blob: 647d7515fe98df36baad06b6f4386c05100fcbe4 [file] [log] [blame]
use crate::build;
use crate::build::scope::DropKind;
use crate::hair::cx::Cx;
use crate::hair::{LintLevel, BindingMode, PatternKind};
use crate::transform::MirSource;
use crate::util as mir_util;
use rustc::hir;
use rustc::hir::Node;
use rustc::hir::def_id::DefId;
use rustc::middle::region;
use rustc::mir::*;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::util::nodemap::HirIdMap;
use rustc_target::spec::PanicStrategy;
use rustc_data_structures::indexed_vec::{IndexVec, Idx};
use std::u32;
use rustc_target::spec::abi::Abi;
use syntax::attr::{self, UnwindAttr};
use syntax::symbol::kw;
use syntax_pos::Span;
use super::lints;
/// Construct the MIR for a given `DefId`.
pub fn mir_build(tcx: TyCtxt<'_>, def_id: DefId) -> Body<'_> {
let id = tcx.hir().as_local_hir_id(def_id).unwrap();
// Figure out what primary body this item has.
let (body_id, return_ty_span) = match tcx.hir().get(id) {
Node::Expr(hir::Expr { node: hir::ExprKind::Closure(_, decl, body_id, _, _), .. })
| Node::Item(hir::Item { node: hir::ItemKind::Fn(decl, _, _, body_id), .. })
| Node::ImplItem(
hir::ImplItem {
node: hir::ImplItemKind::Method(hir::MethodSig { decl, .. }, body_id),
..
}
)
| Node::TraitItem(
hir::TraitItem {
node: hir::TraitItemKind::Method(
hir::MethodSig { decl, .. },
hir::TraitMethod::Provided(body_id),
),
..
}
) => {
(*body_id, decl.output.span())
}
Node::Item(hir::Item { node: hir::ItemKind::Static(ty, _, body_id), .. })
| Node::Item(hir::Item { node: hir::ItemKind::Const(ty, body_id), .. })
| Node::ImplItem(hir::ImplItem { node: hir::ImplItemKind::Const(ty, body_id), .. })
| Node::TraitItem(
hir::TraitItem { node: hir::TraitItemKind::Const(ty, Some(body_id)), .. }
) => {
(*body_id, ty.span)
}
Node::AnonConst(hir::AnonConst { body, hir_id, .. }) => {
(*body, tcx.hir().span(*hir_id))
}
_ => span_bug!(tcx.hir().span(id), "can't build MIR for {:?}", def_id),
};
tcx.infer_ctxt().enter(|infcx| {
let cx = Cx::new(&infcx, id);
let body = if cx.tables().tainted_by_errors {
build::construct_error(cx, body_id)
} else if cx.body_owner_kind.is_fn_or_closure() {
// fetch the fully liberated fn signature (that is, all bound
// types/lifetimes replaced)
let fn_sig = cx.tables().liberated_fn_sigs()[id].clone();
let fn_def_id = tcx.hir().local_def_id(id);
let ty = tcx.type_of(fn_def_id);
let mut abi = fn_sig.abi;
let implicit_argument = match ty.sty {
ty::Closure(..) => {
// HACK(eddyb) Avoid having RustCall on closures,
// as it adds unnecessary (and wrong) auto-tupling.
