blob: bc0f17c3bf0fb6290ab877278b8c678dd2841785 [file] [log] [blame]
//! This pass enforces various "well-formedness constraints" on impls.
//! Logically, it is part of wfcheck -- but we do it early so that we
//! can stop compilation afterwards, since part of the trait matching
//! infrastructure gets very grumpy if these conditions don't hold. In
//! particular, if there are type parameters that are not part of the
//! impl, then coherence will report strange inference ambiguity
//! errors; if impls have duplicate items, we get misleading
//! specialization errors. These things can (and probably should) be
//! fixed, but for the moment it's easier to do these checks early.
use crate::constrained_generic_params as cgp;
use rustc::hir;
use rustc::hir::itemlikevisit::ItemLikeVisitor;
use rustc::hir::def_id::DefId;
use rustc::ty::{self, TyCtxt, TypeFoldable};
use rustc::ty::query::Providers;
use rustc::util::nodemap::{FxHashMap, FxHashSet};
use std::collections::hash_map::Entry::{Occupied, Vacant};
use syntax_pos::Span;
/// Checks that all the type/lifetime parameters on an impl also
/// appear in the trait ref or self type (or are constrained by a
/// where-clause). These rules are needed to ensure that, given a
/// trait ref like `<T as Trait<U>>`, we can derive the values of all
/// parameters on the impl (which is needed to make specialization
/// possible).
///
/// However, in the case of lifetimes, we only enforce these rules if
/// the lifetime parameter is used in an associated type. This is a
/// concession to backwards compatibility; see comment at the end of
/// the fn for details.
///
/// Example:
///
/// ```rust,ignore (pseudo-Rust)
/// impl<T> Trait<Foo> for Bar { ... }
/// // ^ T does not appear in `Foo` or `Bar`, error!
///
/// impl<T> Trait<Foo<T>> for Bar { ... }
/// // ^ T appears in `Foo<T>`, ok.
///
/// impl<T> Trait<Foo> for Bar where Bar: Iterator<Item = T> { ... }
/// // ^ T is bound to `<Bar as Iterator>::Item`, ok.
///
/// impl<'a> Trait<Foo> for Bar { }
/// // ^ 'a is unused, but for back-compat we allow it
///
/// impl<'a> Trait<Foo> for Bar { type X = &'a i32; }
/// // ^ 'a is unused and appears in assoc type, error
/// ```
pub fn impl_wf_check(tcx: TyCtxt<'_>) {
// We will tag this as part of the WF check -- logically, it is,
// but it's one that we must perform earlier than the rest of
// WfCheck.
for &module in tcx.hir().krate().modules.keys() {
tcx.ensure().check_mod_impl_wf(tcx.hir().local_def_id_from_node_id(module));
}
}
fn check_mod_impl_wf(tcx: TyCtxt<'_>, module_def_id: DefId) {
tcx.hir().visit_item_likes_in_module(
module_def_id,
&mut ImplWfCheck { tcx }
);
}
pub fn provide(providers: &mut Providers<'_>) {
*providers = Providers {
check_mod_impl_wf,
..*providers
};
}
struct ImplWfCheck<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl ItemLikeVisitor<'tcx> for ImplWfCheck<'tcx> {
fn visit_item(&mut self, item: &'tcx hir::Item) {
if let hir::ItemKind::Impl(.., ref impl_item_refs) = item.node {
let impl_def_id = self.tcx.hir().local_def_id(item.hir_id);
enforce_impl_params_are_constrained(self.tcx,
impl_def_id,
impl_item_refs);
enforce_impl_items_are_distinct(self.tcx, impl_item_refs);
}
}
fn visit_trait_item(&mut self, _trait_item: &'tcx hir::TraitItem) { }
fn visit_impl_item(&mut self, _impl_item: &'tcx hir::ImplItem) { }
}
fn enforce_impl_params_are_constrained(
tcx: TyCtxt<'_>,
impl_def_id: DefId,
impl_item_refs: &[hir::ImplItemRef],
) {
// Every lifetime used in an associated type must be constrained.
let impl_self_ty = tcx.type_of(impl_def_id);
if impl_self_ty.references_error() {
// Don't complain about unconstrained type params when self ty isn't known due to errors.
