blob: 08ee3a6bd86d4f5c58fc921fa67781d04cc9a03f [file] [log] [blame]
use super::{Parser, PResult, PathStyle};
use crate::{maybe_recover_from_interpolated_ty_qpath, maybe_whole};
use crate::ptr::P;
use crate::ast::{self, Attribute, Pat, PatKind, FieldPat, RangeEnd, RangeSyntax, Mac};
use crate::ast::{BindingMode, Ident, Mutability, Path, QSelf, Expr, ExprKind};
use crate::mut_visit::{noop_visit_pat, MutVisitor};
use crate::parse::token::{self};
use crate::print::pprust;
use crate::source_map::{respan, Span, Spanned};
use crate::symbol::kw;
use crate::ThinVec;
use errors::{Applicability, DiagnosticBuilder};
type Expected = Option<&'static str>;
/// `Expected` for function and lambda parameter patterns.
pub(super) const PARAM_EXPECTED: Expected = Some("parameter name");
/// Whether or not an or-pattern should be gated when occurring in the current context.
#[derive(PartialEq)]
pub enum GateOr { Yes, No }
/// Whether or not to recover a `,` when parsing or-patterns.
#[derive(PartialEq, Copy, Clone)]
enum RecoverComma { Yes, No }
impl<'a> Parser<'a> {
/// Parses a pattern.
///
/// Corresponds to `pat<no_top_alt>` in RFC 2535 and does not admit or-patterns
/// at the top level. Used when parsing the parameters of lambda expressions,
/// functions, function pointers, and `pat` macro fragments.
pub fn parse_pat(&mut self, expected: Expected) -> PResult<'a, P<Pat>> {
self.parse_pat_with_range_pat(true, expected)
}
/// Entry point to the main pattern parser.
/// Corresponds to `top_pat` in RFC 2535 and allows or-pattern at the top level.
pub(super) fn parse_top_pat(&mut self, gate_or: GateOr) -> PResult<'a, P<Pat>> {
// Allow a '|' before the pats (RFCs 1925, 2530, and 2535).
let gated_leading_vert = self.eat_or_separator() && gate_or == GateOr::Yes;
let leading_vert_span = self.prev_span;
// Parse the possibly-or-pattern.
let pat = self.parse_pat_with_or(None, gate_or, RecoverComma::Yes)?;
// If we parsed a leading `|` which should be gated,
// and no other gated or-pattern has been parsed thus far,
// then we should really gate the leading `|`.
// This complicated procedure is done purely for diagnostics UX.
if gated_leading_vert {
let mut or_pattern_spans = self.sess.gated_spans.or_patterns.borrow_mut();
if or_pattern_spans.is_empty() {
or_pattern_spans.push(leading_vert_span);
}
}
Ok(pat)
}
/// Parse the pattern for a function or function pointer parameter.
/// Special recovery is provided for or-patterns and leading `|`.
pub(super) fn parse_fn_param_pat(&mut self) -> PResult<'a, P<Pat>> {
self.recover_leading_vert("not allowed in a parameter pattern");
let pat = self.parse_pat_with_or(PARAM_EXPECTED, GateOr::No, RecoverComma::No)?;
if let PatKind::Or(..) = &pat.node {
self.ban_illegal_fn_param_or_pat(&pat);
}
Ok(pat)
}
/// Ban `A | B` immediately in a parameter pattern and suggest wrapping in parens.
fn ban_illegal_fn_param_or_pat(&self, pat: &Pat) {
let msg = "wrap the pattern in parenthesis";
let fix = format!("({})", pprust::pat_to_string(pat));
self.struct_span_err(pat.span, "an or-pattern parameter must be wrapped in parenthesis")
.span_suggestion(pat.span, msg, fix, Applicability::MachineApplicable)
.emit();
}
/// Parses a pattern, that may be a or-pattern (e.g. `Foo | Bar` in `Some(Foo | Bar)`).