abi = Abi::Rust;
Some(ArgInfo(liberated_closure_env_ty(tcx, id, body_id), None, None, None))
}
ty::Generator(..) => {
let gen_ty = tcx.body_tables(body_id).node_type(id);
Some(ArgInfo(gen_ty, None, None, None))
}
_ => None,
};
let safety = match fn_sig.unsafety {
hir::Unsafety::Normal => Safety::Safe,
hir::Unsafety::Unsafe => Safety::FnUnsafe,
};
let body = tcx.hir().body(body_id);
let explicit_arguments =
body.params
.iter()
.enumerate()
.map(|(index, arg)| {
let owner_id = tcx.hir().body_owner(body_id);
let opt_ty_info;
let self_arg;
if let Some(ref fn_decl) = tcx.hir().fn_decl_by_hir_id(owner_id) {
let ty_hir_id = fn_decl.inputs[index].hir_id;
let ty_span = tcx.hir().span(ty_hir_id);
opt_ty_info = Some(ty_span);
self_arg = if index == 0 && fn_decl.implicit_self.has_implicit_self() {
match fn_decl.implicit_self {
hir::ImplicitSelfKind::Imm => Some(ImplicitSelfKind::Imm),
hir::ImplicitSelfKind::Mut => Some(ImplicitSelfKind::Mut),
hir::ImplicitSelfKind::ImmRef => Some(ImplicitSelfKind::ImmRef),
hir::ImplicitSelfKind::MutRef => Some(ImplicitSelfKind::MutRef),
_ => None,
}
} else {
None
};
} else {
opt_ty_info = None;
self_arg = None;
}
ArgInfo(fn_sig.inputs()[index], opt_ty_info, Some(&arg), self_arg)
});
let arguments = implicit_argument.into_iter().chain(explicit_arguments);
let (yield_ty, return_ty) = if body.generator_kind.is_some() {
let gen_sig = match ty.sty {
ty::Generator(gen_def_id, gen_substs, ..) =>
gen_substs.sig(gen_def_id, tcx),
_ =>
span_bug!(tcx.hir().span(id),
"generator w/o generator type: {:?}", ty),
};
(Some(gen_sig.yield_ty), gen_sig.return_ty)
} else {
(None, fn_sig.output())
};
build::construct_fn(cx, id, arguments, safety, abi,
return_ty, yield_ty, return_ty_span, body)
} else {
// Get the revealed type of this const. This is *not* the adjusted
// type of its body, which may be a subtype of this type. For
// example:
//
// fn foo(_: &()) {}
// static X: fn(&'static ()) = foo;
//
// The adjusted type of the body of X is `for<'a> fn(&'a ())` which
// is not the same as the type of X. We need the type of the return
// place to be the type of the constant because NLL typeck will
// equate them.
let return_ty = cx.tables().node_type(id);
build::construct_const(cx, body_id, return_ty, return_ty_span)
};
mir_util::dump_mir(tcx, None, "mir_map", &0,
MirSource::item(def_id), &body, |_, _| Ok(()) );
lints::check(tcx, &body, def_id);
body
})
}
///////////////////////////////////////////////////////////////////////////
// BuildMir -- walks a crate, looking for fn items and methods to build MIR from
fn liberated_closure_env_ty(
tcx: TyCtxt<'_>,
closure_expr_id: hir::HirId,
body_id: hir::BodyId,
) -> Ty<'_> {
let closure_ty = tcx.body_tables(body_id).node_type(closure_expr_id);
let (closure_def_id, closure_substs) = match closure_ty.sty {
ty::Closure(closure_def_id, closure_substs) => (closure_def_id, closure_substs),
_ => bug!("closure expr does not have closure type: {:?}", closure_ty)
};
let closure_env_ty = tcx.closure_env_ty(closure_def_id, closure_substs).unwrap();
tcx.liberate_late_bound_regions(closure_def_id, &closure_env_ty)
}
#[derive(Debug, PartialEq, Eq)]
pub enum BlockFrame {
/// Evaluation is currently within a statement.
///
/// Examples include:
/// 1. `EXPR;`
/// 2. `let _ = EXPR;`
/// 3. `let x = EXPR;`
Statement {
/// If true, then statement discards result from evaluating
/// the expression (such as examples 1 and 2 above).
ignores_expr_result: bool
},
/// Evaluation is currently within the tail expression of a block.
///
/// Example: `{ STMT_1; STMT_2; EXPR }`
TailExpr {
/// If true, then the surrounding context of the block ignores
/// the result of evaluating the block's tail expression.
