| //! Partitioning Codegen Units for Incremental Compilation |
| //! ====================================================== |
| //! |
| //! The task of this module is to take the complete set of monomorphizations of |
| //! a crate and produce a set of codegen units from it, where a codegen unit |
| //! is a named set of (mono-item, linkage) pairs. That is, this module |
| //! decides which monomorphization appears in which codegen units with which |
| //! linkage. The following paragraphs describe some of the background on the |
| //! partitioning scheme. |
| //! |
| //! The most important opportunity for saving on compilation time with |
| //! incremental compilation is to avoid re-codegenning and re-optimizing code. |
| //! Since the unit of codegen and optimization for LLVM is "modules" or, how |
| //! we call them "codegen units", the particulars of how much time can be saved |
| //! by incremental compilation are tightly linked to how the output program is |
| //! partitioned into these codegen units prior to passing it to LLVM -- |
| //! especially because we have to treat codegen units as opaque entities once |
| //! they are created: There is no way for us to incrementally update an existing |
| //! LLVM module and so we have to build any such module from scratch if it was |
| //! affected by some change in the source code. |
| //! |
| //! From that point of view it would make sense to maximize the number of |
| //! codegen units by, for example, putting each function into its own module. |
| //! That way only those modules would have to be re-compiled that were actually |
| //! affected by some change, minimizing the number of functions that could have |
| //! been re-used but just happened to be located in a module that is |
| //! re-compiled. |
| //! |
| //! However, since LLVM optimization does not work across module boundaries, |
| //! using such a highly granular partitioning would lead to very slow runtime |
| //! code since it would effectively prohibit inlining and other inter-procedure |
| //! optimizations. We want to avoid that as much as possible. |
| //! |
| //! Thus we end up with a trade-off: The bigger the codegen units, the better |
| //! LLVM's optimizer can do its work, but also the smaller the compilation time |
| //! reduction we get from incremental compilation. |
| //! |
| //! Ideally, we would create a partitioning such that there are few big codegen |
| //! units with few interdependencies between them. For now though, we use the |
| //! following heuristic to determine the partitioning: |
| //! |
| //! - There are two codegen units for every source-level module: |
| //! - One for "stable", that is non-generic, code |
| //! - One for more "volatile" code, i.e., monomorphized instances of functions |
| //! defined in that module |
| //! |
| //! In order to see why this heuristic makes sense, let's take a look at when a |
| //! codegen unit can get invalidated: |
| //! |
| //! 1. The most straightforward case is when the BODY of a function or global |
| //! changes. Then any codegen unit containing the code for that item has to be |
| //! re-compiled. Note that this includes all codegen units where the function |
| //! has been inlined. |
| //! |
| //! 2. The next case is when the SIGNATURE of a function or global changes. In |
| //! this case, all codegen units containing a REFERENCE to that item have to be |
| //! re-compiled. This is a superset of case 1. |
| //! |
| //! 3. The final and most subtle case is when a REFERENCE to a generic function |
| //! is added or removed somewhere. Even though the definition of the function |
| //! might be unchanged, a new REFERENCE might introduce a new monomorphized |
| //! instance of this function which has to be placed and compiled somewhere. |
| //! Conversely, when removing a REFERENCE, it might have been the last one with |
| //! that particular set of generic arguments and thus we have to remove it. |
| //! |
| //! From the above we see that just using one codegen unit per source-level |
| //! module is not such a good idea, since just adding a REFERENCE to some |
| //! generic item somewhere else would invalidate everything within the module |
| //! containing the generic item. The heuristic above reduces this detrimental |
| //! side-effect of references a little by at least not touching the non-generic |
| //! code of the module. |
| //! |
| //! A Note on Inlining |
| //! ------------------ |
| //! As briefly mentioned above, in order for LLVM to be able to inline a |
| //! function call, the body of the function has to be available in the LLVM |
| //! module where the call is made. This has a few consequences for partitioning: |
| //! |
| //! - The partitioning algorithm has to take care of placing functions into all |
| //! codegen units where they should be available for inlining. It also has to |
| //! decide on the correct linkage for these functions. |
| //! |
| //! - The partitioning algorithm has to know which functions are likely to get |
| //! inlined, so it can distribute function instantiations accordingly. Since |
| //! there is no way of knowing for sure which functions LLVM will decide to |
| //! inline in the end, we apply a heuristic here: Only functions marked with |
| //! `#[inline]` are considered for inlining by the partitioner. The current |
| //! implementation will not try to determine if a function is likely to be |
| //! inlined by looking at the functions definition. |
| //! |
| //! Note though that as a side-effect of creating a codegen units per |
| //! source-level module, functions from the same module will be available for |
| //! inlining, even when they are not marked `#[inline]`. |
| |
| use std::cmp; |
| use std::collections::hash_map::Entry; |
| use std::fs::{self, File}; |
| use std::io::{BufWriter, Write}; |
| use std::path::{Path, PathBuf}; |
| |
| use rustc_data_structures::fx::{FxIndexMap, FxIndexSet}; |
| use rustc_data_structures::sync; |
| use rustc_data_structures::unord::{UnordMap, UnordSet}; |
| use rustc_hir::def::DefKind; |
| use rustc_hir::def_id::{DefId, DefIdSet, LOCAL_CRATE}; |
| use rustc_hir::definitions::DefPathDataName; |
| use rustc_hir::LangItem; |
| use rustc_middle::bug; |
| use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags; |