/// Corresponds to `pat<allow_top_alt>` in RFC 2535.
fn parse_pat_with_or(
&mut self,
expected: Expected,
gate_or: GateOr,
rc: RecoverComma,
) -> PResult<'a, P<Pat>> {
// Parse the first pattern.
let first_pat = self.parse_pat(expected)?;
self.maybe_recover_unexpected_comma(first_pat.span, rc)?;
// If the next token is not a `|`,
// this is not an or-pattern and we should exit here.
if !self.check(&token::BinOp(token::Or)) && self.token != token::OrOr {
return Ok(first_pat)
}
let lo = first_pat.span;
let mut pats = vec![first_pat];
while self.eat_or_separator() {
let pat = self.parse_pat(expected).map_err(|mut err| {
err.span_label(lo, "while parsing this or-pattern starting here");
err
})?;
self.maybe_recover_unexpected_comma(pat.span, rc)?;
pats.push(pat);
}
let or_pattern_span = lo.to(self.prev_span);
// Feature gate the or-pattern if instructed:
if gate_or == GateOr::Yes {
self.sess.gated_spans.or_patterns.borrow_mut().push(or_pattern_span);
}
Ok(self.mk_pat(or_pattern_span, PatKind::Or(pats)))
}
/// Eat the or-pattern `|` separator.
/// If instead a `||` token is encountered, recover and pretend we parsed `|`.
fn eat_or_separator(&mut self) -> bool {
match self.token.kind {
token::OrOr => {
// Found `||`; Recover and pretend we parsed `|`.
self.ban_unexpected_or_or();
self.bump();
true
}
_ => self.eat(&token::BinOp(token::Or)),
}
}
/// We have parsed `||` instead of `|`. Error and suggest `|` instead.
fn ban_unexpected_or_or(&mut self) {
self.struct_span_err(self.token.span, "unexpected token `||` after pattern")
.span_suggestion(
self.token.span,
"use a single `|` to separate multiple alternative patterns",
"|".to_owned(),
Applicability::MachineApplicable
)
.emit();
}
/// Some special error handling for the "top-level" patterns in a match arm,
/// `for` loop, `let`, &c. (in contrast to subpatterns within such).
fn maybe_recover_unexpected_comma(&mut self, lo: Span, rc: RecoverComma) -> PResult<'a, ()> {
if rc == RecoverComma::No || self.token != token::Comma {
return Ok(());
}
// An unexpected comma after a top-level pattern is a clue that the
// user (perhaps more accustomed to some other language) forgot the
// parentheses in what should have been a tuple pattern; return a
// suggestion-enhanced error here rather than choking on the comma later.
let comma_span = self.token.span;
self.bump();
if let Err(mut err) = self.skip_pat_list() {
// We didn't expect this to work anyway; we just wanted to advance to the
// end of the comma-sequence so we know the span to suggest parenthesizing.
err.cancel();
}
let seq_span = lo.to(self.prev_span);
let mut err = self.struct_span_err(comma_span, "unexpected `,` in pattern");
if let Ok(seq_snippet) = self.span_to_snippet(seq_span) {
err.span_suggestion(
seq_span,
"try adding parentheses to match on a tuple..",
format!("({})", seq_snippet),
Applicability::MachineApplicable
)
.span_suggestion(
seq_span,
"..or a vertical bar to match on multiple alternatives",
format!("{}", seq_snippet.replace(",", " |")),
Applicability::MachineApplicable
);
}
Err(err)
}
/// Parse and throw away a parentesized comma separated
/// sequence of patterns until `)` is reached.
fn skip_pat_list(&mut self) -> PResult<'a, ()> {
while !self.check(&token::CloseDelim(token::Paren)) {
self.parse_pat(None)?;
if !self.eat(&token::Comma) {
return Ok(())
}
}
Ok(())
}
/// Recursive possibly-or-pattern parser with recovery for an erroneous leading `|`.
/// See `parse_pat_with_or` for details on parsing or-patterns.
fn parse_pat_with_or_inner(&mut self) -> PResult<'a, P<Pat>> {
self.recover_leading_vert("only allowed in a top-level pattern");
self.parse_pat_with_or(None, GateOr::Yes, RecoverComma::No)
}
/// Recover if `|` or `||` is here.