///
/// Example: `let _ = { STMT_1; EXPR };`
tail_result_is_ignored: bool
},
/// Generic mark meaning that the block occurred as a subexpression
/// where the result might be used.
///
/// Examples: `foo(EXPR)`, `match EXPR { ... }`
SubExpr,
}
impl BlockFrame {
fn is_tail_expr(&self) -> bool {
match *self {
BlockFrame::TailExpr { .. } => true,
BlockFrame::Statement { .. } |
BlockFrame::SubExpr => false,
}
}
fn is_statement(&self) -> bool {
match *self {
BlockFrame::Statement { .. } => true,
BlockFrame::TailExpr { .. } |
BlockFrame::SubExpr => false,
}
}
}
#[derive(Debug)]
struct BlockContext(Vec<BlockFrame>);
struct Builder<'a, 'tcx> {
hir: Cx<'a, 'tcx>,
cfg: CFG<'tcx>,
fn_span: Span,
arg_count: usize,
is_generator: bool,
/// The current set of scopes, updated as we traverse;
/// see the `scope` module for more details.
scopes: scope::Scopes<'tcx>,
/// The block-context: each time we build the code within an hair::Block,
/// we push a frame here tracking whether we are building a statement or
/// if we are pushing the tail expression of the block. This is used to
/// embed information in generated temps about whether they were created
/// for a block tail expression or not.
///
/// It would be great if we could fold this into `self.scopes`
/// somehow, but right now I think that is very tightly tied to
/// the code generation in ways that we cannot (or should not)
/// start just throwing new entries onto that vector in order to
/// distinguish the context of EXPR1 from the context of EXPR2 in
/// `{ STMTS; EXPR1 } + EXPR2`.
block_context: BlockContext,
/// The current unsafe block in scope, even if it is hidden by
/// a `PushUnsafeBlock`.
unpushed_unsafe: Safety,
/// The number of `push_unsafe_block` levels in scope.
push_unsafe_count: usize,
/// The vector of all scopes that we have created thus far;
/// we track this for debuginfo later.
source_scopes: IndexVec<SourceScope, SourceScopeData>,
source_scope_local_data: IndexVec<SourceScope, SourceScopeLocalData>,
source_scope: SourceScope,
/// The guard-context: each time we build the guard expression for
/// a match arm, we push onto this stack, and then pop when we
/// finish building it.
guard_context: Vec<GuardFrame>,
/// Maps `HirId`s of variable bindings to the `Local`s created for them.
/// (A match binding can have two locals; the 2nd is for the arm's guard.)
var_indices: HirIdMap<LocalsForNode>,
local_decls: IndexVec<Local, LocalDecl<'tcx>>,
canonical_user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
__upvar_debuginfo_codegen_only_do_not_use: Vec<UpvarDebuginfo>,
upvar_mutbls: Vec<Mutability>,
unit_temp: Option<Place<'tcx>>,
/// Cached block with the `RESUME` terminator; this is created
/// when first set of cleanups are built.
cached_resume_block: Option<BasicBlock>,
/// Cached block with the `RETURN` terminator.
cached_return_block: Option<BasicBlock>,
/// Cached block with the `UNREACHABLE` terminator.
cached_unreachable_block: Option<BasicBlock>,
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn is_bound_var_in_guard(&self, id: hir::HirId) -> bool {
self.guard_context.iter().any(|frame| frame.locals.iter().any(|local| local.id == id))
}
fn var_local_id(&self, id: hir::HirId, for_guard: ForGuard) -> Local {
self.var_indices[&id].local_id(for_guard)
}
}
impl BlockContext {
fn new() -> Self { BlockContext(vec![]) }
fn push(&mut self, bf: BlockFrame) { self.0.push(bf); }
fn pop(&mut self) -> Option<BlockFrame> { self.0.pop() }
/// Traverses the frames on the `BlockContext`, searching for either
/// the first block-tail expression frame with no intervening
/// statement frame.