| use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel}; |
| use rustc_middle::mir::mono::{ |
| CodegenUnit, CodegenUnitNameBuilder, InstantiationMode, Linkage, MonoItem, MonoItemData, |
| Visibility, |
| }; |
| use rustc_middle::ty::print::{characteristic_def_id_of_type, with_no_trimmed_paths}; |
| use rustc_middle::ty::visit::TypeVisitableExt; |
| use rustc_middle::ty::{self, InstanceKind, TyCtxt}; |
| use rustc_middle::util::Providers; |
| use rustc_session::config::{DumpMonoStatsFormat, SwitchWithOptPath}; |
| use rustc_session::CodegenUnits; |
| use rustc_span::symbol::Symbol; |
| use tracing::debug; |
| |
| use crate::collector::{self, MonoItemCollectionStrategy, UsageMap}; |
| use crate::errors::{CouldntDumpMonoStats, SymbolAlreadyDefined, UnknownCguCollectionMode}; |
| |
| struct PartitioningCx<'a, 'tcx> { |
| tcx: TyCtxt<'tcx>, |
| usage_map: &'a UsageMap<'tcx>, |
| } |
| |
| struct PlacedMonoItems<'tcx> { |
| /// The codegen units, sorted by name to make things deterministic. |
| codegen_units: Vec<CodegenUnit<'tcx>>, |
| |
| internalization_candidates: UnordSet<MonoItem<'tcx>>, |
| } |
| |
| // The output CGUs are sorted by name. |
| fn partition<'tcx, I>( |
| tcx: TyCtxt<'tcx>, |
| mono_items: I, |
| usage_map: &UsageMap<'tcx>, |
| ) -> Vec<CodegenUnit<'tcx>> |
| where |
| I: Iterator<Item = MonoItem<'tcx>>, |
| { |
| let _prof_timer = tcx.prof.generic_activity("cgu_partitioning"); |
| |
| let cx = &PartitioningCx { tcx, usage_map }; |
| |
| // Place all mono items into a codegen unit. `place_mono_items` is |
| // responsible for initializing the CGU size estimates. |
| let PlacedMonoItems { mut codegen_units, internalization_candidates } = { |
| let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_items"); |
| let placed = place_mono_items(cx, mono_items); |
| |
| debug_dump(tcx, "PLACE", &placed.codegen_units); |
| |
| placed |
| }; |
| |
| // Merge until we don't exceed the max CGU count. |
| // `merge_codegen_units` is responsible for updating the CGU size |
| // estimates. |
| { |
| let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus"); |
| merge_codegen_units(cx, &mut codegen_units); |
| debug_dump(tcx, "MERGE", &codegen_units); |
| } |
| |
| // Make as many symbols "internal" as possible, so LLVM has more freedom to |
| // optimize. |
| if !tcx.sess.link_dead_code() { |
| let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols"); |
| internalize_symbols(cx, &mut codegen_units, internalization_candidates); |
| |
| debug_dump(tcx, "INTERNALIZE", &codegen_units); |
| } |
| |
| // Mark one CGU for dead code, if necessary. |
| if tcx.sess.instrument_coverage() { |
| mark_code_coverage_dead_code_cgu(&mut codegen_units); |
| } |
| |
| // Ensure CGUs are sorted by name, so that we get deterministic results. |
| if !codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str()) { |
| let mut names = String::new(); |
| for cgu in codegen_units.iter() { |
| names += &format!("- {}\n", cgu.name()); |
| } |
| bug!("unsorted CGUs:\n{names}"); |
| } |
| |
| codegen_units |
| } |
| |
| fn place_mono_items<'tcx, I>(cx: &PartitioningCx<'_, 'tcx>, mono_items: I) -> PlacedMonoItems<'tcx> |
| where |
| I: Iterator<Item = MonoItem<'tcx>>, |
| { |
| let mut codegen_units = UnordMap::default(); |
| let is_incremental_build = cx.tcx.sess.opts.incremental.is_some(); |
| let mut internalization_candidates = UnordSet::default(); |
| |
| // Determine if monomorphizations instantiated in this crate will be made |
| // available to downstream crates. This depends on whether we are in |
| // share-generics mode and whether the current crate can even have |
| // downstream crates. |
| let export_generics = |
| cx.tcx.sess.opts.share_generics() && cx.tcx.local_crate_exports_generics(); |
| |
| let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx); |
| let cgu_name_cache = &mut UnordMap::default(); |
| |
| for mono_item in mono_items { |
| // Handle only root (GloballyShared) items directly here. Inlined (LocalCopy) items |
| // are handled at the bottom of the loop based on reachability, with one exception. |
| // The #[lang = "start"] item is the program entrypoint, so there are no calls to it in MIR. |
| // So even if its mode is LocalCopy, we need to treat it like a root. |
| match mono_item.instantiation_mode(cx.tcx) { |
| InstantiationMode::GloballyShared { .. } => {} |
| InstantiationMode::LocalCopy => { |
| if Some(mono_item.def_id()) != cx.tcx.lang_items().start_fn() { |
| continue; |
| } |
| } |
| } |
| |
| let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item); |
| let is_volatile = is_incremental_build && mono_item.is_generic_fn(cx.tcx); |
| |
| let cgu_name = match characteristic_def_id { |
| Some(def_id) => compute_codegen_unit_name( |
| cx.tcx, |
| cgu_name_builder, |
| def_id, |
| is_volatile, |
| cgu_name_cache, |
| ), |
| None => fallback_cgu_name(cgu_name_builder), |
| }; |
| |
| let cgu = codegen_units.entry(cgu_name).or_insert_with(|| CodegenUnit::new(cgu_name)); |
| |
| let mut can_be_internalized = true; |
| let (linkage, visibility) = mono_item_linkage_and_visibility( |
| cx.tcx, |
| &mono_item, |
| &mut can_be_internalized, |
| export_generics, |
| ); |
| if visibility == Visibility::Hidden && can_be_internalized { |
| internalization_candidates.insert(mono_item); |
| } |
| let size_estimate = mono_item.size_estimate(cx.tcx); |
| |
| cgu.items_mut() |
| .insert(mono_item, MonoItemData { inlined: false, linkage, visibility, size_estimate }); |
| |
| // Get all inlined items that are reachable from `mono_item` without |
| // going via another root item. This includes drop-glue, functions from |
| // external crates, and local functions the definition of which is |
| // marked with `#[inline]`. |
| let mut reachable_inlined_items = FxIndexSet::default(); |
| get_reachable_inlined_items(cx.tcx, mono_item, cx.usage_map, &mut reachable_inlined_items); |
| |
| // Add those inlined items. It's possible an inlined item is reachable |
| // from multiple root items within a CGU, which is fine, it just means |
| // the `insert` will be a no-op. |
| for inlined_item in reachable_inlined_items { |
| // This is a CGU-private copy. |
| cgu.items_mut().entry(inlined_item).or_insert_with(|| MonoItemData { |
| inlined: true, |
| linkage: Linkage::Internal, |