/// The user is thinking that a leading `|` is allowed in this position.
fn recover_leading_vert(&mut self, ctx: &str) {
if let token::BinOp(token::Or) | token::OrOr = self.token.kind {
let span = self.token.span;
let rm_msg = format!("remove the `{}`", pprust::token_to_string(&self.token));
self.struct_span_err(span, &format!("a leading `|` is {}", ctx))
.span_suggestion(span, &rm_msg, String::new(), Applicability::MachineApplicable)
.emit();
self.bump();
}
}
/// Parses a pattern, with a setting whether modern range patterns (e.g., `a..=b`, `a..b` are
/// allowed).
fn parse_pat_with_range_pat(
&mut self,
allow_range_pat: bool,
expected: Expected,
) -> PResult<'a, P<Pat>> {
maybe_recover_from_interpolated_ty_qpath!(self, true);
maybe_whole!(self, NtPat, |x| x);
let lo = self.token.span;
let pat = match self.token.kind {
token::BinOp(token::And) | token::AndAnd => self.parse_pat_deref(expected)?,
token::OpenDelim(token::Paren) => self.parse_pat_tuple_or_parens()?,
token::OpenDelim(token::Bracket) => {
// Parse `[pat, pat,...]` as a slice pattern.
let (pats, _) = self.parse_delim_comma_seq(
token::Bracket,
|p| p.parse_pat_with_or_inner(),
)?;
PatKind::Slice(pats)
}
token::DotDot => {
self.bump();
if self.is_pat_range_end_start() {
// Parse `..42` for recovery.
self.parse_pat_range_to(RangeEnd::Excluded, "..")?
} else {
// A rest pattern `..`.
PatKind::Rest
}
}
token::DotDotEq => {
// Parse `..=42` for recovery.
self.bump();
self.parse_pat_range_to(RangeEnd::Included(RangeSyntax::DotDotEq), "..=")?
}
token::DotDotDot => {
// Parse `...42` for recovery.
self.bump();
self.parse_pat_range_to(RangeEnd::Included(RangeSyntax::DotDotDot), "...")?
}
// At this point, token != &, &&, (, [
_ => if self.eat_keyword(kw::Underscore) {
// Parse _
PatKind::Wild
} else if self.eat_keyword(kw::Mut) {
self.parse_pat_ident_mut()?
} else if self.eat_keyword(kw::Ref) {
// Parse ref ident @ pat / ref mut ident @ pat
let mutbl = self.parse_mutability();
self.parse_pat_ident(BindingMode::ByRef(mutbl))?
} else if self.eat_keyword(kw::Box) {
// Parse `box pat`
PatKind::Box(self.parse_pat_with_range_pat(false, None)?)
} else if self.can_be_ident_pat() {
// Parse `ident @ pat`
// This can give false positives and parse nullary enums,
// they are dealt with later in resolve.
self.parse_pat_ident(BindingMode::ByValue(Mutability::Immutable))?
} else if self.is_start_of_pat_with_path() {
// Parse pattern starting with a path
let (qself, path) = if self.eat_lt() {
// Parse a qualified path
let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
(Some(qself), path)
} else {
// Parse an unqualified path
(None, self.parse_path(PathStyle::Expr)?)
};
match self.token.kind {
token::Not if qself.is_none() => self.parse_pat_mac_invoc(lo, path)?,
token::DotDotDot | token::DotDotEq | token::DotDot => {
self.parse_pat_range_starting_with_path(lo, qself, path)?
}
token::OpenDelim(token::Brace) => self.parse_pat_struct(qself, path)?,
token::OpenDelim(token::Paren) => self.parse_pat_tuple_struct(qself, path)?,
_ => PatKind::Path(qself, path),
}
} else {
// Try to parse everything else as literal with optional minus
match self.parse_literal_maybe_minus() {
Ok(begin)
if self.check(&token::DotDot)
|| self.check(&token::DotDotEq)
|| self.check(&token::DotDotDot) =>
{
self.parse_pat_range_starting_with_lit(begin)?