///
/// Notably, this skips over `SubExpr` frames; this method is
/// meant to be used in the context of understanding the
/// relationship of a temp (created within some complicated
/// expression) with its containing expression, and whether the
/// value of that *containing expression* (not the temp!) is
/// ignored.
fn currently_in_block_tail(&self) -> Option<BlockTailInfo> {
for bf in self.0.iter().rev() {
match bf {
BlockFrame::SubExpr => continue,
BlockFrame::Statement { .. } => break,
&BlockFrame::TailExpr { tail_result_is_ignored } =>
return Some(BlockTailInfo { tail_result_is_ignored })
}
}
return None;
}
/// Looks at the topmost frame on the BlockContext and reports
/// whether its one that would discard a block tail result.
///
/// Unlike `currently_within_ignored_tail_expression`, this does
/// *not* skip over `SubExpr` frames: here, we want to know
/// whether the block result itself is discarded.
fn currently_ignores_tail_results(&self) -> bool {
match self.0.last() {
// no context: conservatively assume result is read
None => false,
// sub-expression: block result feeds into some computation
Some(BlockFrame::SubExpr) => false,
// otherwise: use accumulated is_ignored state.
Some(BlockFrame::TailExpr { tail_result_is_ignored: ignored }) |
Some(BlockFrame::Statement { ignores_expr_result: ignored }) => *ignored,
}
}
}
#[derive(Debug)]
enum LocalsForNode {
/// In the usual case, a `HirId` for an identifier maps to at most
/// one `Local` declaration.
One(Local),
/// The exceptional case is identifiers in a match arm's pattern
/// that are referenced in a guard of that match arm. For these,
/// we have `2` Locals.
///
/// * `for_arm_body` is the Local used in the arm body (which is
/// just like the `One` case above),
///
/// * `ref_for_guard` is the Local used in the arm's guard (which
/// is a reference to a temp that is an alias of
/// `for_arm_body`).
ForGuard { ref_for_guard: Local, for_arm_body: Local },
}
#[derive(Debug)]
struct GuardFrameLocal {
id: hir::HirId,
}
impl GuardFrameLocal {
fn new(id: hir::HirId, _binding_mode: BindingMode) -> Self {
GuardFrameLocal {
id: id,
}
}
}
#[derive(Debug)]
struct GuardFrame {
/// These are the id's of names that are bound by patterns of the
/// arm of *this* guard.
///
/// (Frames higher up the stack will have the id's bound in arms
/// further out, such as in a case like:
///
/// match E1 {
/// P1(id1) if (... (match E2 { P2(id2) if ... => B2 })) => B1,
/// }
///
/// here, when building for FIXME.
locals: Vec<GuardFrameLocal>,
}
/// `ForGuard` indicates whether we are talking about:
/// 1. The variable for use outside of guard expressions, or
/// 2. The temp that holds reference to (1.), which is actually what the
/// guard expressions see.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum ForGuard {
RefWithinGuard,
OutsideGuard,
}
impl LocalsForNode {
fn local_id(&self, for_guard: ForGuard) -> Local {
match (self, for_guard) {
(&LocalsForNode::One(local_id), ForGuard::OutsideGuard) |
(&LocalsForNode::ForGuard { ref_for_guard: local_id, .. }, ForGuard::RefWithinGuard) |
(&LocalsForNode::ForGuard { for_arm_body: local_id, .. }, ForGuard::OutsideGuard) =>
local_id,
(&LocalsForNode::One(_), ForGuard::RefWithinGuard) =>
bug!("anything with one local should never be within a guard."),
}
}
}
struct CFG<'tcx> {
basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
}
newtype_index! {
pub struct ScopeId { .. }
}
///////////////////////////////////////////////////////////////////////////
/// The `BlockAnd` "monad" packages up the new basic block along with a
/// produced value (sometimes just unit, of course). The `unpack!`
/// macro (and methods below) makes working with `BlockAnd` much more
/// convenient.
