations, .. } =
self.infcx.at(&obligation.cause, obligation.param_env)
.eq(skol_obligation_trait_ref, impl_trait_ref.value)
.map_err(|e| {
debug!("match_impl: failed eq_trait_refs due to `{}`", e);
()
})?;
self.inferred_obligations.extend(obligations);
if let Err(e) = self.infcx.leak_check(false,
obligation.cause.span,
&skol_map,
snapshot) {
debug!("match_impl: failed leak check due to `{}`", e);
return Err(());
}
debug!("match_impl: success impl_substs={:?}", impl_substs);
Ok((Normalized {
value: impl_substs,
obligations: impl_trait_ref.obligations
}, skol_map))
}
fn fast_reject_trait_refs(&mut self,
obligation: &TraitObligation,
impl_trait_ref: &ty::TraitRef)
-> bool
{
// We can avoid creating type variables and doing the full
// substitution if we find that any of the input types, when
// simplified, do not match.
obligation.predicate.skip_binder().input_types()
.zip(impl_trait_ref.input_types())
.any(|(obligation_ty, impl_ty)| {
let simplified_obligation_ty =
fast_reject::simplify_type(self.tcx(), obligation_ty, true);
let simplified_impl_ty =
fast_reject::simplify_type(self.tcx(), impl_ty, false);
simplified_obligation_ty.is_some() &&
simplified_impl_ty.is_some() &&
simplified_obligation_ty != simplified_impl_ty
})
}
/// Normalize `where_clause_trait_ref` and try to match it against
/// `obligation`. If successful, return any predicates that
/// result from the normalization. Normalization is necessary
/// because where-clauses are stored in the parameter environment
/// unnormalized.
fn match_where_clause_trait_ref(&mut self,
obligation: &TraitObligation<'tcx>,
where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
-> Result<Vec<PredicateObligation<'tcx>>,()>
{
self.match_poly_trait_ref(obligation, where_clause_trait_ref)?;
Ok(Vec::new())
}
/// Returns `Ok` if `poly_trait_ref` being true implies that the
/// obligation is satisfied.
fn match_poly_trait_ref(&mut self,
obligation: &TraitObligation<'tcx>,
poly_trait_ref: ty::PolyTraitRef<'tcx>)
-> Result<(),()>
{
debug!("match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
obligation,
poly_trait_ref);
self.infcx.at(&obligation.cause, obligation.param_env)
.sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
.map(|InferOk { obligations, .. }| self.inferred_obligations.extend(obligations))
.map_err(|_| ())
}
///////////////////////////////////////////////////////////////////////////
// Miscellany
fn match_fresh_trait_refs(&self,
previous: &ty::PolyTraitRef<'tcx>,
current: &ty::PolyTraitRef<'tcx>)
-> bool
{
let mut matcher = ty::_match::Match::new(self.tcx());
matcher.relate(previous, current).is_ok()
}
fn push_stack<'o,'s:'o>(&mut self,
previous_stack: TraitObligationStackList<'s, 'tcx>,
obligation: &'o TraitObligation<'tcx>)
-> TraitObligationStack<'o, 'tcx>
{
let fresh_trait_ref =
obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
TraitObligationStack {
obligation,
fresh_trait_ref,
previous: previous_stack,
}
}
fn closure_trait_ref_unnormalized(&mut self,
obligation: &TraitObligation<'tcx>,
closure_def_id: DefId,
substs: ty::ClosureSubsts<'tcx>)
-> ty::PolyTraitRef<'tcx>
{
let closure_type = self.infcx.fn_sig(closure_def_id)
.subst(self.tcx(), substs.substs);
let ty::Binder((trait_ref, _)) =
self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
obligation.predicate.0.self_ty(), // (1)
closure_type,
util::TupleArgumentsFlag::No);
// (1) Feels icky to skip the binder here, but OTOH we know
// that the self-type is an unboxed closure type and hence is
// in fact unparameterized (or at least does not reference any
// regions bound in the obligation). Still probably some
// refactoring could make this nicer.
ty::Binder(trait_ref)
}
fn generator_trait_ref_unnormalized(&mut self,
obligation: &TraitObligation<'tcx>,
closure_def_id: DefId,
substs: ty::ClosureSubsts<'tcx>)
-> ty::PolyTraitRef<'tcx>
{
let gen_sig = self.infcx.generator_sig(closure_def_id).unwrap()
.subst(self.tcx(), substs.substs);
let ty::Binder((trait_ref, ..)) =
self.tcx().generator_trait_ref_and_outputs(obligation.predicate.def_id(),
obligation.predicate.0.self_ty(), // (1)
gen_sig);
// (1) Feels icky to skip the binder here, but OTOH we know
// that the self-type is an generator type and hence is
// in fact unparameterized (or at least does not reference any
// regions bound in the obligation). Still probably some
// refactoring could make this nicer.