}
Ok(begin) => PatKind::Lit(begin),
Err(err) => return self.fatal_unexpected_non_pat(err, expected),
}
}
};
let pat = self.mk_pat(lo.to(self.prev_span), pat);
let pat = self.maybe_recover_from_bad_qpath(pat, true)?;
if !allow_range_pat {
self.ban_pat_range_if_ambiguous(&pat)?
}
Ok(pat)
}
/// Ban a range pattern if it has an ambiguous interpretation.
fn ban_pat_range_if_ambiguous(&self, pat: &Pat) -> PResult<'a, ()> {
match pat.node {
PatKind::Range(
.., Spanned { node: RangeEnd::Included(RangeSyntax::DotDotDot), .. }
) => return Ok(()),
PatKind::Range(..) => {}
_ => return Ok(()),
}
let mut err = self.struct_span_err(
pat.span,
"the range pattern here has ambiguous interpretation",
);
err.span_suggestion(
pat.span,
"add parentheses to clarify the precedence",
format!("({})", pprust::pat_to_string(&pat)),
// "ambiguous interpretation" implies that we have to be guessing
Applicability::MaybeIncorrect
);
Err(err)
}
/// Parse `&pat` / `&mut pat`.
fn parse_pat_deref(&mut self, expected: Expected) -> PResult<'a, PatKind> {
self.expect_and()?;
let mutbl = self.parse_mutability();
if let token::Lifetime(name) = self.token.kind {
let mut err = self.fatal(&format!("unexpected lifetime `{}` in pattern", name));
err.span_label(self.token.span, "unexpected lifetime");
return Err(err);
}
let subpat = self.parse_pat_with_range_pat(false, expected)?;
Ok(PatKind::Ref(subpat, mutbl))
}
/// Parse a tuple or parenthesis pattern.
fn parse_pat_tuple_or_parens(&mut self) -> PResult<'a, PatKind> {
let (fields, trailing_comma) = self.parse_paren_comma_seq(|p| p.parse_pat_with_or_inner())?;
// Here, `(pat,)` is a tuple pattern.
// For backward compatibility, `(..)` is a tuple pattern as well.
Ok(if fields.len() == 1 && !(trailing_comma || fields[0].is_rest()) {
PatKind::Paren(fields.into_iter().nth(0).unwrap())
} else {
PatKind::Tuple(fields)
})
}
/// Parse a mutable binding with the `mut` token already eaten.
fn parse_pat_ident_mut(&mut self) -> PResult<'a, PatKind> {
let mut_span = self.prev_span;
if self.eat_keyword(kw::Ref) {
return self.recover_mut_ref_ident(mut_span)
}
self.recover_additional_muts();
// Make sure we don't allow e.g. `let mut $p;` where `$p:pat`.
if let token::Interpolated(ref nt) = self.token.kind {
if let token::NtPat(_) = **nt {
self.expected_ident_found().emit();
}
}
// Parse the pattern we hope to be an identifier.
let mut pat = self.parse_pat(Some("identifier"))?;
// Add `mut` to any binding in the parsed pattern.
let changed_any_binding = Self::make_all_value_bindings_mutable(&mut pat);
// Unwrap; If we don't have `mut $ident`, error.
let pat = pat.into_inner();
match &pat.node {
PatKind::Ident(..) => {}
_ => self.ban_mut_general_pat(mut_span, &pat, changed_any_binding),
}
Ok(pat.node)
}
/// Recover on `mut ref? ident @ pat` and suggest
/// that the order of `mut` and `ref` is incorrect.
fn recover_mut_ref_ident(&mut self, lo: Span) -> PResult<'a, PatKind> {
let mutref_span = lo.to(self.prev_span);
self.struct_span_err(mutref_span, "the order of `mut` and `ref` is incorrect")
.span_suggestion(
mutref_span,
"try switching the order",
"ref mut".into(),
Applicability::MachineApplicable
)
.emit();
self.parse_pat_ident(BindingMode::ByRef(Mutability::Mutable))
}
/// Turn all by-value immutable bindings in a pattern into mutable bindings.