#[must_use = "if you don't use one of these results, you're leaving a dangling edge"]
struct BlockAnd<T>(BasicBlock, T);
trait BlockAndExtension {
fn and<T>(self, v: T) -> BlockAnd<T>;
fn unit(self) -> BlockAnd<()>;
}
impl BlockAndExtension for BasicBlock {
fn and<T>(self, v: T) -> BlockAnd<T> {
BlockAnd(self, v)
}
fn unit(self) -> BlockAnd<()> {
BlockAnd(self, ())
}
}
/// Update a block pointer and return the value.
/// Use it like `let x = unpack!(block = self.foo(block, foo))`.
macro_rules! unpack {
($x:ident = $c:expr) => {
{
let BlockAnd(b, v) = $c;
$x = b;
v
}
};
($c:expr) => {
{
let BlockAnd(b, ()) = $c;
b
}
};
}
fn should_abort_on_panic(tcx: TyCtxt<'_>, fn_def_id: DefId, abi: Abi) -> bool {
// Not callable from C, so we can safely unwind through these
if abi == Abi::Rust || abi == Abi::RustCall { return false; }
// Validate `#[unwind]` syntax regardless of platform-specific panic strategy
let attrs = &tcx.get_attrs(fn_def_id);
let unwind_attr = attr::find_unwind_attr(Some(tcx.sess.diagnostic()), attrs);
// We never unwind, so it's not relevant to stop an unwind
if tcx.sess.panic_strategy() != PanicStrategy::Unwind { return false; }
// We cannot add landing pads, so don't add one
if tcx.sess.no_landing_pads() { return false; }
// This is a special case: some functions have a C abi but are meant to
// unwind anyway. Don't stop them.
match unwind_attr {
None => false, // FIXME(#58794)
Some(UnwindAttr::Allowed) => false,
Some(UnwindAttr::Aborts) => true,
}
}
///////////////////////////////////////////////////////////////////////////
/// the main entry point for building MIR for a function
struct ArgInfo<'tcx>(Ty<'tcx>, Option<Span>, Option<&'tcx hir::Param>, Option<ImplicitSelfKind>);
fn construct_fn<'a, 'tcx, A>(
hir: Cx<'a, 'tcx>,
fn_id: hir::HirId,
arguments: A,
safety: Safety,
abi: Abi,
return_ty: Ty<'tcx>,
yield_ty: Option<Ty<'tcx>>,
return_ty_span: Span,
body: &'tcx hir::Body,
) -> Body<'tcx>
where
A: Iterator<Item=ArgInfo<'tcx>>
{
let arguments: Vec<_> = arguments.collect();
let tcx = hir.tcx();
let tcx_hir = tcx.hir();
let span = tcx_hir.span(fn_id);
let hir_tables = hir.tables();
let fn_def_id = tcx_hir.local_def_id(fn_id);
// Gather the upvars of a closure, if any.
let mut upvar_mutbls = vec![];
// In analyze_closure() in upvar.rs we gathered a list of upvars used by a
// closure and we stored in a map called upvar_list in TypeckTables indexed
// with the closure's DefId. Here, we run through that vec of UpvarIds for
// the given closure and use the necessary information to create UpvarDecl.
