blob: 36233de3cfb576412c524e5ff5ec633f5efe7a6e [file] [log] [blame]
//! Code related to parsing literals.
use crate::ast::{self, Lit, LitKind};
use crate::parse::parser::Parser;
use crate::parse::PResult;
use crate::parse::token::{self, Token, TokenKind};
use crate::print::pprust;
use crate::symbol::{kw, sym, Symbol};
use crate::tokenstream::{TokenStream, TokenTree};
use errors::{Applicability, Handler};
use log::debug;
use rustc_data_structures::sync::Lrc;
use syntax_pos::Span;
use rustc_lexer::unescape::{unescape_char, unescape_byte};
use rustc_lexer::unescape::{unescape_str, unescape_byte_str};
use rustc_lexer::unescape::{unescape_raw_str, unescape_raw_byte_str};
use std::ascii;
crate enum LitError {
NotLiteral,
LexerError,
InvalidSuffix,
InvalidIntSuffix,
InvalidFloatSuffix,
NonDecimalFloat(u32),
IntTooLarge,
}
impl LitError {
fn report(&self, diag: &Handler, lit: token::Lit, span: Span) {
let token::Lit { kind, suffix, .. } = lit;
match *self {
// `NotLiteral` is not an error by itself, so we don't report
// it and give the parser opportunity to try something else.
LitError::NotLiteral => {}
// `LexerError` *is* an error, but it was already reported
// by lexer, so here we don't report it the second time.
LitError::LexerError => {}
LitError::InvalidSuffix => {
expect_no_suffix(
diag, span, &format!("{} {} literal", kind.article(), kind.descr()), suffix
);
}
LitError::InvalidIntSuffix => {
let suf = suffix.expect("suffix error with no suffix").as_str();
if looks_like_width_suffix(&['i', 'u'], &suf) {
// If it looks like a width, try to be helpful.
let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
diag.struct_span_err(span, &msg)
.help("valid widths are 8, 16, 32, 64 and 128")
.emit();
} else {
let msg = format!("invalid suffix `{}` for integer literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("the suffix must be one of the integral types (`u32`, `isize`, etc)")
.emit();
}
}
LitError::InvalidFloatSuffix => {
let suf = suffix.expect("suffix error with no suffix").as_str();
if looks_like_width_suffix(&['f'], &suf) {
// If it looks like a width, try to be helpful.
let msg = format!("invalid width `{}` for float literal", &suf[1..]);
diag.struct_span_err(span, &msg)
.help("valid widths are 32 and 64")
.emit();
} else {
let msg = format!("invalid suffix `{}` for float literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("valid suffixes are `f32` and `f64`")
.emit();
}
}
LitError::NonDecimalFloat(base) => {
let descr = match base {
16 => "hexadecimal",
8 => "octal",
2 => "binary",
_ => unreachable!(),
};
diag.struct_span_err(span, &format!("{} float literal is not supported", descr))
.span_label(span, "not supported")
.emit();
}
LitError::IntTooLarge => {
diag.struct_span_err(span, "integer literal is too large")
.emit();
}
}
}
}
impl LitKind {
/// Converts literal token into a semantic literal.
fn from_lit_token(lit: token::Lit) -> Result<LitKind, LitError> {
let token::Lit { kind, symbol, suffix } = lit;
if suffix.is_some() && !kind.may_have_suffix() {
return Err(LitError::InvalidSuffix);
}
Ok(match kind {
token::Bool => {
assert!(symbol.is_bool_lit());
LitKind::Bool(symbol == kw::True)
}
token::Byte => return unescape_byte(&symbol.as_str())
.map(LitKind::Byte).map_err(|_| LitError::LexerError),
token::Char => return unescape_char(&symbol.as_str())
.map(LitKind::Char).map_err(|_| LitError::LexerError),
// There are some valid suffixes for integer and float literals,
// so all the handling is done internally.