/// Returns `true` if any change was made.
fn make_all_value_bindings_mutable(pat: &mut P<Pat>) -> bool {
struct AddMut(bool);
impl MutVisitor for AddMut {
fn visit_pat(&mut self, pat: &mut P<Pat>) {
if let PatKind::Ident(BindingMode::ByValue(ref mut m @ Mutability::Immutable), ..)
= pat.node
{
*m = Mutability::Mutable;
self.0 = true;
}
noop_visit_pat(pat, self);
}
}
let mut add_mut = AddMut(false);
add_mut.visit_pat(pat);
add_mut.0
}
/// Error on `mut $pat` where `$pat` is not an ident.
fn ban_mut_general_pat(&self, lo: Span, pat: &Pat, changed_any_binding: bool) {
let span = lo.to(pat.span);
let fix = pprust::pat_to_string(&pat);
let (problem, suggestion) = if changed_any_binding {
("`mut` must be attached to each individual binding", "add `mut` to each binding")
} else {
("`mut` must be followed by a named binding", "remove the `mut` prefix")
};
self.struct_span_err(span, problem)
.span_suggestion(span, suggestion, fix, Applicability::MachineApplicable)
.note("`mut` may be followed by `variable` and `variable @ pattern`")
.emit()
}
/// Eat any extraneous `mut`s and error + recover if we ate any.
fn recover_additional_muts(&mut self) {
let lo = self.token.span;
while self.eat_keyword(kw::Mut) {}
if lo == self.token.span {
return;
}
let span = lo.to(self.prev_span);
self.struct_span_err(span, "`mut` on a binding may not be repeated")
.span_suggestion(
span,
"remove the additional `mut`s",
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
/// Parse macro invocation
fn parse_pat_mac_invoc(&mut self, lo: Span, path: Path) -> PResult<'a, PatKind> {
self.bump();
let (delim, tts) = self.expect_delimited_token_tree()?;
let mac = Mac {
path,
tts,
delim,
span: lo.to(self.prev_span),
prior_type_ascription: self.last_type_ascription,
};
Ok(PatKind::Mac(mac))
}
/// Parse a range pattern `$path $form $end?` where `$form = ".." | "..." | "..=" ;`.
/// The `$path` has already been parsed and the next token is the `$form`.
fn parse_pat_range_starting_with_path(
&mut self,
lo: Span,
qself: Option<QSelf>,
path: Path
) -> PResult<'a, PatKind> {
let (end_kind, form) = match self.token.kind {
token::DotDot => (RangeEnd::Excluded, ".."),
token::DotDotDot => (RangeEnd::Included(RangeSyntax::DotDotDot), "..."),
token::DotDotEq => (RangeEnd::Included(RangeSyntax::DotDotEq), "..="),
_ => panic!("can only parse `..`/`...`/`..=` for ranges (checked above)"),
};
let op_span = self.token.span;
// Parse range
let span = lo.to(self.prev_span);
let begin = self.mk_expr(span, ExprKind::Path(qself, path), ThinVec::new());
self.bump();
let end = self.parse_pat_range_end_opt(&begin, form)?;
Ok(PatKind::Range(begin, end, respan(op_span, end_kind)))
}
/// Parse a range pattern `$literal $form $end?` where `$form = ".." | "..." | "..=" ;`.
/// The `$path` has already been parsed and the next token is the `$form`.
fn parse_pat_range_starting_with_lit(&mut self, begin: P<Expr>) -> PResult<'a, PatKind> {
let op_span = self.token.span;
let (end_kind, form) = if self.eat(&token::DotDotDot) {
(RangeEnd::Included(RangeSyntax::DotDotDot), "...")
} else if self.eat(&token::DotDotEq) {
(RangeEnd::Included(RangeSyntax::DotDotEq), "..=")
} else if self.eat(&token::DotDot) {
(RangeEnd::Excluded, "..")