| visibility: Visibility::Default, |
| size_estimate: inlined_item.size_estimate(cx.tcx), |
| }); |
| } |
| } |
| |
| // Always ensure we have at least one CGU; otherwise, if we have a |
| // crate with just types (for example), we could wind up with no CGU. |
| if codegen_units.is_empty() { |
| let cgu_name = fallback_cgu_name(cgu_name_builder); |
| codegen_units.insert(cgu_name, CodegenUnit::new(cgu_name)); |
| } |
| |
| let mut codegen_units: Vec<_> = cx.tcx.with_stable_hashing_context(|ref hcx| { |
| codegen_units.into_items().map(|(_, cgu)| cgu).collect_sorted(hcx, true) |
| }); |
| |
| for cgu in codegen_units.iter_mut() { |
| cgu.compute_size_estimate(); |
| } |
| |
| return PlacedMonoItems { codegen_units, internalization_candidates }; |
| |
| fn get_reachable_inlined_items<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| item: MonoItem<'tcx>, |
| usage_map: &UsageMap<'tcx>, |
| visited: &mut FxIndexSet<MonoItem<'tcx>>, |
| ) { |
| usage_map.for_each_inlined_used_item(tcx, item, |inlined_item| { |
| let is_new = visited.insert(inlined_item); |
| if is_new { |
| get_reachable_inlined_items(tcx, inlined_item, usage_map, visited); |
| } |
| }); |
| } |
| } |
| |
| // This function requires the CGUs to be sorted by name on input, and ensures |
| // they are sorted by name on return, for deterministic behaviour. |
| fn merge_codegen_units<'tcx>( |
| cx: &PartitioningCx<'_, 'tcx>, |
| codegen_units: &mut Vec<CodegenUnit<'tcx>>, |
| ) { |
| assert!(cx.tcx.sess.codegen_units().as_usize() >= 1); |
| |
| // A sorted order here ensures merging is deterministic. |
| assert!(codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str())); |
| |
| // This map keeps track of what got merged into what. |
| let mut cgu_contents: UnordMap<Symbol, Vec<Symbol>> = |
| codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect(); |
| |
| // If N is the maximum number of CGUs, and the CGUs are sorted from largest |
| // to smallest, we repeatedly find which CGU in codegen_units[N..] has the |
| // greatest overlap of inlined items with codegen_units[N-1], merge that |
| // CGU into codegen_units[N-1], then re-sort by size and repeat. |
| // |
| // We use inlined item overlap to guide this merging because it minimizes |
| // duplication of inlined items, which makes LLVM be faster and generate |
| // better and smaller machine code. |
| // |
| // Why merge into codegen_units[N-1]? We want CGUs to have similar sizes, |
| // which means we don't want codegen_units[0..N] (the already big ones) |
| // getting any bigger, if we can avoid it. When we have more than N CGUs |
| // then at least one of the biggest N will have to grow. codegen_units[N-1] |
| // is the smallest of those, and so has the most room to grow. |
| let max_codegen_units = cx.tcx.sess.codegen_units().as_usize(); |
| while codegen_units.len() > max_codegen_units { |
| // Sort small CGUs to the back. |
| codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate())); |
| |
| let cgu_dst = &codegen_units[max_codegen_units - 1]; |
| |
| // Find the CGU that overlaps the most with `cgu_dst`. In the case of a |
| // tie, favour the earlier (bigger) CGU. |
| let mut max_overlap = 0; |
| let mut max_overlap_i = max_codegen_units; |
| for (i, cgu_src) in codegen_units.iter().enumerate().skip(max_codegen_units) { |
| if cgu_src.size_estimate() <= max_overlap { |
| // None of the remaining overlaps can exceed `max_overlap`, so |
| // stop looking. |
| break; |
| } |
| |
| let overlap = compute_inlined_overlap(cgu_dst, cgu_src); |
| if overlap > max_overlap { |
| max_overlap = overlap; |
| max_overlap_i = i; |
| } |
| } |
| |
| let mut cgu_src = codegen_units.swap_remove(max_overlap_i); |
| let cgu_dst = &mut codegen_units[max_codegen_units - 1]; |
| |
| // Move the items from `cgu_src` to `cgu_dst`. Some of them may be |
| // duplicate inlined items, in which case the destination CGU is |
| // unaffected. Recalculate size estimates afterwards. |
| cgu_dst.items_mut().append(cgu_src.items_mut()); |
| cgu_dst.compute_size_estimate(); |
| |
| // Record that `cgu_dst` now contains all the stuff that was in |
| // `cgu_src` before. |
| let mut consumed_cgu_names = cgu_contents.remove(&cgu_src.name()).unwrap(); |
| cgu_contents.get_mut(&cgu_dst.name()).unwrap().append(&mut consumed_cgu_names); |
| } |
| |
| // Having multiple CGUs can drastically speed up compilation. But for |
| // non-incremental builds, tiny CGUs slow down compilation *and* result in |
| // worse generated code. So we don't allow CGUs smaller than this (unless |
| // there is just one CGU, of course). Note that CGU sizes of 100,000+ are |
| // common in larger programs, so this isn't all that large. |
| const NON_INCR_MIN_CGU_SIZE: usize = 1800; |
| |
| // Repeatedly merge the two smallest codegen units as long as: it's a |
| // non-incremental build, and the user didn't specify a CGU count, and |
| // there are multiple CGUs, and some are below the minimum size. |
| // |
| // The "didn't specify a CGU count" condition is because when an explicit |
| // count is requested we observe it as closely as possible. For example, |
| // the `compiler_builtins` crate sets `codegen-units = 10000` and it's |
| // critical they aren't merged. Also, some tests use explicit small values |
| // and likewise won't work if small CGUs are merged. |
| while cx.tcx.sess.opts.incremental.is_none() |
| && matches!(cx.tcx.sess.codegen_units(), CodegenUnits::Default(_)) |
| && codegen_units.len() > 1 |
| && codegen_units.iter().any(|cgu| cgu.size_estimate() < NON_INCR_MIN_CGU_SIZE) |
| { |
| // Sort small cgus to the back. |
| codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate())); |
| |
| let mut smallest = codegen_units.pop().unwrap(); |
| let second_smallest = codegen_units.last_mut().unwrap(); |
| |
| // Move the items from `smallest` to `second_smallest`. Some of them |
| // may be duplicate inlined items, in which case the destination CGU is |
| // unaffected. Recalculate size estimates afterwards. |
| second_smallest.items_mut().append(smallest.items_mut()); |
| second_smallest.compute_size_estimate(); |
| |
| // Don't update `cgu_contents`, that's only for incremental builds. |
| } |
| |
| let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx); |
| |
| // Rename the newly merged CGUs. |
