blob: 62910ec320494fd3053edb09211d9ea284ea3e37 [file] [log] [blame]
use crate::hir::def_id::DefId;
use crate::ty::{self, BoundRegion, Region, Ty, TyCtxt};
use std::borrow::Cow;
use std::fmt;
use rustc_target::spec::abi;
use syntax::ast;
use syntax::errors::pluralise;
use errors::{Applicability, DiagnosticBuilder};
use syntax_pos::Span;
use crate::hir;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ExpectedFound<T> {
pub expected: T,
pub found: T,
}
// Data structures used in type unification
#[derive(Clone, Debug)]
pub enum TypeError<'tcx> {
Mismatch,
UnsafetyMismatch(ExpectedFound<hir::Unsafety>),
AbiMismatch(ExpectedFound<abi::Abi>),
Mutability,
TupleSize(ExpectedFound<usize>),
FixedArraySize(ExpectedFound<u64>),
ArgCount,
RegionsDoesNotOutlive(Region<'tcx>, Region<'tcx>),
RegionsInsufficientlyPolymorphic(BoundRegion, Region<'tcx>),
RegionsOverlyPolymorphic(BoundRegion, Region<'tcx>),
RegionsPlaceholderMismatch,
Sorts(ExpectedFound<Ty<'tcx>>),
IntMismatch(ExpectedFound<ty::IntVarValue>),
FloatMismatch(ExpectedFound<ast::FloatTy>),
Traits(ExpectedFound<DefId>),
VariadicMismatch(ExpectedFound<bool>),
/// Instantiating a type variable with the given type would have
/// created a cycle (because it appears somewhere within that
/// type).
CyclicTy(Ty<'tcx>),
ProjectionMismatched(ExpectedFound<DefId>),
ProjectionBoundsLength(ExpectedFound<usize>),
ExistentialMismatch(ExpectedFound<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>),
ConstMismatch(ExpectedFound<&'tcx ty::Const<'tcx>>),
IntrinsicCast,
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Eq, Hash, Debug, Copy)]
pub enum UnconstrainedNumeric {
UnconstrainedFloat,
UnconstrainedInt,
Neither,
}
/// Explains the source of a type err in a short, human readable way. This is meant to be placed
/// in parentheses after some larger message. You should also invoke `note_and_explain_type_err()`
/// afterwards to present additional details, particularly when it comes to lifetime-related
/// errors.
impl<'tcx> fmt::Display for TypeError<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use self::TypeError::*;
fn report_maybe_different(f: &mut fmt::Formatter<'_>,
expected: &str, found: &str) -> fmt::Result {
// A naive approach to making sure that we're not reporting silly errors such as:
// (expected closure, found closure).
if expected == found {
write!(f, "expected {}, found a different {}", expected, found)
} else {
write!(f, "expected {}, found {}", expected, found)
}
}
let br_string = |br: ty::BoundRegion| {
match br {
ty::BrNamed(_, name) => format!(" {}", name),
_ => String::new(),
}
};
match *self {
CyclicTy(_) => write!(f, "cyclic type of infinite size"),
Mismatch => write!(f, "types differ"),
UnsafetyMismatch(values) => {
write!(f, "expected {} fn, found {} fn",
values.expected,
values.found)
}
AbiMismatch(values) => {
write!(f, "expected {} fn, found {} fn",
values.expected,
values.found)
}
Mutability => write!(f, "types differ in mutability"),
TupleSize(values) => {
write!(f, "expected a tuple with {} element{}, \
found one with {} element{}",
values.expected,
pluralise!(values.expected),
values.found,
pluralise!(values.found))
}
FixedArraySize(values) => {
write!(f, "expected an array with a fixed size of {} element{}, \
found one with {} element{}",
values.expected,
pluralise!(values.expected),
values.found,
pluralise!(values.found))
}
ArgCount => {
write!(f, "incorrect number of function parameters")
}
RegionsDoesNotOutlive(..) => {
write!(f, "lifetime mismatch")
}
RegionsInsufficientlyPolymorphic(br, _) => {
write!(f,
"expected bound lifetime parameter{}, found concrete lifetime",
br_string(br))
}
RegionsOverlyPolymorphic(br, _) => {
write!(f,
"expected concrete lifetime, found bound lifetime parameter{}",
br_string(br))
}
RegionsPlaceholderMismatch => {
write!(f, "one type is more general than the other")
}
Sorts(values) => ty::tls::with(|tcx| {
report_maybe_different(f, &values.expected.sort_string(tcx),
&values.found.sort_string(tcx))
}),
Traits(values) => ty::tls::with(|tcx| {
report_maybe_different(f,
&format!("trait `{}`",
tcx.def_path_str(values.expected)),
&format!("trait `{}`",
tcx.def_path_str(values.found)))
}),
IntMismatch(ref values) => {
write!(f, "expected `{:?}`, found `{:?}`",
values.expected,
values.found)
}
FloatMismatch(ref values) => {
write!(f, "expected `{:?}`, found `{:?}`",
values.expected,
values.found)
}
VariadicMismatch(ref values) => {
write!(f, "expected {} fn, found {} function",
if values.expected { "variadic" } else { "non-variadic" },
if values.found { "variadic" } else { "non-variadic" })