} else {
panic!("impossible case: we already matched on a range-operator token")
};
let end = self.parse_pat_range_end_opt(&begin, form)?;
Ok(PatKind::Range(begin, end, respan(op_span, end_kind)))
}
fn fatal_unexpected_non_pat(
&mut self,
mut err: DiagnosticBuilder<'a>,
expected: Expected,
) -> PResult<'a, P<Pat>> {
self.cancel(&mut err);
let expected = expected.unwrap_or("pattern");
let msg = format!("expected {}, found {}", expected, self.this_token_descr());
let mut err = self.fatal(&msg);
err.span_label(self.token.span, format!("expected {}", expected));
let sp = self.sess.source_map().start_point(self.token.span);
if let Some(sp) = self.sess.ambiguous_block_expr_parse.borrow().get(&sp) {
self.sess.expr_parentheses_needed(&mut err, *sp, None);
}
Err(err)
}
/// Is the current token suitable as the start of a range patterns end?
fn is_pat_range_end_start(&self) -> bool {
self.token.is_path_start() // e.g. `MY_CONST`;
|| self.token == token::Dot // e.g. `.5` for recovery;
|| self.token.can_begin_literal_or_bool() // e.g. `42`.
|| self.token.is_whole_expr()
}
/// Parse a range-to pattern, e.g. `..X` and `..=X` for recovery.
fn parse_pat_range_to(&mut self, re: RangeEnd, form: &str) -> PResult<'a, PatKind> {
let lo = self.prev_span;
let end = self.parse_pat_range_end()?;
let range_span = lo.to(end.span);
let begin = self.mk_expr(range_span, ExprKind::Err, ThinVec::new());
self.diagnostic()
.struct_span_err(range_span, &format!("`{}X` range patterns are not supported", form))
.span_suggestion(
range_span,
"try using the minimum value for the type",
format!("MIN{}{}", form, pprust::expr_to_string(&end)),
Applicability::HasPlaceholders,
)
.emit();
Ok(PatKind::Range(begin, end, respan(lo, re)))
}
/// Parse the end of a `X..Y`, `X..=Y`, or `X...Y` range pattern or recover
/// if that end is missing treating it as `X..`, `X..=`, or `X...` respectively.
fn parse_pat_range_end_opt(&mut self, begin: &Expr, form: &str) -> PResult<'a, P<Expr>> {
if self.is_pat_range_end_start() {
// Parsing e.g. `X..=Y`.
self.parse_pat_range_end()
} else {
// Parsing e.g. `X..`.
let range_span = begin.span.to(self.prev_span);
self.diagnostic()
.struct_span_err(
range_span,
&format!("`X{}` range patterns are not supported", form),
)
.span_suggestion(
range_span,
"try using the maximum value for the type",
format!("{}{}MAX", pprust::expr_to_string(&begin), form),
Applicability::HasPlaceholders,
)
.emit();
Ok(self.mk_expr(range_span, ExprKind::Err, ThinVec::new()))
}
}
fn parse_pat_range_end(&mut self) -> PResult<'a, P<Expr>> {
if self.token.is_path_start() {
let lo = self.token.span;
let (qself, path) = if self.eat_lt() {
// Parse a qualified path
let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
(Some(qself), path)
} else {
// Parse an unqualified path
(None, self.parse_path(PathStyle::Expr)?)
};
let hi = self.prev_span;
Ok(self.mk_expr(lo.to(hi), ExprKind::Path(qself, path), ThinVec::new()))
} else {
self.parse_literal_maybe_minus()
}
}
/// Is this the start of a pattern beginning with a path?
fn is_start_of_pat_with_path(&mut self) -> bool {
self.check_path()
// Just for recovery (see `can_be_ident`).
|| self.token.is_ident() && !self.token.is_bool_lit() && !self.token.is_keyword(kw::In)
}
/// Would `parse_pat_ident` be appropriate here?
fn can_be_ident_pat(&mut self) -> bool {
self.check_ident()
&& !self.token.is_bool_lit() // Avoid `true` or `false` as a binding as it is a literal.
&& !self.token.is_path_segment_keyword() // Avoid e.g. `Self` as it is a path.
// Avoid `in`. Due to recovery in the list parser this messes with `for ( $pat in $expr )`.
&& !self.token.is_keyword(kw::In)
&& self.look_ahead(1, |t| match t.kind { // Try to do something more complex?
token::OpenDelim(token::Paren) // A tuple struct pattern.
| token::OpenDelim(token::Brace) // A struct pattern.
| token::DotDotDot | token::DotDotEq | token::DotDot // A range pattern.
| token::ModSep // A tuple / struct variant pattern.
| token::Not => false, // A macro expanding to a pattern.