| if cx.tcx.sess.opts.incremental.is_some() { |
| // If we are doing incremental compilation, we want CGU names to |
| // reflect the path of the source level module they correspond to. |
| // For CGUs that contain the code of multiple modules because of the |
| // merging done above, we use a concatenation of the names of all |
| // contained CGUs. |
| let new_cgu_names = UnordMap::from( |
| cgu_contents |
| .items() |
| // This `filter` makes sure we only update the name of CGUs that |
| // were actually modified by merging. |
| .filter(|(_, cgu_contents)| cgu_contents.len() > 1) |
| .map(|(current_cgu_name, cgu_contents)| { |
| let mut cgu_contents: Vec<&str> = |
| cgu_contents.iter().map(|s| s.as_str()).collect(); |
| |
| // Sort the names, so things are deterministic and easy to |
| // predict. We are sorting primitive `&str`s here so we can |
| // use unstable sort. |
| cgu_contents.sort_unstable(); |
| |
| (*current_cgu_name, cgu_contents.join("--")) |
| }), |
| ); |
| |
| for cgu in codegen_units.iter_mut() { |
| if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) { |
| if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names { |
| cgu.set_name(Symbol::intern(new_cgu_name)); |
| } else { |
| // If we don't require CGU names to be human-readable, |
| // we use a fixed length hash of the composite CGU name |
| // instead. |
| let new_cgu_name = CodegenUnit::mangle_name(new_cgu_name); |
| cgu.set_name(Symbol::intern(&new_cgu_name)); |
| } |
| } |
| } |
| |
| // A sorted order here ensures what follows can be deterministic. |
| codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str())); |
| } else { |
| // When compiling non-incrementally, we rename the CGUS so they have |
| // identical names except for the numeric suffix, something like |
| // `regex.f10ba03eb5ec7975-cgu.N`, where `N` varies. |
| // |
| // It is useful for debugging and profiling purposes if the resulting |
| // CGUs are sorted by name *and* reverse sorted by size. (CGU 0 is the |
| // biggest, CGU 1 is the second biggest, etc.) |
| // |
| // So first we reverse sort by size. Then we generate the names with |
| // zero-padded suffixes, which means they are automatically sorted by |
| // names. The numeric suffix width depends on the number of CGUs, which |
| // is always greater than zero: |
| // - [1,9] CGUs: `0`, `1`, `2`, ... |
| // - [10,99] CGUs: `00`, `01`, `02`, ... |
| // - [100,999] CGUs: `000`, `001`, `002`, ... |
| // - etc. |
| // |
| // If we didn't zero-pad the sorted-by-name order would be `XYZ-cgu.0`, |
| // `XYZ-cgu.1`, `XYZ-cgu.10`, `XYZ-cgu.11`, ..., `XYZ-cgu.2`, etc. |
| codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate())); |
| let num_digits = codegen_units.len().ilog10() as usize + 1; |
| for (index, cgu) in codegen_units.iter_mut().enumerate() { |
| // Note: `WorkItem::short_description` depends on this name ending |
| // with `-cgu.` followed by a numeric suffix. Please keep it in |
| // sync with this code. |
| let suffix = format!("{index:0num_digits$}"); |
| let numbered_codegen_unit_name = |
| cgu_name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(suffix)); |
| cgu.set_name(numbered_codegen_unit_name); |
| } |
| } |
| } |
| |
| /// Compute the combined size of all inlined items that appear in both `cgu1` |
| /// and `cgu2`. |
| fn compute_inlined_overlap<'tcx>(cgu1: &CodegenUnit<'tcx>, cgu2: &CodegenUnit<'tcx>) -> usize { |
| // Either order works. We pick the one that involves iterating over fewer |
| // items. |
| let (src_cgu, dst_cgu) = |
| if cgu1.items().len() <= cgu2.items().len() { (cgu1, cgu2) } else { (cgu2, cgu1) }; |
| |
| let mut overlap = 0; |
| for (item, data) in src_cgu.items().iter() { |
| if data.inlined { |
| if dst_cgu.items().contains_key(item) { |
| overlap += data.size_estimate; |
| } |
| } |
| } |
| overlap |
| } |
| |
| fn internalize_symbols<'tcx>( |
| cx: &PartitioningCx<'_, 'tcx>, |
| codegen_units: &mut [CodegenUnit<'tcx>], |
| internalization_candidates: UnordSet<MonoItem<'tcx>>, |
| ) { |
| /// For symbol internalization, we need to know whether a symbol/mono-item |
| /// is used from outside the codegen unit it is defined in. This type is |
| /// used to keep track of that. |
| #[derive(Clone, PartialEq, Eq, Debug)] |
| enum MonoItemPlacement { |
| SingleCgu(Symbol), |
| MultipleCgus, |
| } |
| |
| let mut mono_item_placements = UnordMap::default(); |
| let single_codegen_unit = codegen_units.len() == 1; |
| |
| if !single_codegen_unit { |
| for cgu in codegen_units.iter() { |
| for item in cgu.items().keys() { |
| // If there is more than one codegen unit, we need to keep track |
| // in which codegen units each monomorphization is placed. |
| match mono_item_placements.entry(*item) { |
| Entry::Occupied(e) => { |
| let placement = e.into_mut(); |
| debug_assert!(match *placement { |
| MonoItemPlacement::SingleCgu(cgu_name) => cgu_name != cgu.name(), |
| MonoItemPlacement::MultipleCgus => true, |
| }); |
| *placement = MonoItemPlacement::MultipleCgus; |
| } |
| Entry::Vacant(e) => { |
| e.insert(MonoItemPlacement::SingleCgu(cgu.name())); |
| } |
| } |
| } |
| } |
| } |
| |
| // For each internalization candidates in each codegen unit, check if it is |
| // used from outside its defining codegen unit. |
| for cgu in codegen_units { |
| let home_cgu = MonoItemPlacement::SingleCgu(cgu.name()); |
| |
| for (item, data) in cgu.items_mut() { |
| if !internalization_candidates.contains(item) { |
| // This item is no candidate for internalizing, so skip it. |
| continue; |
| } |
| |
| if !single_codegen_unit { |
| debug_assert_eq!(mono_item_placements[item], home_cgu); |
| |
| if cx |
| .usage_map |
| .get_user_items(*item) |
| .iter() |
| .filter_map(|user_item| { |
| // Some user mono items might not have been |
| // instantiated. We can safely ignore those. |
| mono_item_placements.get(user_item) |
| }) |
| .any(|placement| *placement != home_cgu) |
| { |
| // Found a user from another CGU, so skip to the next item |
| // without marking this one as internal. |
| continue; |
| } |
| } |
| |
| // If we got here, we did not find any uses from other CGUs, so |
| // it's fine to make this monomorphization internal. |
| data.linkage = Linkage::Internal; |
| data.visibility = Visibility::Default; |
| } |
| } |
| } |
