blob: 308a3d8ebc2cfd4a88fa291d5d2978f81845c7f5 [file] [log] [blame]
use crate::check::{FnCtxt, Expectation, Diverges, Needs};
use crate::check::coercion::CoerceMany;
use rustc::hir::{self, ExprKind};
use rustc::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc::traits::{IfExpressionCause, MatchExpressionArmCause, ObligationCause};
use rustc::traits::{ObligationCauseCode};
use rustc::ty::Ty;
use syntax_pos::Span;
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub fn check_match(
&self,
expr: &'tcx hir::Expr,
discrim: &'tcx hir::Expr,
arms: &'tcx [hir::Arm],
expected: Expectation<'tcx>,
match_src: hir::MatchSource,
) -> Ty<'tcx> {
let tcx = self.tcx;
use hir::MatchSource::*;
let (source_if, if_no_else, force_scrutinee_bool) = match match_src {
IfDesugar { contains_else_clause } => (true, !contains_else_clause, true),
IfLetDesugar { contains_else_clause } => (true, !contains_else_clause, false),
WhileDesugar => (false, false, true),
_ => (false, false, false),
};
// Type check the descriminant and get its type.
let discrim_ty = if force_scrutinee_bool {
// Here we want to ensure:
//
// 1. That default match bindings are *not* accepted in the condition of an
// `if` expression. E.g. given `fn foo() -> &bool;` we reject `if foo() { .. }`.
//
// 2. By expecting `bool` for `expr` we get nice diagnostics for e.g. `if x = y { .. }`.
//
// FIXME(60707): Consider removing hack with principled solution.
self.check_expr_has_type_or_error(discrim, self.tcx.types.bool)
} else {
self.demand_discriminant_type(arms, discrim)
};
// If there are no arms, that is a diverging match; a special case.
if arms.is_empty() {
self.diverges.set(self.diverges.get() | Diverges::Always);
return tcx.types.never;
}
self.warn_arms_when_scrutinee_diverges(arms, match_src);
// Otherwise, we have to union together the types that the
// arms produce and so forth.
let discrim_diverges = self.diverges.get();
self.diverges.set(Diverges::Maybe);
// rust-lang/rust#55810: Typecheck patterns first (via eager
// collection into `Vec`), so we get types for all bindings.
let all_arm_pats_diverge: Vec<_> = arms.iter().map(|arm| {
let mut all_pats_diverge = Diverges::WarnedAlways;
for p in &arm.pats {
self.diverges.set(Diverges::Maybe);
self.check_pat_top(&p, discrim_ty, Some(discrim.span));
all_pats_diverge &= self.diverges.get();
}
// As discussed with @eddyb, this is for disabling unreachable_code
// warnings on patterns (they're now subsumed by unreachable_patterns
// warnings).
match all_pats_diverge {
Diverges::Maybe => Diverges::Maybe,
Diverges::Always | Diverges::WarnedAlways => Diverges::WarnedAlways,
}
}).collect();
// Now typecheck the blocks.
//
// The result of the match is the common supertype of all the
// arms. Start out the value as bottom, since it's the, well,
// bottom the type lattice, and we'll be moving up the lattice as
// we process each arm. (Note that any match with 0 arms is matching
// on any empty type and is therefore unreachable; should the flow
// of execution reach it, we will panic, so bottom is an appropriate
// type in that case)
let mut all_arms_diverge = Diverges::WarnedAlways;
let expected = expected.adjust_for_branches(self);
let mut coercion = {
let coerce_first = match expected {
// We don't coerce to `()` so that if the match expression is a
// statement it's branches can have any consistent type. That allows
// us to give better error messages (pointing to a usually better
// arm for inconsistent arms or to the whole match when a `()` type
// is required).
Expectation::ExpectHasType(ety) if ety != self.tcx.mk_unit() => ety,
_ => self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: expr.span,
}),
};
CoerceMany::with_coercion_sites(coerce_first, arms)
};
let mut other_arms = vec![]; // used only for diagnostics
let mut prior_arm_ty = None;
for (i, (arm, pats_diverge)) in arms.iter().zip(all_arm_pats_diverge).enumerate() {
if let Some(g) = &arm.guard {
self.diverges.set(pats_diverge);
match g {
hir::Guard::If(e) => self.check_expr_has_type_or_error(e, tcx.types.bool),
};
}
self.diverges.set(pats_diverge);
let arm_ty = if source_if && if_no_else && i != 0 && self.if_fallback_coercion(
expr.span,
&arms[0].body,
&mut coercion,
) {
tcx.types.err
} else {
// Only call this if this is not an `if` expr with an expected type and no `else`
// clause to avoid duplicated type errors. (#60254)
self.check_expr_with_expectation(&arm.body, expected)
};
all_arms_diverge &= self.diverges.get();
if source_if {
let then_expr = &arms[0].body;
match (i, if_no_else) {
(0, _) => coercion.coerce(self, &self.misc(expr.span), &arm.body, arm_ty),
(_, true) => {} // Handled above to avoid duplicated type errors (#60254).