// (#36836)
tcx.sess.delay_span_bug(
tcx.def_span(impl_def_id),
"potentially unconstrained type parameters weren't evaluated",
);
return;
}
let impl_generics = tcx.generics_of(impl_def_id);
let impl_predicates = tcx.predicates_of(impl_def_id);
let impl_trait_ref = tcx.impl_trait_ref(impl_def_id);
let mut input_parameters = cgp::parameters_for_impl(impl_self_ty, impl_trait_ref);
cgp::identify_constrained_generic_params(
tcx, &impl_predicates, impl_trait_ref, &mut input_parameters);
// Disallow unconstrained lifetimes, but only if they appear in assoc types.
let lifetimes_in_associated_types: FxHashSet<_> = impl_item_refs.iter()
.map(|item_ref| tcx.hir().local_def_id(item_ref.id.hir_id))
.filter(|&def_id| {
let item = tcx.associated_item(def_id);
item.kind == ty::AssocKind::Type && item.defaultness.has_value()
})
.flat_map(|def_id| {
cgp::parameters_for(&tcx.type_of(def_id), true)
}).collect();
for param in &impl_generics.params {
match param.kind {
// Disallow ANY unconstrained type parameters.
ty::GenericParamDefKind::Type { .. } => {
let param_ty = ty::ParamTy::for_def(param);
if !input_parameters.contains(&cgp::Parameter::from(param_ty)) {
report_unused_parameter(tcx,
tcx.def_span(param.def_id),
"type",
&param_ty.to_string());
}
}
ty::GenericParamDefKind::Lifetime => {
let param_lt = cgp::Parameter::from(param.to_early_bound_region_data());
if lifetimes_in_associated_types.contains(&param_lt) && // (*)
!input_parameters.contains(&param_lt) {
report_unused_parameter(tcx,
tcx.def_span(param.def_id),
"lifetime",
&param.name.to_string());
}
}
ty::GenericParamDefKind::Const => {
let param_ct = ty::ParamConst::for_def(param);
if !input_parameters.contains(&cgp::Parameter::from(param_ct)) {
report_unused_parameter(tcx,
tcx.def_span(param.def_id),
"const",
&param_ct.to_string());
}
}
}
}
// (*) This is a horrible concession to reality. I think it'd be
// better to just ban unconstrianed lifetimes outright, but in
// practice people do non-hygenic macros like:
//
// ```
// macro_rules! __impl_slice_eq1 {
// ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
// impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
// ....
// }
// }
// }
// ```
//
// In a concession to backwards compatibility, we continue to
// permit those, so long as the lifetimes aren't used in
// associated types. I believe this is sound, because lifetimes
// used elsewhere are not projected back out.
}
fn report_unused_parameter(tcx: TyCtxt<'_>, span: Span, kind: &str, name: &str) {
struct_span_err!(
tcx.sess, span, E0207,
"the {} parameter `{}` is not constrained by the \
impl trait, self type, or predicates",
kind, name)
.span_label(span, format!("unconstrained {} parameter", kind))
.emit();
}
/// Enforce that we do not have two items in an impl with the same name.
fn enforce_impl_items_are_distinct(tcx: TyCtxt<'_>, impl_item_refs: &[hir::ImplItemRef]) {
let mut seen_type_items = FxHashMap::default();
let mut seen_value_items = FxHashMap::default();
for impl_item_ref in impl_item_refs {
let impl_item = tcx.hir().impl_item(impl_item_ref.id);
let seen_items = match impl_item.node {
hir::ImplItemKind::TyAlias(_) => &mut seen_type_items,
_ => &mut seen_value_items,
};
match seen_items.entry(impl_item.ident.modern()) {
Occupied(entry) => {
let mut err = struct_span_err!(tcx.sess, impl_item.span, E0201,
"duplicate definitions with name `{}`:",
impl_item.ident);
err.span_label(*entry.get(),
format!("previous definition of `{}` here",
impl_item.ident));
err.span_label(impl_item.span, "duplicate definition");
err.emit();
}
Vacant(entry) => {
entry.insert(impl_item.span);
}
}
}
}