| |
| fn mark_code_coverage_dead_code_cgu<'tcx>(codegen_units: &mut [CodegenUnit<'tcx>]) { |
| assert!(!codegen_units.is_empty()); |
| |
| // Find the smallest CGU that has exported symbols and put the dead |
| // function stubs in that CGU. We look for exported symbols to increase |
| // the likelihood the linker won't throw away the dead functions. |
| // FIXME(#92165): In order to truly resolve this, we need to make sure |
| // the object file (CGU) containing the dead function stubs is included |
| // in the final binary. This will probably require forcing these |
| // function symbols to be included via `-u` or `/include` linker args. |
| let dead_code_cgu = codegen_units |
| .iter_mut() |
| .filter(|cgu| cgu.items().iter().any(|(_, data)| data.linkage == Linkage::External)) |
| .min_by_key(|cgu| cgu.size_estimate()); |
| |
| // If there are no CGUs that have externally linked items, then we just |
| // pick the first CGU as a fallback. |
| let dead_code_cgu = if let Some(cgu) = dead_code_cgu { cgu } else { &mut codegen_units[0] }; |
| |
| dead_code_cgu.make_code_coverage_dead_code_cgu(); |
| } |
| |
| fn characteristic_def_id_of_mono_item<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| mono_item: MonoItem<'tcx>, |
| ) -> Option<DefId> { |
| match mono_item { |
| MonoItem::Fn(instance) => { |
| let def_id = match instance.def { |
| ty::InstanceKind::Item(def) => def, |
| ty::InstanceKind::VTableShim(..) |
| | ty::InstanceKind::ReifyShim(..) |
| | ty::InstanceKind::FnPtrShim(..) |
| | ty::InstanceKind::ClosureOnceShim { .. } |
| | ty::InstanceKind::ConstructCoroutineInClosureShim { .. } |
| | ty::InstanceKind::CoroutineKindShim { .. } |
| | ty::InstanceKind::Intrinsic(..) |
| | ty::InstanceKind::DropGlue(..) |
| | ty::InstanceKind::Virtual(..) |
| | ty::InstanceKind::CloneShim(..) |
| | ty::InstanceKind::ThreadLocalShim(..) |
| | ty::InstanceKind::FnPtrAddrShim(..) |
| | ty::InstanceKind::AsyncDropGlueCtorShim(..) => return None, |
| }; |
| |
| // If this is a method, we want to put it into the same module as |
| // its self-type. If the self-type does not provide a characteristic |
| // DefId, we use the location of the impl after all. |
| |
| if tcx.trait_of_item(def_id).is_some() { |
| let self_ty = instance.args.type_at(0); |
| // This is a default implementation of a trait method. |
| return characteristic_def_id_of_type(self_ty).or(Some(def_id)); |
| } |
| |
| if let Some(impl_def_id) = tcx.impl_of_method(def_id) { |
| if tcx.sess.opts.incremental.is_some() |
| && tcx |
| .trait_id_of_impl(impl_def_id) |
| .is_some_and(|def_id| tcx.is_lang_item(def_id, LangItem::Drop)) |
| { |
| // Put `Drop::drop` into the same cgu as `drop_in_place` |
| // since `drop_in_place` is the only thing that can |
| // call it. |
| return None; |
| } |
| |
| // When polymorphization is enabled, methods which do not depend on their generic |
| // parameters, but the self-type of their impl block do will fail to normalize. |
| if !tcx.sess.opts.unstable_opts.polymorphize || !instance.has_param() { |
| // This is a method within an impl, find out what the self-type is: |
| let impl_self_ty = tcx.instantiate_and_normalize_erasing_regions( |
| instance.args, |
| ty::ParamEnv::reveal_all(), |
| tcx.type_of(impl_def_id), |
| ); |
| if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) { |
| return Some(def_id); |
| } |
| } |
| } |
| |
| Some(def_id) |
| } |
| MonoItem::Static(def_id) => Some(def_id), |
| MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.to_def_id()), |
| } |
| } |
| |
| fn compute_codegen_unit_name( |
| tcx: TyCtxt<'_>, |
| name_builder: &mut CodegenUnitNameBuilder<'_>, |
| def_id: DefId, |
| volatile: bool, |
| cache: &mut CguNameCache, |
| ) -> Symbol { |
| // Find the innermost module that is not nested within a function. |
| let mut current_def_id = def_id; |
| let mut cgu_def_id = None; |
| // Walk backwards from the item we want to find the module for. |
| loop { |
| if current_def_id.is_crate_root() { |
| if cgu_def_id.is_none() { |
| // If we have not found a module yet, take the crate root. |
| cgu_def_id = Some(def_id.krate.as_def_id()); |
| } |
| break; |
| } else if tcx.def_kind(current_def_id) == DefKind::Mod { |
| if cgu_def_id.is_none() { |
| cgu_def_id = Some(current_def_id); |
| } |
| } else { |
| // If we encounter something that is not a module, throw away |
| // any module that we've found so far because we now know that |
| // it is nested within something else. |
| cgu_def_id = None; |
| } |
| |
| current_def_id = tcx.parent(current_def_id); |
| } |
| |
| let cgu_def_id = cgu_def_id.unwrap(); |
| |
| *cache.entry((cgu_def_id, volatile)).or_insert_with(|| { |
| let def_path = tcx.def_path(cgu_def_id); |
| |
| let components = def_path.data.iter().map(|part| match part.data.name() { |
| DefPathDataName::Named(name) => name, |
| DefPathDataName::Anon { .. } => unreachable!(), |
| }); |
| |
| let volatile_suffix = volatile.then_some("volatile"); |
| |
| name_builder.build_cgu_name(def_path.krate, components, volatile_suffix) |
| }) |
| } |
| |
| // Anything we can't find a proper codegen unit for goes into this. |
| fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol { |
| name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu")) |
| } |
| |
| fn mono_item_linkage_and_visibility<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| mono_item: &MonoItem<'tcx>, |
| can_be_internalized: &mut bool, |
| export_generics: bool, |
| ) -> (Linkage, Visibility) { |
| if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) { |
| return (explicit_linkage, Visibility::Default); |
| } |
| let vis = mono_item_visibility(tcx, mono_item, can_be_internalized, export_generics); |
| (Linkage::External, vis) |
| } |
| |
| type CguNameCache = UnordMap<(DefId, bool), Symbol>; |
| |
| fn static_visibility<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| can_be_internalized: &mut bool, |
| def_id: DefId, |
| ) -> Visibility { |
| if tcx.is_reachable_non_generic(def_id) { |
| *can_be_internalized = false; |
| default_visibility(tcx, def_id, false) |
| } else { |
| Visibility::Hidden |
| } |
| } |
| |
| fn mono_item_visibility<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| mono_item: &MonoItem<'tcx>, |
| can_be_internalized: &mut bool, |
| export_generics: bool, |