(_, _) => {
let then_ty = prior_arm_ty.unwrap();
let cause = self.if_cause(expr.span, then_expr, &arm.body, then_ty, arm_ty);
coercion.coerce(self, &cause, &arm.body, arm_ty);
}
}
} else {
let arm_span = if let hir::ExprKind::Block(blk, _) = &arm.body.node {
// Point at the block expr instead of the entire block
blk.expr.as_ref().map(|e| e.span).unwrap_or(arm.body.span)
} else {
arm.body.span
};
let (span, code) = match i {
// The reason for the first arm to fail is not that the match arms diverge,
// but rather that there's a prior obligation that doesn't hold.
0 => (arm_span, ObligationCauseCode::BlockTailExpression(arm.body.hir_id)),
_ => (expr.span,
ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
arm_span,
source: match_src,
prior_arms: other_arms.clone(),
last_ty: prior_arm_ty.unwrap(),
discrim_hir_id: discrim.hir_id,
})
),
};
let cause = self.cause(span, code);
coercion.coerce(self, &cause, &arm.body, arm_ty);
other_arms.push(arm_span);
if other_arms.len() > 5 {
other_arms.remove(0);
}
}
prior_arm_ty = Some(arm_ty);
}
// We won't diverge unless the discriminant or all arms diverge.
self.diverges.set(discrim_diverges | all_arms_diverge);
coercion.complete(self)
}
/// When the previously checked expression (the scrutinee) diverges,
/// warn the user about the match arms being unreachable.
fn warn_arms_when_scrutinee_diverges(&self, arms: &'tcx [hir::Arm], source: hir::MatchSource) {
if self.diverges.get().always() {
use hir::MatchSource::*;
let msg = match source {
IfDesugar { .. } | IfLetDesugar { .. } => "block in `if` expression",
WhileDesugar { .. } | WhileLetDesugar { .. } => "block in `while` expression",
_ => "arm",
};
for arm in arms {
self.warn_if_unreachable(arm.body.hir_id, arm.body.span, msg);
}
}
}
/// Handle the fallback arm of a desugared if(-let) like a missing else.
///
/// Returns `true` if there was an error forcing the coercion to the `()` type.
fn if_fallback_coercion(
&self,
span: Span,
then_expr: &'tcx hir::Expr,
coercion: &mut CoerceMany<'tcx, '_, rustc::hir::Arm>,
) -> bool {
// If this `if` expr is the parent's function return expr,
// the cause of the type coercion is the return type, point at it. (#25228)
let ret_reason = self.maybe_get_coercion_reason(then_expr.hir_id, span);
let cause = self.cause(span, ObligationCauseCode::IfExpressionWithNoElse);
let mut error = false;
coercion.coerce_forced_unit(self, &cause, &mut |err| {
if let Some((span, msg)) = &ret_reason {
err.span_label(*span, msg.as_str());
} else if let ExprKind::Block(block, _) = &then_expr.node {
if let Some(expr) = &block.expr {
err.span_label(expr.span, "found here".to_string());
}
}
err.note("`if` expressions without `else` evaluate to `()`");
err.help("consider adding an `else` block that evaluates to the expected type");
error = true;
}, ret_reason.is_none());
error
}
fn maybe_get_coercion_reason(&self, hir_id: hir::HirId, span: Span) -> Option<(Span, String)> {
use hir::Node::{Block, Item, Local};
let hir = self.tcx.hir();
let arm_id = hir.get_parent_node(hir_id);
let match_id = hir.get_parent_node(arm_id);
let containing_id = hir.get_parent_node(match_id);
let node = hir.get(containing_id);
if let Block(block) = node {
// check that the body's parent is an fn
let parent = hir.get(
hir.get_parent_node(
hir.get_parent_node(block.hir_id),
),
);
if let (Some(expr), Item(hir::Item {
node: hir::ItemKind::Fn(..), ..