token::Integer => return integer_lit(symbol, suffix),
token::Float => return float_lit(symbol, suffix),
token::Str => {
// If there are no characters requiring special treatment we can
// reuse the symbol from the token. Otherwise, we must generate a
// new symbol because the string in the LitKind is different to the
// string in the token.
let s = symbol.as_str();
let symbol = if s.contains(&['\\', '\r'][..]) {
let mut buf = String::with_capacity(s.len());
let mut error = Ok(());
unescape_str(&s, &mut |_, unescaped_char| {
match unescaped_char {
Ok(c) => buf.push(c),
Err(_) => error = Err(LitError::LexerError),
}
});
error?;
Symbol::intern(&buf)
} else {
symbol
};
LitKind::Str(symbol, ast::StrStyle::Cooked)
}
token::StrRaw(n) => {
// Ditto.
let s = symbol.as_str();
let symbol = if s.contains('\r') {
let mut buf = String::with_capacity(s.len());
let mut error = Ok(());
unescape_raw_str(&s, &mut |_, unescaped_char| {
match unescaped_char {
Ok(c) => buf.push(c),
Err(_) => error = Err(LitError::LexerError),
}
});
error?;
buf.shrink_to_fit();
Symbol::intern(&buf)
} else {
symbol
};
LitKind::Str(symbol, ast::StrStyle::Raw(n))
}
token::ByteStr => {
let s = symbol.as_str();
let mut buf = Vec::with_capacity(s.len());
let mut error = Ok(());
unescape_byte_str(&s, &mut |_, unescaped_byte| {
match unescaped_byte {
Ok(c) => buf.push(c),
Err(_) => error = Err(LitError::LexerError),
}
});
error?;
buf.shrink_to_fit();
LitKind::ByteStr(Lrc::new(buf))
}
token::ByteStrRaw(_) => {
let s = symbol.as_str();
let bytes = if s.contains('\r') {
let mut buf = Vec::with_capacity(s.len());
let mut error = Ok(());
unescape_raw_byte_str(&s, &mut |_, unescaped_byte| {
match unescaped_byte {
Ok(c) => buf.push(c),
Err(_) => error = Err(LitError::LexerError),
}
});
error?;
buf.shrink_to_fit();
buf
} else {
symbol.to_string().into_bytes()
};
LitKind::ByteStr(Lrc::new(bytes))
},
token::Err => LitKind::Err(symbol),
})
}
/// Attempts to recover a token from semantic literal.
/// This function is used when the original token doesn't exist (e.g. the literal is created
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
pub fn to_lit_token(&self) -> token::Lit {
let (kind, symbol, suffix) = match *self {
LitKind::Str(symbol, ast::StrStyle::Cooked) => {
// Don't re-intern unless the escaped string is different.
let s = &symbol.as_str();
let escaped = s.escape_default().to_string();
let symbol = if escaped == *s { symbol } else { Symbol::intern(&escaped) };
(token::Str, symbol, None)
}
LitKind::Str(symbol, ast::StrStyle::Raw(n)) => {
(token::StrRaw(n), symbol, None)
}
LitKind::ByteStr(ref bytes) => {
let string = bytes.iter().cloned().flat_map(ascii::escape_default)
.map(Into::<char>::into).collect::<String>();
(token::ByteStr, Symbol::intern(&string), None)
}
LitKind::Byte(byte) => {
let string: String = ascii::escape_default(byte).map(Into::<char>::into).collect();
(token::Byte, Symbol::intern(&string), None)
}
LitKind::Char(ch) => {
let string: String = ch.escape_default().map(Into::<char>::into).collect();
(token::Char, Symbol::intern(&string), None)
}
LitKind::Int(n, ty) => {
let suffix = match ty {
ast::LitIntType::Unsigned(ty) => Some(ty.to_symbol()),
ast::LitIntType::Signed(ty) => Some(ty.to_symbol()),
ast::LitIntType::Unsuffixed => None,
};
(token::Integer, sym::integer(n), suffix)
}
LitKind::Float(symbol, ty) => {
(token::Float, symbol, Some(ty.to_symbol()))
}
LitKind::FloatUnsuffixed(symbol) => {
(token::Float, symbol, None)
}
LitKind::Bool(value) => {
let symbol = if value { kw::True } else { kw::False };
(token::Bool, symbol, None)
}
LitKind::Err(symbol) => {
(token::Err, symbol, None)
}
};
token::Lit::new(kind, symbol, suffix)
}
}
impl Lit {
/// Converts literal token into an AST literal.