let upvar_debuginfo: Vec<_> = hir_tables
.upvar_list
.get(&fn_def_id)
.into_iter()
.flatten()
.map(|(&var_hir_id, &upvar_id)| {
let capture = hir_tables.upvar_capture(upvar_id);
let by_ref = match capture {
ty::UpvarCapture::ByValue => false,
ty::UpvarCapture::ByRef(..) => true,
};
let mut debuginfo = UpvarDebuginfo {
debug_name: kw::Invalid,
by_ref,
};
let mut mutability = Mutability::Not;
if let Some(Node::Binding(pat)) = tcx_hir.find(var_hir_id) {
if let hir::PatKind::Binding(_, _, ident, _) = pat.node {
debuginfo.debug_name = ident.name;
if let Some(&bm) = hir.tables.pat_binding_modes().get(pat.hir_id) {
if bm == ty::BindByValue(hir::MutMutable) {
mutability = Mutability::Mut;
} else {
mutability = Mutability::Not;
}
} else {
tcx.sess.delay_span_bug(pat.span, "missing binding mode");
}
}
}
upvar_mutbls.push(mutability);
debuginfo
})
.collect();
let mut builder = Builder::new(hir,
span,
arguments.len(),
safety,
return_ty,
return_ty_span,
upvar_debuginfo,
upvar_mutbls,
body.generator_kind.is_some());
let call_site_scope = region::Scope {
id: body.value.hir_id.local_id,
data: region::ScopeData::CallSite
};
let arg_scope = region::Scope {
id: body.value.hir_id.local_id,
data: region::ScopeData::Arguments
};
let mut block = START_BLOCK;
let source_info = builder.source_info(span);
let call_site_s = (call_site_scope, source_info);
unpack!(block = builder.in_scope(call_site_s, LintLevel::Inherited, |builder| {
if should_abort_on_panic(tcx, fn_def_id, abi) {
builder.schedule_abort();
}
let arg_scope_s = (arg_scope, source_info);
// `return_block` is called when we evaluate a `return` expression, so
// we just use `START_BLOCK` here.
unpack!(block = builder.in_breakable_scope(
None,
START_BLOCK,
Place::return_place(),
|builder| {
builder.in_scope(arg_scope_s, LintLevel::Inherited, |builder| {
builder.args_and_body(block, &arguments, arg_scope, &body.value)
})
},
));
// Attribute epilogue to function's closing brace
let fn_end = span.shrink_to_hi();
let source_info = builder.source_info(fn_end);
let return_block = builder.return_block();
builder.cfg.terminate(block, source_info,
TerminatorKind::Goto { target: return_block });
builder.cfg.terminate(return_block, source_info,
TerminatorKind::Return);
// Attribute any unreachable codepaths to the function's closing brace
if let Some(unreachable_block) = builder.cached_unreachable_block {
builder.cfg.terminate(unreachable_block, source_info,
TerminatorKind::Unreachable);
}
return_block.unit()
}));
assert_eq!(block, builder.return_block());
let mut spread_arg = None;
if abi == Abi::RustCall {
// RustCall pseudo-ABI untuples the last argument.
spread_arg = Some(Local::new(arguments.len()));
}
info!("fn_id {:?} has attrs {:?}", fn_def_id,
tcx.get_attrs(fn_def_id));
let mut body = builder.finish(yield_ty);
body.spread_arg = spread_arg;
body
}
fn construct_const<'a, 'tcx>(
hir: Cx<'a, 'tcx>,
body_id: hir::BodyId,
const_ty: Ty<'tcx>,
const_ty_span: Span,
) -> Body<'tcx> {
let tcx = hir.tcx();
let owner_id = tcx.hir().body_owner(body_id);
let span = tcx.hir().span(owner_id);
let mut builder = Builder::new(
hir,
span,
0,
Safety::Safe,
const_ty,
const_ty_span,
vec![],
vec![],
false,
);
let mut block = START_BLOCK;
let ast_expr = &tcx.hir().body(body_id).value;
let expr = builder.hir.mirror(ast_expr);
unpack!(block = builder.into_expr(&Place::return_place(), block, expr));
let source_info = builder.source_info(span);
builder.cfg.terminate(block, source_info, TerminatorKind::Return);
// Constants can't `return` so a return block should not be created.
assert_eq!(builder.cached_return_block, None);
// Constants may be match expressions in which case an unreachable block may
// be created, so terminate it properly.