| ) -> Visibility { |
| let instance = match mono_item { |
| // This is pretty complicated; see below. |
| MonoItem::Fn(instance) => instance, |
| |
| // Misc handling for generics and such, but otherwise: |
| MonoItem::Static(def_id) => return static_visibility(tcx, can_be_internalized, *def_id), |
| MonoItem::GlobalAsm(item_id) => { |
| return static_visibility(tcx, can_be_internalized, item_id.owner_id.to_def_id()); |
| } |
| }; |
| |
| let def_id = match instance.def { |
| InstanceKind::Item(def_id) |
| | InstanceKind::DropGlue(def_id, Some(_)) |
| | InstanceKind::AsyncDropGlueCtorShim(def_id, Some(_)) => def_id, |
| |
| // We match the visibility of statics here |
| InstanceKind::ThreadLocalShim(def_id) => { |
| return static_visibility(tcx, can_be_internalized, def_id); |
| } |
| |
| // These are all compiler glue and such, never exported, always hidden. |
| InstanceKind::VTableShim(..) |
| | InstanceKind::ReifyShim(..) |
| | InstanceKind::FnPtrShim(..) |
| | InstanceKind::Virtual(..) |
| | InstanceKind::Intrinsic(..) |
| | InstanceKind::ClosureOnceShim { .. } |
| | InstanceKind::ConstructCoroutineInClosureShim { .. } |
| | InstanceKind::CoroutineKindShim { .. } |
| | InstanceKind::DropGlue(..) |
| | InstanceKind::AsyncDropGlueCtorShim(..) |
| | InstanceKind::CloneShim(..) |
| | InstanceKind::FnPtrAddrShim(..) => return Visibility::Hidden, |
| }; |
| |
| // The `start_fn` lang item is actually a monomorphized instance of a |
| // function in the standard library, used for the `main` function. We don't |
| // want to export it so we tag it with `Hidden` visibility but this symbol |
| // is only referenced from the actual `main` symbol which we unfortunately |
| // don't know anything about during partitioning/collection. As a result we |
| // forcibly keep this symbol out of the `internalization_candidates` set. |
| // |
| // FIXME: eventually we don't want to always force this symbol to have |
| // hidden visibility, it should indeed be a candidate for |
| // internalization, but we have to understand that it's referenced |
| // from the `main` symbol we'll generate later. |
| // |
| // This may be fixable with a new `InstanceKind` perhaps? Unsure! |
| if tcx.is_lang_item(def_id, LangItem::Start) { |
| *can_be_internalized = false; |
| return Visibility::Hidden; |
| } |
| |
| let is_generic = instance.args.non_erasable_generics(tcx, def_id).next().is_some(); |
| |
| // Upstream `DefId` instances get different handling than local ones. |
| let Some(def_id) = def_id.as_local() else { |
| return if export_generics && is_generic { |
| // If it is an upstream monomorphization and we export generics, we must make |
| // it available to downstream crates. |
| *can_be_internalized = false; |
| default_visibility(tcx, def_id, true) |
| } else { |
| Visibility::Hidden |
| }; |
| }; |
| |
| if is_generic { |
| if export_generics { |
| if tcx.is_unreachable_local_definition(def_id) { |
| // This instance cannot be used from another crate. |
| Visibility::Hidden |
| } else { |
| // This instance might be useful in a downstream crate. |
| *can_be_internalized = false; |
| default_visibility(tcx, def_id.to_def_id(), true) |
| } |
| } else { |
| // We are not exporting generics or the definition is not reachable |
| // for downstream crates, we can internalize its instantiations. |
| Visibility::Hidden |
| } |
| } else { |
| // If this isn't a generic function then we mark this a `Default` if |
| // this is a reachable item, meaning that it's a symbol other crates may |
| // use when they link to us. |
| if tcx.is_reachable_non_generic(def_id.to_def_id()) { |
| *can_be_internalized = false; |
| debug_assert!(!is_generic); |
| return default_visibility(tcx, def_id.to_def_id(), false); |
| } |
| |
| // If this isn't reachable then we're gonna tag this with `Hidden` |
| // visibility. In some situations though we'll want to prevent this |
| // symbol from being internalized. |
| // |
| // There's two categories of items here: |
| // |
| // * First is weak lang items. These are basically mechanisms for |
| // libcore to forward-reference symbols defined later in crates like |
| // the standard library or `#[panic_handler]` definitions. The |
| // definition of these weak lang items needs to be referencable by |
| // libcore, so we're no longer a candidate for internalization. |
| // Removal of these functions can't be done by LLVM but rather must be |
| // done by the linker as it's a non-local decision. |
| // |
| // * Second is "std internal symbols". Currently this is primarily used |
| // for allocator symbols. Allocators are a little weird in their |
| // implementation, but the idea is that the compiler, at the last |
| // minute, defines an allocator with an injected object file. The |
| // `alloc` crate references these symbols (`__rust_alloc`) and the |
| // definition doesn't get hooked up until a linked crate artifact is |
| // generated. |
| // |
| // The symbols synthesized by the compiler (`__rust_alloc`) are thin |
| // veneers around the actual implementation, some other symbol which |
| // implements the same ABI. These symbols (things like `__rg_alloc`, |
| // `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std |
| // internal symbols". |
| // |
| // The std-internal symbols here **should not show up in a dll as an |
| // exported interface**, so they return `false` from |
| // `is_reachable_non_generic` above and we'll give them `Hidden` |
| // visibility below. Like the weak lang items, though, we can't let |
| // LLVM internalize them as this decision is left up to the linker to |
| // omit them, so prevent them from being internalized. |
| let attrs = tcx.codegen_fn_attrs(def_id); |
| if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) { |
| *can_be_internalized = false; |
| } |
| |
| Visibility::Hidden |
| } |
| } |
| |
| fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility { |
| if !tcx.sess.default_hidden_visibility() { |
| return Visibility::Default; |
| } |
| |
| // Generic functions never have export-level C. |
| if is_generic { |
| return Visibility::Hidden; |
| } |
| |
| // Things with export level C don't get instantiated in |
| // downstream crates. |
| if !id.is_local() { |
| return Visibility::Hidden; |
| } |
| |