_ => true,
})
}
/// Parses `ident` or `ident @ pat`.
/// Used by the copy foo and ref foo patterns to give a good
/// error message when parsing mistakes like `ref foo(a, b)`.
fn parse_pat_ident(&mut self, binding_mode: BindingMode) -> PResult<'a, PatKind> {
let ident = self.parse_ident()?;
let sub = if self.eat(&token::At) {
Some(self.parse_pat(Some("binding pattern"))?)
} else {
None
};
// Just to be friendly, if they write something like `ref Some(i)`,
// we end up here with `(` as the current token.
// This shortly leads to a parse error. Note that if there is no explicit
// binding mode then we do not end up here, because the lookahead
// will direct us over to `parse_enum_variant()`.
if self.token == token::OpenDelim(token::Paren) {
return Err(self.span_fatal(
self.prev_span,
"expected identifier, found enum pattern",
))
}
Ok(PatKind::Ident(binding_mode, ident, sub))
}
/// Parse a struct ("record") pattern (e.g. `Foo { ... }` or `Foo::Bar { ... }`).
fn parse_pat_struct(&mut self, qself: Option<QSelf>, path: Path) -> PResult<'a, PatKind> {
if qself.is_some() {
let msg = "unexpected `{` after qualified path";
let mut err = self.fatal(msg);
err.span_label(self.token.span, msg);
return Err(err);
}
self.bump();
let (fields, etc) = self.parse_pat_fields().unwrap_or_else(|mut e| {
e.emit();
self.recover_stmt();
(vec![], true)
});
self.bump();
Ok(PatKind::Struct(path, fields, etc))
}
/// Parse tuple struct or tuple variant pattern (e.g. `Foo(...)` or `Foo::Bar(...)`).
fn parse_pat_tuple_struct(&mut self, qself: Option<QSelf>, path: Path) -> PResult<'a, PatKind> {
if qself.is_some() {
let msg = "unexpected `(` after qualified path";
let mut err = self.fatal(msg);
err.span_label(self.token.span, msg);
return Err(err);
}
let (fields, _) = self.parse_paren_comma_seq(|p| p.parse_pat_with_or_inner())?;
Ok(PatKind::TupleStruct(path, fields))
}
/// Parses the fields of a struct-like pattern.
fn parse_pat_fields(&mut self) -> PResult<'a, (Vec<FieldPat>, bool)> {
let mut fields = Vec::new();
let mut etc = false;
let mut ate_comma = true;
let mut delayed_err: Option<DiagnosticBuilder<'a>> = None;
let mut etc_span = None;
while self.token != token::CloseDelim(token::Brace) {
let attrs = match self.parse_outer_attributes() {
Ok(attrs) => attrs,
Err(err) => {
if let Some(mut delayed) = delayed_err {
delayed.emit();
}
return Err(err);
},
};
let lo = self.token.span;
// check that a comma comes after every field
if !ate_comma {
let err = self.struct_span_err(self.prev_span, "expected `,`");
if let Some(mut delayed) = delayed_err {
delayed.emit();
}
return Err(err);
}
ate_comma = false;
if self.check(&token::DotDot) || self.token == token::DotDotDot {
etc = true;
let mut etc_sp = self.token.span;
self.recover_one_fewer_dotdot();
self.bump(); // `..` || `...`
if self.token == token::CloseDelim(token::Brace) {
etc_span = Some(etc_sp);
break;
}
let token_str = self.this_token_descr();
let mut err = self.fatal(&format!("expected `}}`, found {}", token_str));
err.span_label(self.token.span, "expected `}`");
let mut comma_sp = None;
if self.token == token::Comma { // Issue #49257
let nw_span = self.sess.source_map().span_until_non_whitespace(self.token.span);
etc_sp = etc_sp.to(nw_span);
err.span_label(etc_sp,
"`..` must be at the end and cannot have a trailing comma");
comma_sp = Some(self.token.span);
self.bump();
ate_comma = true;
}
etc_span = Some(etc_sp.until(self.token.span));
if self.token == token::CloseDelim(token::Brace) {
// If the struct looks otherwise well formed, recover and continue.
if let Some(sp) = comma_sp {
err.span_suggestion_short(
sp,
"remove this comma",
String::new(),
Applicability::MachineApplicable,
);
}
err.emit();
break;
} else if self.token.is_ident() && ate_comma {
// Accept fields coming after `..,`.