if let Some(unreachable_block) = builder.cached_unreachable_block {
builder.cfg.terminate(unreachable_block, source_info,
TerminatorKind::Unreachable);
}
builder.finish(None)
}
fn construct_error<'a, 'tcx>(
hir: Cx<'a, 'tcx>,
body_id: hir::BodyId
) -> Body<'tcx> {
let owner_id = hir.tcx().hir().body_owner(body_id);
let span = hir.tcx().hir().span(owner_id);
let ty = hir.tcx().types.err;
let mut builder = Builder::new(hir, span, 0, Safety::Safe, ty, span, vec![], vec![], false);
let source_info = builder.source_info(span);
builder.cfg.terminate(START_BLOCK, source_info, TerminatorKind::Unreachable);
builder.finish(None)
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn new(hir: Cx<'a, 'tcx>,
span: Span,
arg_count: usize,
safety: Safety,
return_ty: Ty<'tcx>,
return_span: Span,
__upvar_debuginfo_codegen_only_do_not_use: Vec<UpvarDebuginfo>,
upvar_mutbls: Vec<Mutability>,
is_generator: bool)
-> Builder<'a, 'tcx> {
let lint_level = LintLevel::Explicit(hir.root_lint_level);
let mut builder = Builder {
hir,
cfg: CFG { basic_blocks: IndexVec::new() },
fn_span: span,
arg_count,
is_generator,
scopes: Default::default(),
block_context: BlockContext::new(),
source_scopes: IndexVec::new(),
source_scope: OUTERMOST_SOURCE_SCOPE,
source_scope_local_data: IndexVec::new(),
guard_context: vec![],
push_unsafe_count: 0,
unpushed_unsafe: safety,
local_decls: IndexVec::from_elem_n(
LocalDecl::new_return_place(return_ty, return_span),
1,
),
canonical_user_type_annotations: IndexVec::new(),
__upvar_debuginfo_codegen_only_do_not_use,
upvar_mutbls,
var_indices: Default::default(),
unit_temp: None,
cached_resume_block: None,
cached_return_block: None,
cached_unreachable_block: None,
};
assert_eq!(builder.cfg.start_new_block(), START_BLOCK);
assert_eq!(
builder.new_source_scope(span, lint_level, Some(safety)),
OUTERMOST_SOURCE_SCOPE);
builder.source_scopes[OUTERMOST_SOURCE_SCOPE].parent_scope = None;
builder
}
fn finish(self,
yield_ty: Option<Ty<'tcx>>)
-> Body<'tcx> {
for (index, block) in self.cfg.basic_blocks.iter().enumerate() {
if block.terminator.is_none() {
span_bug!(self.fn_span, "no terminator on block {:?}", index);
}
}
Body::new(
self.cfg.basic_blocks,
self.source_scopes,
ClearCrossCrate::Set(self.source_scope_local_data),
yield_ty,
self.local_decls,
self.canonical_user_type_annotations,
self.arg_count,
self.__upvar_debuginfo_codegen_only_do_not_use,
self.fn_span,
self.hir.control_flow_destroyed(),
)
}
fn args_and_body(&mut self,
mut block: BasicBlock,
arguments: &[ArgInfo<'tcx>],
argument_scope: region::Scope,
ast_body: &'tcx hir::Expr)
-> BlockAnd<()>
{
// Allocate locals for the function arguments
for &ArgInfo(ty, _, arg_opt, _) in arguments.iter() {
// If this is a simple binding pattern, give the local a name for
// debuginfo and so that error reporting knows that this is a user
// variable. For any other pattern the pattern introduces new
// variables which will be named instead.