| // C-export level items remain at `Default`, all other internal |
| // items become `Hidden`. |
| match tcx.reachable_non_generics(id.krate).get(&id) { |
| Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => Visibility::Default, |
| _ => Visibility::Hidden, |
| } |
| } |
| |
| fn debug_dump<'a, 'tcx: 'a>(tcx: TyCtxt<'tcx>, label: &str, cgus: &[CodegenUnit<'tcx>]) { |
| let dump = move || { |
| use std::fmt::Write; |
| |
| let mut num_cgus = 0; |
| let mut all_cgu_sizes = Vec::new(); |
| |
| // Note: every unique root item is placed exactly once, so the number |
| // of unique root items always equals the number of placed root items. |
| // |
| // Also, unreached inlined items won't be counted here. This is fine. |
| |
| let mut inlined_items = UnordSet::default(); |
| |
| let mut root_items = 0; |
| let mut unique_inlined_items = 0; |
| let mut placed_inlined_items = 0; |
| |
| let mut root_size = 0; |
| let mut unique_inlined_size = 0; |
| let mut placed_inlined_size = 0; |
| |
| for cgu in cgus.iter() { |
| num_cgus += 1; |
| all_cgu_sizes.push(cgu.size_estimate()); |
| |
| for (item, data) in cgu.items() { |
| if !data.inlined { |
| root_items += 1; |
| root_size += data.size_estimate; |
| } else { |
| if inlined_items.insert(item) { |
| unique_inlined_items += 1; |
| unique_inlined_size += data.size_estimate; |
| } |
| placed_inlined_items += 1; |
| placed_inlined_size += data.size_estimate; |
| } |
| } |
| } |
| |
| all_cgu_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n)); |
| |
| let unique_items = root_items + unique_inlined_items; |
| let placed_items = root_items + placed_inlined_items; |
| let items_ratio = placed_items as f64 / unique_items as f64; |
| |
| let unique_size = root_size + unique_inlined_size; |
| let placed_size = root_size + placed_inlined_size; |
| let size_ratio = placed_size as f64 / unique_size as f64; |
| |
| let mean_cgu_size = placed_size as f64 / num_cgus as f64; |
| |
| assert_eq!(placed_size, all_cgu_sizes.iter().sum::<usize>()); |
| |
| let s = &mut String::new(); |
| let _ = writeln!(s, "{label}"); |
| let _ = writeln!( |
| s, |
| "- unique items: {unique_items} ({root_items} root + {unique_inlined_items} inlined), \ |
| unique size: {unique_size} ({root_size} root + {unique_inlined_size} inlined)\n\ |
| - placed items: {placed_items} ({root_items} root + {placed_inlined_items} inlined), \ |
| placed size: {placed_size} ({root_size} root + {placed_inlined_size} inlined)\n\ |
| - placed/unique items ratio: {items_ratio:.2}, \ |
| placed/unique size ratio: {size_ratio:.2}\n\ |
| - CGUs: {num_cgus}, mean size: {mean_cgu_size:.1}, sizes: {}", |
| list(&all_cgu_sizes), |
| ); |
| let _ = writeln!(s); |
| |
| for (i, cgu) in cgus.iter().enumerate() { |
| let name = cgu.name(); |
| let size = cgu.size_estimate(); |
| let num_items = cgu.items().len(); |
| let mean_size = size as f64 / num_items as f64; |
| |
| let mut placed_item_sizes: Vec<_> = |
| cgu.items().values().map(|data| data.size_estimate).collect(); |
| placed_item_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n)); |
| let sizes = list(&placed_item_sizes); |
| |
| let _ = writeln!(s, "- CGU[{i}]"); |
| let _ = writeln!(s, " - {name}, size: {size}"); |
| let _ = |
| writeln!(s, " - items: {num_items}, mean size: {mean_size:.1}, sizes: {sizes}",); |
| |
| for (item, data) in cgu.items_in_deterministic_order(tcx) { |
| let linkage = data.linkage; |
| let symbol_name = item.symbol_name(tcx).name; |
| let symbol_hash_start = symbol_name.rfind('h'); |
| let symbol_hash = symbol_hash_start.map_or("<no hash>", |i| &symbol_name[i..]); |
| let kind = if !data.inlined { "root" } else { "inlined" }; |
| let size = data.size_estimate; |
| let _ = with_no_trimmed_paths!(writeln!( |
| s, |
| " - {item} [{linkage:?}] [{symbol_hash}] ({kind}, size: {size})" |
| )); |
| } |
| |
| let _ = writeln!(s); |
| } |
| |
| return std::mem::take(s); |
| |
| // Converts a slice to a string, capturing repetitions to save space. |
| // E.g. `[4, 4, 4, 3, 2, 1, 1, 1, 1, 1]` -> "[4 (x3), 3, 2, 1 (x5)]". |
| fn list(ns: &[usize]) -> String { |
| let mut v = Vec::new(); |
| if ns.is_empty() { |
| return "[]".to_string(); |
| } |
| |
| let mut elem = |curr, curr_count| { |
| if curr_count == 1 { |
| v.push(format!("{curr}")); |
| } else { |
| v.push(format!("{curr} (x{curr_count})")); |
| } |
| }; |
| |
| let mut curr = ns[0]; |
| let mut curr_count = 1; |
| |
| for &n in &ns[1..] { |
| if n != curr { |
| elem(curr, curr_count); |
| curr = n; |
| curr_count = 1; |
| } else { |
| curr_count += 1; |
| } |
| } |
| elem(curr, curr_count); |
| |
| format!("[{}]", v.join(", ")) |
| } |
| }; |
| |
| debug!("{}", dump()); |
| } |
| |
| #[inline(never)] // give this a place in the profiler |
| fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, mono_items: I) |
| where |
| I: Iterator<Item = &'a MonoItem<'tcx>>, |
| 'tcx: 'a, |
| { |
| let _prof_timer = tcx.prof.generic_activity("assert_symbols_are_distinct"); |
| |
| let mut symbols: Vec<_> = |
| mono_items.map(|mono_item| (mono_item, mono_item.symbol_name(tcx))).collect(); |
| |
| symbols.sort_by_key(|sym| sym.1); |
| |
| for &[(mono_item1, ref sym1), (mono_item2, ref sym2)] in symbols.array_windows() { |
| if sym1 == sym2 { |
| let span1 = mono_item1.local_span(tcx); |
| let span2 = mono_item2.local_span(tcx); |
| |
| // Deterministically select one of the spans for error reporting |
| let span = match (span1, span2) { |
| (Some(span1), Some(span2)) => { |
| Some(if span1.lo().0 > span2.lo().0 { span1 } else { span2 }) |
| } |
| (span1, span2) => span1.or(span2), |
| }; |
| |
| tcx.dcx().emit_fatal(SymbolAlreadyDefined { span, symbol: sym1.to_string() }); |
| } |
| } |
| } |
| |
| fn collect_and_partition_mono_items(tcx: TyCtxt<'_>, (): ()) -> (&DefIdSet, &[CodegenUnit<'_>]) { |
| let collection_strategy = match tcx.sess.opts.unstable_opts.print_mono_items { |
| Some(ref s) => { |
| let mode = s.to_lowercase(); |
| let mode = mode.trim(); |
| if mode == "eager" { |
| MonoItemCollectionStrategy::Eager |
| } else { |
| if mode != "lazy" { |
| tcx.dcx().emit_warn(UnknownCguCollectionMode { mode }); |
| } |
| |
| MonoItemCollectionStrategy::Lazy |
| } |
| } |
| None => { |
| if tcx.sess.link_dead_code() { |
| MonoItemCollectionStrategy::Eager |
| } else { |
| MonoItemCollectionStrategy::Lazy |