// This way we avoid "pattern missing fields" errors afterwards.
// We delay this error until the end in order to have a span for a
// suggested fix.
if let Some(mut delayed_err) = delayed_err {
delayed_err.emit();
return Err(err);
} else {
delayed_err = Some(err);
}
} else {
if let Some(mut err) = delayed_err {
err.emit();
}
return Err(err);
}
}
fields.push(match self.parse_pat_field(lo, attrs) {
Ok(field) => field,
Err(err) => {
if let Some(mut delayed_err) = delayed_err {
delayed_err.emit();
}
return Err(err);
}
});
ate_comma = self.eat(&token::Comma);
}
if let Some(mut err) = delayed_err {
if let Some(etc_span) = etc_span {
err.multipart_suggestion(
"move the `..` to the end of the field list",
vec![
(etc_span, String::new()),
(self.token.span, format!("{}.. }}", if ate_comma { "" } else { ", " })),
],
Applicability::MachineApplicable,
);
}
err.emit();
}
return Ok((fields, etc));
}
/// Recover on `...` as if it were `..` to avoid further errors.
/// See issue #46718.
fn recover_one_fewer_dotdot(&self) {
if self.token != token::DotDotDot {
return;
}
self.struct_span_err(self.token.span, "expected field pattern, found `...`")
.span_suggestion(
self.token.span,
"to omit remaining fields, use one fewer `.`",
"..".to_owned(),
Applicability::MachineApplicable
)
.emit();
}
fn parse_pat_field(&mut self, lo: Span, attrs: Vec<Attribute>) -> PResult<'a, FieldPat> {
// Check if a colon exists one ahead. This means we're parsing a fieldname.
let hi;
let (subpat, fieldname, is_shorthand) = if self.look_ahead(1, |t| t == &token::Colon) {
// Parsing a pattern of the form `fieldname: pat`.
let fieldname = self.parse_field_name()?;
self.bump();
let pat = self.parse_pat_with_or_inner()?;
hi = pat.span;
(pat, fieldname, false)
} else {
// Parsing a pattern of the form `(box) (ref) (mut) fieldname`.
let is_box = self.eat_keyword(kw::Box);
let boxed_span = self.token.span;
let is_ref = self.eat_keyword(kw::Ref);
let is_mut = self.eat_keyword(kw::Mut);
let fieldname = self.parse_ident()?;
hi = self.prev_span;
let bind_type = match (is_ref, is_mut) {
(true, true) => BindingMode::ByRef(Mutability::Mutable),
(true, false) => BindingMode::ByRef(Mutability::Immutable),
(false, true) => BindingMode::ByValue(Mutability::Mutable),
(false, false) => BindingMode::ByValue(Mutability::Immutable),
};
let fieldpat = self.mk_pat_ident(boxed_span.to(hi), bind_type, fieldname);
let subpat = if is_box {
self.mk_pat(lo.to(hi), PatKind::Box(fieldpat))
} else {
fieldpat
};
(subpat, fieldname, true)
};
Ok(FieldPat {
ident: fieldname,
pat: subpat,
is_shorthand,
attrs: attrs.into(),
id: ast::DUMMY_NODE_ID,
span: lo.to(hi),
is_placeholder: false,
})
}
pub(super) fn mk_pat_ident(&self, span: Span, bm: BindingMode, ident: Ident) -> P<Pat> {
self.mk_pat(span, PatKind::Ident(bm, ident, None))
}
fn mk_pat(&self, span: Span, node: PatKind) -> P<Pat> {
P(Pat { node, span, id: ast::DUMMY_NODE_ID })
}
}