let (name, span) = if let Some(arg) = arg_opt {
(arg.pat.simple_ident().map(|ident| ident.name), arg.pat.span)
} else {
(None, self.fn_span)
};
let source_info = SourceInfo { scope: OUTERMOST_SOURCE_SCOPE, span, };
self.local_decls.push(LocalDecl {
mutability: Mutability::Mut,
ty,
user_ty: UserTypeProjections::none(),
source_info,
visibility_scope: source_info.scope,
name,
internal: false,
is_user_variable: None,
is_block_tail: None,
});
}
let mut scope = None;
// Bind the argument patterns
for (index, arg_info) in arguments.iter().enumerate() {
// Function arguments always get the first Local indices after the return place
let local = Local::new(index + 1);
let place = Place::from(local);
let &ArgInfo(ty, opt_ty_info, arg_opt, ref self_binding) = arg_info;
// Make sure we drop (parts of) the argument even when not matched on.
self.schedule_drop(
arg_opt.as_ref().map_or(ast_body.span, |arg| arg.pat.span),
argument_scope, local, ty, DropKind::Value,
);
if let Some(arg) = arg_opt {
let pattern = self.hir.pattern_from_hir(&arg.pat);
let original_source_scope = self.source_scope;
let span = pattern.span;
self.set_correct_source_scope_for_arg(arg.hir_id, original_source_scope, span);
match *pattern.kind {
// Don't introduce extra copies for simple bindings
PatternKind::Binding {
mutability,
var,
mode: BindingMode::ByValue,
subpattern: None,
..
} => {
self.local_decls[local].mutability = mutability;
self.local_decls[local].source_info.scope = self.source_scope;
self.local_decls[local].is_user_variable =
if let Some(kind) = self_binding {
Some(ClearCrossCrate::Set(BindingForm::ImplicitSelf(*kind)))
} else {
let binding_mode = ty::BindingMode::BindByValue(mutability.into());
Some(ClearCrossCrate::Set(BindingForm::Var(VarBindingForm {
binding_mode,
opt_ty_info,
opt_match_place: Some((Some(place.clone()), span)),
pat_span: span,
})))
};
self.var_indices.insert(var, LocalsForNode::One(local));
}
_ => {
scope = self.declare_bindings(
scope,
ast_body.span,
&pattern,
matches::ArmHasGuard(false),
Some((Some(&place), span)),
);
unpack!(block = self.place_into_pattern(block, pattern, &place, false));
}
}
self.source_scope = original_source_scope;
}
}
// Enter the argument pattern bindings source scope, if it exists.
if let Some(source_scope) = scope {
self.source_scope = source_scope;
}
let body = self.hir.mirror(ast_body);
self.into(&Place::return_place(), block, body)
}
fn set_correct_source_scope_for_arg(
&mut self,
arg_hir_id: hir::HirId,
original_source_scope: SourceScope,
pattern_span: Span
) {
let tcx = self.hir.tcx();
let current_root = tcx.maybe_lint_level_root_bounded(
arg_hir_id,
self.hir.root_lint_level
);
let parent_root = tcx.maybe_lint_level_root_bounded(
self.source_scope_local_data[original_source_scope].lint_root,
self.hir.root_lint_level,
);
if current_root != parent_root {
self.source_scope = self.new_source_scope(
pattern_span,
LintLevel::Explicit(current_root),
None
);
}
}
fn get_unit_temp(&mut self) -> Place<'tcx> {
match self.unit_temp {
Some(ref tmp) => tmp.clone(),
None => {
let ty = self.hir.unit_ty();
let fn_span = self.fn_span;
let tmp = self.temp(ty, fn_span);
self.unit_temp = Some(tmp.clone());
tmp
}
}
}
fn return_block(&mut self) -> BasicBlock {
match self.cached_return_block {
Some(rb) => rb,
None => {
let rb = self.cfg.start_new_block();
self.cached_return_block = Some(rb);
rb
}
}
}
}
///////////////////////////////////////////////////////////////////////////
// Builder methods are broken up into modules, depending on what kind
// of thing is being lowered. Note that they use the `unpack` macro
// above extensively.
mod block;
mod cfg;
mod expr;
mod into;
mod matches;
mod misc;
mod scope;