fn from_lit_token(token: token::Lit, span: Span) -> Result<Lit, LitError> {
Ok(Lit { token, node: LitKind::from_lit_token(token)?, span })
}
/// Converts arbitrary token into an AST literal.
crate fn from_token(token: &Token) -> Result<Lit, LitError> {
let lit = match token.kind {
token::Ident(name, false) if name.is_bool_lit() =>
token::Lit::new(token::Bool, name, None),
token::Literal(lit) =>
lit,
token::Interpolated(ref nt) => {
if let token::NtExpr(expr) | token::NtLiteral(expr) = &**nt {
if let ast::ExprKind::Lit(lit) = &expr.node {
return Ok(lit.clone());
}
}
return Err(LitError::NotLiteral);
}
_ => return Err(LitError::NotLiteral)
};
Lit::from_lit_token(lit, token.span)
}
/// Attempts to recover an AST literal from semantic literal.
/// This function is used when the original token doesn't exist (e.g. the literal is created
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
pub fn from_lit_kind(node: LitKind, span: Span) -> Lit {
Lit { token: node.to_lit_token(), node, span }
}
/// Losslessly convert an AST literal into a token stream.
crate fn tokens(&self) -> TokenStream {
let token = match self.token.kind {
token::Bool => token::Ident(self.token.symbol, false),
_ => token::Literal(self.token),
};
TokenTree::token(token, self.span).into()
}
}
impl<'a> Parser<'a> {
/// Matches `lit = true | false | token_lit`.
crate fn parse_lit(&mut self) -> PResult<'a, Lit> {
let mut recovered = None;
if self.token == token::Dot {
// Attempt to recover `.4` as `0.4`.
recovered = self.look_ahead(1, |next_token| {
if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix })
= next_token.kind {
if self.token.span.hi() == next_token.span.lo() {
let s = String::from("0.") + &symbol.as_str();
let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
return Some(Token::new(kind, self.token.span.to(next_token.span)));
}
}
None
});
if let Some(token) = &recovered {
self.bump();
self.diagnostic()
.struct_span_err(token.span, "float literals must have an integer part")
.span_suggestion(
token.span,
"must have an integer part",
pprust::token_to_string(token),
Applicability::MachineApplicable,
)
.emit();
}
}
let token = recovered.as_ref().unwrap_or(&self.token);
match Lit::from_token(token) {
Ok(lit) => {
self.bump();
Ok(lit)
}
Err(LitError::NotLiteral) => {
let msg = format!("unexpected token: {}", self.this_token_descr());
Err(self.span_fatal(token.span, &msg))
}
Err(err) => {
let (lit, span) = (token.expect_lit(), token.span);
self.bump();
err.report(&self.sess.span_diagnostic, lit, span);
// Pack possible quotes and prefixes from the original literal into
// the error literal's symbol so they can be pretty-printed faithfully.
let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
let symbol = Symbol::intern(&suffixless_lit.to_string());
let lit = token::Lit::new(token::Err, symbol, lit.suffix);
Lit::from_lit_token(lit, span).map_err(|_| unreachable!())
}
}
}
}
crate fn expect_no_suffix(diag: &Handler, sp: Span, kind: &str, suffix: Option<Symbol>) {
if let Some(suf) = suffix {
let mut err = if kind == "a tuple index" &&
[sym::i32, sym::u32, sym::isize, sym::usize].contains(&suf) {
// #59553: warn instead of reject out of hand to allow the fix to percolate
// through the ecosystem when people fix their macros
let mut err = diag.struct_span_warn(
sp,
&format!("suffixes on {} are invalid", kind),
);
err.note(&format!(
"`{}` is *temporarily* accepted on tuple index fields as it was \
incorrectly accepted on stable for a few releases",
suf,
));
err.help(
"on proc macros, you'll want to use `syn::Index::from` or \
`proc_macro::Literal::*_unsuffixed` for code that will desugar \
to tuple field access",
);
err.note(
"for more context, see https://github.com/rust-lang/rust/issues/60210",
);
err
} else {
diag.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
};
err.span_label(sp, format!("invalid suffix `{}`", suf));
err.emit();
}
}
// Checks if `s` looks like i32 or u1234 etc.
fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
s.len() > 1 && s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
}
fn strip_underscores(symbol: Symbol) -> Symbol {
// Do not allocate a new string unless necessary.
let s = symbol.as_str();
if s.contains('_') {
let mut s = s.to_string();
s.retain(|c| c != '_');
return Symbol::intern(&s);
}
symbol
}
fn filtered_float_lit(symbol: Symbol, suffix: Option<Symbol>, base: u32)
-> Result<LitKind, LitError> {
debug!("filtered_float_lit: {:?}, {:?}, {:?}", symbol, suffix, base);
if base != 10 {
return Err(LitError::NonDecimalFloat(base));
}
Ok(match suffix {
Some(suf) => match suf {
sym::f32 => LitKind::Float(symbol, ast::FloatTy::F32),
sym::f64 => LitKind::Float(symbol, ast::FloatTy::F64),
_ => return Err(LitError::InvalidFloatSuffix),
}
None => LitKind::FloatUnsuffixed(symbol)
})
}
fn float_lit(symbol: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
debug!("float_lit: {:?}, {:?}", symbol, suffix);
filtered_float_lit(strip_underscores(symbol), suffix, 10)
}
fn integer_lit(symbol: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
debug!("integer_lit: {:?}, {:?}", symbol, suffix);
let symbol = strip_underscores(symbol);
let s = symbol.as_str();
let mut base = 10;
if s.len() > 1 && s.as_bytes()[0] == b'0' {
match s.as_bytes()[1] {
b'x' => base = 16,
b'o' => base = 8,
b'b' => base = 2,
_ => {}
}
}
let ty = match suffix {
Some(suf) => match suf {
sym::isize => ast::LitIntType::Signed(ast::IntTy::Isize),
sym::i8 => ast::LitIntType::Signed(ast::IntTy::I8),
sym::i16 => ast::LitIntType::Signed(ast::IntTy::I16),
sym::i32 => ast::LitIntType::Signed(ast::IntTy::I32),
sym::i64 => ast::LitIntType::Signed(ast::IntTy::I64),
sym::i128 => ast::LitIntType::Signed(ast::IntTy::I128),
sym::usize => ast::LitIntType::Unsigned(ast::UintTy::Usize),
sym::u8 => ast::LitIntType::Unsigned(ast::UintTy::U8),
sym::u16 => ast::LitIntType::Unsigned(ast::UintTy::U16),
sym::u32 => ast::LitIntType::Unsigned(ast::UintTy::U32),
sym::u64 => ast::LitIntType::Unsigned(ast::UintTy::U64),
sym::u128 => ast::LitIntType::Unsigned(ast::UintTy::U128),
// `1f64` and `2f32` etc. are valid float literals, and
// `fxxx` looks more like an invalid float literal than invalid integer literal.
_ if suf.as_str().starts_with('f') => return filtered_float_lit(symbol, suffix, base),
_ => return Err(LitError::InvalidIntSuffix),
}
_ => ast::LitIntType::Unsuffixed
};
let s = &s[if base != 10 { 2 } else { 0 } ..];
u128::from_str_radix(s, base).map(|i| LitKind::Int(i, ty)).map_err(|_| {
// Small bases are lexed as if they were base 10, e.g, the string
// might be `0b10201`. This will cause the conversion above to fail,
// but these kinds of errors are already reported by the lexer.
let from_lexer =
base < 10 && s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
if from_lexer { LitError::LexerError } else { LitError::IntTooLarge }
})
}