| } |
| } |
| }; |
| |
| let (items, usage_map) = collector::collect_crate_mono_items(tcx, collection_strategy); |
| |
| // If there was an error during collection (e.g. from one of the constants we evaluated), |
| // then we stop here. This way codegen does not have to worry about failing constants. |
| // (codegen relies on this and ICEs will happen if this is violated.) |
| tcx.dcx().abort_if_errors(); |
| |
| let (codegen_units, _) = tcx.sess.time("partition_and_assert_distinct_symbols", || { |
| sync::join( |
| || { |
| let mut codegen_units = partition(tcx, items.iter().copied(), &usage_map); |
| codegen_units[0].make_primary(); |
| &*tcx.arena.alloc_from_iter(codegen_units) |
| }, |
| || assert_symbols_are_distinct(tcx, items.iter()), |
| ) |
| }); |
| |
| if tcx.prof.enabled() { |
| // Record CGU size estimates for self-profiling. |
| for cgu in codegen_units { |
| tcx.prof.artifact_size( |
| "codegen_unit_size_estimate", |
| cgu.name().as_str(), |
| cgu.size_estimate() as u64, |
| ); |
| } |
| } |
| |
| let mono_items: DefIdSet = items |
| .iter() |
| .filter_map(|mono_item| match *mono_item { |
| MonoItem::Fn(ref instance) => Some(instance.def_id()), |
| MonoItem::Static(def_id) => Some(def_id), |
| _ => None, |
| }) |
| .collect(); |
| |
| // Output monomorphization stats per def_id |
| if let SwitchWithOptPath::Enabled(ref path) = tcx.sess.opts.unstable_opts.dump_mono_stats { |
| if let Err(err) = |
| dump_mono_items_stats(tcx, codegen_units, path, tcx.crate_name(LOCAL_CRATE)) |
| { |
| tcx.dcx().emit_fatal(CouldntDumpMonoStats { error: err.to_string() }); |
| } |
| } |
| |
| if tcx.sess.opts.unstable_opts.print_mono_items.is_some() { |
| let mut item_to_cgus: UnordMap<_, Vec<_>> = Default::default(); |
| |
| for cgu in codegen_units { |
| for (&mono_item, &data) in cgu.items() { |
| item_to_cgus.entry(mono_item).or_default().push((cgu.name(), data.linkage)); |
| } |
| } |
| |
| let mut item_keys: Vec<_> = items |
| .iter() |
| .map(|i| { |
| let mut output = with_no_trimmed_paths!(i.to_string()); |
| output.push_str(" @@"); |
| let mut empty = Vec::new(); |
| let cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty); |
| cgus.sort_by_key(|(name, _)| *name); |
| cgus.dedup(); |
| for &(ref cgu_name, linkage) in cgus.iter() { |
| output.push(' '); |
| output.push_str(cgu_name.as_str()); |
| |
| let linkage_abbrev = match linkage { |
| Linkage::External => "External", |
| Linkage::AvailableExternally => "Available", |
| Linkage::LinkOnceAny => "OnceAny", |
| Linkage::LinkOnceODR => "OnceODR", |
| Linkage::WeakAny => "WeakAny", |
| Linkage::WeakODR => "WeakODR", |
| Linkage::Appending => "Appending", |
| Linkage::Internal => "Internal", |
| Linkage::Private => "Private", |
| Linkage::ExternalWeak => "ExternalWeak", |
| Linkage::Common => "Common", |
| }; |
| |
| output.push('['); |
| output.push_str(linkage_abbrev); |
| output.push(']'); |
| } |
| output |
| }) |
| .collect(); |
| |
| item_keys.sort(); |
| |
| for item in item_keys { |
| println!("MONO_ITEM {item}"); |
| } |
| } |
| |
| (tcx.arena.alloc(mono_items), codegen_units) |
| } |
| |
| /// Outputs stats about instantiation counts and estimated size, per `MonoItem`'s |
| /// def, to a file in the given output directory. |
| fn dump_mono_items_stats<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| codegen_units: &[CodegenUnit<'tcx>], |
| output_directory: &Option<PathBuf>, |
| crate_name: Symbol, |
| ) -> Result<(), Box<dyn std::error::Error>> { |
| let output_directory = if let Some(ref directory) = output_directory { |
| fs::create_dir_all(directory)?; |
| directory |
| } else { |
| Path::new(".") |
| }; |
| |
| let format = tcx.sess.opts.unstable_opts.dump_mono_stats_format; |
| let ext = format.extension(); |
| let filename = format!("{crate_name}.mono_items.{ext}"); |
| let output_path = output_directory.join(&filename); |
| let file = File::create(&output_path)?; |
| let mut file = BufWriter::new(file); |
| |
| // Gather instantiated mono items grouped by def_id |
| let mut items_per_def_id: FxIndexMap<_, Vec<_>> = Default::default(); |
| for cgu in codegen_units { |
| cgu.items() |
| .keys() |
| // Avoid variable-sized compiler-generated shims |
| .filter(|mono_item| mono_item.is_user_defined()) |
| .for_each(|mono_item| { |
| items_per_def_id.entry(mono_item.def_id()).or_default().push(mono_item); |
| }); |
| } |
| |
| #[derive(serde::Serialize)] |
| struct MonoItem { |
| name: String, |
| instantiation_count: usize, |
| size_estimate: usize, |
| total_estimate: usize, |
| } |
| |
| // Output stats sorted by total instantiated size, from heaviest to lightest |
| let mut stats: Vec<_> = items_per_def_id |
| .into_iter() |
| .map(|(def_id, items)| { |
| let name = with_no_trimmed_paths!(tcx.def_path_str(def_id)); |
| let instantiation_count = items.len(); |
| let size_estimate = items[0].size_estimate(tcx); |
| let total_estimate = instantiation_count * size_estimate; |
| MonoItem { name, instantiation_count, size_estimate, total_estimate } |
| }) |
| .collect(); |
| stats.sort_unstable_by_key(|item| cmp::Reverse(item.total_estimate)); |
| |
| if !stats.is_empty() { |
| match format { |
| DumpMonoStatsFormat::Json => serde_json::to_writer(file, &stats)?, |
| DumpMonoStatsFormat::Markdown => { |
| writeln!( |
| file, |
| "| Item | Instantiation count | Estimated Cost Per Instantiation | Total Estimated Cost |" |
| )?; |
| writeln!(file, "| --- | ---: | ---: | ---: |")?; |
| |
| for MonoItem { name, instantiation_count, size_estimate, total_estimate } in stats { |
| writeln!( |
| file, |
| "| `{name}` | {instantiation_count} | {size_estimate} | {total_estimate} |" |
| )?; |
| } |
| } |
| } |
| } |
| |
| Ok(()) |
| } |
| |
| pub fn provide(providers: &mut Providers) { |
| providers.collect_and_partition_mono_items = collect_and_partition_mono_items; |
| |
| providers.is_codegened_item = |tcx, def_id| { |
| let (all_mono_items, _) = tcx.collect_and_partition_mono_items(()); |
| all_mono_items.contains(&def_id) |
| }; |
| |
| providers.codegen_unit = |tcx, name| { |
| let (_, all) = tcx.collect_and_partition_mono_items(()); |
| all.iter() |
| .find(|cgu| cgu.name() == name) |
| .unwrap_or_else(|| panic!("failed to find cgu with name {name:?}")) |
| }; |
| |
| collector::provide(providers); |
| } |