ty::Binder(trait_ref)
}
/// Returns the obligations that are implied by instantiating an
/// impl or trait. The obligations are substituted and fully
/// normalized. This is used when confirming an impl or default
/// impl.
fn impl_or_trait_obligations(&mut self,
cause: ObligationCause<'tcx>,
recursion_depth: usize,
param_env: ty::ParamEnv<'tcx>,
def_id: DefId, // of impl or trait
substs: &Substs<'tcx>, // for impl or trait
skol_map: infer::SkolemizationMap<'tcx>,
snapshot: &infer::CombinedSnapshot)
-> Vec<PredicateObligation<'tcx>>
{
debug!("impl_or_trait_obligations(def_id={:?})", def_id);
let tcx = self.tcx();
// To allow for one-pass evaluation of the nested obligation,
// each predicate must be preceded by the obligations required
// to normalize it.
// for example, if we have:
// impl<U: Iterator, V: Iterator<Item=U>> Foo for V where U::Item: Copy
// the impl will have the following predicates:
// <V as Iterator>::Item = U,
// U: Iterator, U: Sized,
// V: Iterator, V: Sized,
// <U as Iterator>::Item: Copy
// When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
// obligation will normalize to `<$0 as Iterator>::Item = $1` and
// `$1: Copy`, so we must ensure the obligations are emitted in
// that order.
let predicates = tcx.predicates_of(def_id);
assert_eq!(predicates.parent, None);
let predicates = predicates.predicates.iter().flat_map(|predicate| {
let predicate = normalize_with_depth(self, param_env, cause.clone(), recursion_depth,
&predicate.subst(tcx, substs));
predicate.obligations.into_iter().chain(
Some(Obligation {
cause: cause.clone(),
recursion_depth,
param_env,
predicate: predicate.value
}))
}).collect();
self.infcx().plug_leaks(skol_map, snapshot, predicates)
}
}
impl<'tcx> TraitObligation<'tcx> {
#[allow(unused_comparisons)]
pub fn derived_cause(&self,
variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>)
-> ObligationCause<'tcx>
{
/*!
* Creates a cause for obligations that are derived from
* `obligation` by a recursive search (e.g., for a builtin
* bound, or eventually a `impl Foo for ..`). If `obligation`
* is itself a derived obligation, this is just a clone, but
* otherwise we create a "derived obligation" cause so as to
* keep track of the original root obligation for error
* reporting.
*/
let obligation = self;
// NOTE(flaper87): As of now, it keeps track of the whole error
// chain. Ideally, we should have a way to configure this either
// by using -Z verbose or just a CLI argument.
if obligation.recursion_depth >= 0 {
let derived_cause = DerivedObligationCause {
parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
parent_code: Rc::new(obligation.cause.code.clone())
};
let derived_code = variant(derived_cause);
ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
} else {
obligation.cause.clone()
}
}
}
impl<'tcx> SelectionCache<'tcx> {
pub fn new() -> SelectionCache<'tcx> {
SelectionCache {
hashmap: RefCell::new(FxHashMap())
}
}
}
impl<'tcx> EvaluationCache<'tcx> {
pub fn new() -> EvaluationCache<'tcx> {
EvaluationCache {
hashmap: RefCell::new(FxHashMap())
}
}
}
impl<'o,'tcx> TraitObligationStack<'o,'tcx> {
fn list(&'o self) -> TraitObligationStackList<'o,'tcx> {
TraitObligationStackList::with(self)
}
fn iter(&'o self) -> TraitObligationStackList<'o,'tcx> {
self.list()
}
}
#[derive(Copy, Clone)]
struct TraitObligationStackList<'o,'tcx:'o> {
head: Option<&'o TraitObligationStack<'o,'tcx>>
}
impl<'o,'tcx> TraitObligationStackList<'o,'tcx> {
fn empty() -> TraitObligationStackList<'o,'tcx> {
TraitObligationStackList { head: None }
}
fn with(r: &'o TraitObligationStack<'o,'tcx>) -> TraitObligationStackList<'o,'tcx> {
TraitObligationStackList { head: Some(r) }
}
}
impl<'o,'tcx> Iterator for TraitObligationStackList<'o,'tcx>{
type Item = &'o TraitObligationStack<'o,'tcx>;
fn next(&mut self) -> Option<&'o TraitObligationStack<'o,'tcx>> {
match self.head {
Some(o) => {
*self = o.previous;
Some(o)
}
None => None
}
}
}
impl<'o,'tcx> fmt::Debug for TraitObligationStack<'o,'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "TraitObligationStack({:?})", self.obligation)
}
}
#[derive(Clone)]
pub struct WithDepNode<T> {
dep_node: DepNodeIndex,
cached_value: T
}
impl<T: Clone> WithDepNode<T> {
pub fn new(dep_node: DepNodeIndex, cached_value: T) -> Self {
WithDepNode { dep_node, cached_value }
}
pub fn get(&self, tcx: TyCtxt) -> T {
tcx.dep_graph.read_index(self.dep_node);
self.cached_value.clone()
}
}