})) = (&block.expr, parent) {
// check that the `if` expr without `else` is the fn body's expr
if expr.span == span {
return self.get_fn_decl(hir_id).map(|(fn_decl, _)| (
fn_decl.output.span(),
format!("expected `{}` because of this return type", fn_decl.output),
));
}
}
}
if let Local(hir::Local { ty: Some(_), pat, .. }) = node {
return Some((pat.span, "expected because of this assignment".to_string()));
}
None
}
fn if_cause(
&self,
span: Span,
then_expr: &'tcx hir::Expr,
else_expr: &'tcx hir::Expr,
then_ty: Ty<'tcx>,
else_ty: Ty<'tcx>,
) -> ObligationCause<'tcx> {
let mut outer_sp = if self.tcx.sess.source_map().is_multiline(span) {
// The `if`/`else` isn't in one line in the output, include some context to make it
// clear it is an if/else expression:
// ```
// LL | let x = if true {
// | _____________-
// LL || 10i32
// || ----- expected because of this
// LL || } else {
// LL || 10u32
// || ^^^^^ expected i32, found u32
// LL || };
// ||_____- if and else have incompatible types
// ```
Some(span)
} else {
// The entire expression is in one line, only point at the arms
// ```
// LL | let x = if true { 10i32 } else { 10u32 };
// | ----- ^^^^^ expected i32, found u32
// | |
// | expected because of this
// ```
None
};
let mut remove_semicolon = None;
let error_sp = if let ExprKind::Block(block, _) = &else_expr.node {
if let Some(expr) = &block.expr {
expr.span
} else if let Some(stmt) = block.stmts.last() {
// possibly incorrect trailing `;` in the else arm
remove_semicolon = self.could_remove_semicolon(block, then_ty);
stmt.span
} else { // empty block; point at its entirety
// Avoid overlapping spans that aren't as readable:
// ```
// 2 | let x = if true {
// | _____________-
// 3 | | 3
// | | - expected because of this
// 4 | | } else {
// | |____________^
// 5 | ||
// 6 | || };
// | || ^
// | ||_____|
// | |______if and else have incompatible types
// | expected integer, found ()
// ```
// by not pointing at the entire expression:
// ```
// 2 | let x = if true {
// | ------- if and else have incompatible types
// 3 | 3
// | - expected because of this
// 4 | } else {
// | ____________^
// 5 | |
// 6 | | };
// | |_____^ expected integer, found ()
// ```
if outer_sp.is_some() {
outer_sp = Some(self.tcx.sess.source_map().def_span(span));
}
else_expr.span
}
} else { // shouldn't happen unless the parser has done something weird
else_expr.span
};
// Compute `Span` of `then` part of `if`-expression.
let then_sp = if let ExprKind::Block(block, _) = &then_expr.node {
if let Some(expr) = &block.expr {
expr.span
} else if let Some(stmt) = block.stmts.last() {
// possibly incorrect trailing `;` in the else arm
remove_semicolon = remove_semicolon.or(self.could_remove_semicolon(block, else_ty));
stmt.span
} else { // empty block; point at its entirety
outer_sp = None; // same as in `error_sp`; cleanup output
then_expr.span
}
} else { // shouldn't happen unless the parser has done something weird
then_expr.span
};
// Finally construct the cause:
self.cause(error_sp, ObligationCauseCode::IfExpression(box IfExpressionCause {
then: then_sp,
outer: outer_sp,
semicolon: remove_semicolon,
}))
}
fn demand_discriminant_type(
&self,
arms: &'tcx [hir::Arm],
discrim: &'tcx hir::Expr,
) -> Ty<'tcx> {
// Not entirely obvious: if matches may create ref bindings, we want to
// use the *precise* type of the discriminant, *not* some supertype, as
// the "discriminant type" (issue #23116).
//
// arielb1 [writes here in this comment thread][c] that there
// is certainly *some* potential danger, e.g., for an example
// like:
//
// [c]: https://github.com/rust-lang/rust/pull/43399#discussion_r130223956
//
// ```
// let Foo(x) = f()[0];
// ```
//
// Then if the pattern matches by reference, we want to match
// `f()[0]` as a lexpr, so we can't allow it to be
// coerced. But if the pattern matches by value, `f()[0]` is
// still syntactically a lexpr, but we *do* want to allow
// coercions.
//
// However, *likely* we are ok with allowing coercions to
// happen if there are no explicit ref mut patterns - all
// implicit ref mut patterns must occur behind a reference, so
// they will have the "correct" variance and lifetime.
//
// This does mean that the following pattern would be legal:
//
// ```
// struct Foo(Bar);
// struct Bar(u32);
// impl Deref for Foo {
// type Target = Bar;
// fn deref(&self) -> &Bar { &self.0 }
// }
// impl DerefMut for Foo {
// fn deref_mut(&mut self) -> &mut Bar { &mut self.0 }
// }
// fn foo(x: &mut Foo) {
// {
// let Bar(z): &mut Bar = x;
// *z = 42;
// }
// assert_eq!(foo.0.0, 42);
// }
// ```
//
// FIXME(tschottdorf): don't call contains_explicit_ref_binding, which
// is problematic as the HIR is being scraped, but ref bindings may be
// implicit after #42640. We need to make sure that pat_adjustments
// (once introduced) is populated by the time we get here.
//
// See #44848.
let contains_ref_bindings = arms.iter()
.filter_map(|a| a.contains_explicit_ref_binding())
.max_by_key(|m| match *m {
hir::MutMutable => 1,
hir::MutImmutable => 0,
});
if let Some(m) = contains_ref_bindings {
self.check_expr_with_needs(discrim, Needs::maybe_mut_place(m))
} else {
// ...but otherwise we want to use any supertype of the
// discriminant. This is sort of a workaround, see note (*) in
// `check_pat` for some details.
let discrim_ty = self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeInference,
span: discrim.span,
});
self.check_expr_has_type_or_error(discrim, discrim_ty);
discrim_ty
}
}
}