}
ProjectionMismatched(ref values) => ty::tls::with(|tcx| {
write!(f, "expected {}, found {}",
tcx.def_path_str(values.expected),
tcx.def_path_str(values.found))
}),
ProjectionBoundsLength(ref values) => {
write!(f, "expected {} associated type binding{}, found {}",
values.expected,
pluralise!(values.expected),
values.found)
},
ExistentialMismatch(ref values) => {
report_maybe_different(f, &format!("trait `{}`", values.expected),
&format!("trait `{}`", values.found))
}
ConstMismatch(ref values) => {
write!(f, "expected `{}`, found `{}`", values.expected, values.found)
}
IntrinsicCast => {
write!(f, "cannot coerce intrinsics to function pointers")
}
}
}
}
impl<'tcx> ty::TyS<'tcx> {
pub fn sort_string(&self, tcx: TyCtxt<'_>) -> Cow<'static, str> {
match self.sty {
ty::Bool | ty::Char | ty::Int(_) |
ty::Uint(_) | ty::Float(_) | ty::Str | ty::Never => self.to_string().into(),
ty::Tuple(ref tys) if tys.is_empty() => self.to_string().into(),
ty::Adt(def, _) => format!("{} `{}`", def.descr(), tcx.def_path_str(def.did)).into(),
ty::Foreign(def_id) => format!("extern type `{}`", tcx.def_path_str(def_id)).into(),
ty::Array(_, n) => {
let n = tcx.lift_to_global(&n).unwrap();
match n.try_eval_usize(tcx, ty::ParamEnv::empty()) {
Some(n) => {
format!("array of {} element{}", n, if n != 1 { "s" } else { "" }).into()
}
None => "array".into(),
}
}
ty::Slice(_) => "slice".into(),
ty::RawPtr(_) => "*-ptr".into(),
ty::Ref(region, ty, mutbl) => {
let tymut = ty::TypeAndMut { ty, mutbl };
let tymut_string = tymut.to_string();
if tymut_string == "_" || //unknown type name,
tymut_string.len() > 10 || //name longer than saying "reference",
region.to_string() != "'_" //... or a complex type
{
format!("{}reference", match mutbl {
hir::Mutability::MutMutable => "mutable ",
_ => ""
}).into()
} else {
format!("&{}", tymut_string).into()
}
}
ty::FnDef(..) => "fn item".into(),
ty::FnPtr(_) => "fn pointer".into(),
ty::Dynamic(ref inner, ..) => {
if let Some(principal) = inner.principal() {
format!("trait {}", tcx.def_path_str(principal.def_id())).into()
} else {
"trait".into()
}
}
ty::Closure(..) => "closure".into(),
ty::Generator(..) => "generator".into(),
ty::GeneratorWitness(..) => "generator witness".into(),
ty::Tuple(..) => "tuple".into(),
ty::Infer(ty::TyVar(_)) => "inferred type".into(),
ty::Infer(ty::IntVar(_)) => "integer".into(),
ty::Infer(ty::FloatVar(_)) => "floating-point number".into(),
ty::Placeholder(..) => "placeholder type".into(),
ty::Bound(..) => "bound type".into(),
ty::Infer(ty::FreshTy(_)) => "fresh type".into(),
ty::Infer(ty::FreshIntTy(_)) => "fresh integral type".into(),
ty::Infer(ty::FreshFloatTy(_)) => "fresh floating-point type".into(),
ty::Projection(_) => "associated type".into(),
ty::UnnormalizedProjection(_) => "non-normalized associated type".into(),
ty::Param(_) => "type parameter".into(),
ty::Opaque(..) => "opaque type".into(),
ty::Error => "type error".into(),
}
}
}
impl<'tcx> TyCtxt<'tcx> {
pub fn note_and_explain_type_err(
self,
db: &mut DiagnosticBuilder<'_>,
err: &TypeError<'tcx>,
sp: Span,
) {
use self::TypeError::*;
match err {
Sorts(values) => {
let expected_str = values.expected.sort_string(self);
let found_str = values.found.sort_string(self);
if expected_str == found_str && expected_str == "closure" {
db.note("no two closures, even if identical, have the same type");
db.help("consider boxing your closure and/or using it as a trait object");
}
if expected_str == found_str && expected_str == "opaque type" { // Issue #63167
db.note("distinct uses of `impl Trait` result in different opaque types");
let e_str = values.expected.to_string();
let f_str = values.found.to_string();
if &e_str == &f_str && &e_str == "impl std::future::Future" {
// FIXME: use non-string based check.
db.help("if both `Future`s have the same `Output` type, consider \
`.await`ing on both of them");
}
}
if let (ty::Infer(ty::IntVar(_)), ty::Float(_)) =
(&values.found.sty, &values.expected.sty) // Issue #53280
{
if let Ok(snippet) = self.sess.source_map().span_to_snippet(sp) {
if snippet.chars().all(|c| c.is_digit(10) || c == '-' || c == '_') {
db.span_suggestion(
sp,
"use a float literal",
format!("{}.0", snippet),
Applicability::MachineApplicable
);
}
}
}
},
CyclicTy(ty) => {
// Watch out for various cases of cyclic types and try to explain.
if ty.is_closure() || ty.is_generator() {
db.note("closures cannot capture themselves or take themselves as argument;\n\
this error may be the result of a recent compiler bug-fix,\n\
see https://github.com/rust-lang/rust/issues/46062 for more details");
}
}
_ => {}
}
}
}