blob: 65f4ee88a9c2fa388a7bb5b5db8ff373aa8c7252 [file] [log] [blame]
//! An interpreter for MIR used in CTFE and by miri.
#[macro_export]
macro_rules! err_unsup {
($($tt:tt)*) => {
$crate::mir::interpret::InterpError::Unsupported(
$crate::mir::interpret::UnsupportedOpInfo::$($tt)*
)
};
}
#[macro_export]
macro_rules! err_unsup_format {
($($tt:tt)*) => { err_unsup!(Unsupported(format!($($tt)*))) };
}
#[macro_export]
macro_rules! err_inval {
($($tt:tt)*) => {
$crate::mir::interpret::InterpError::InvalidProgram(
$crate::mir::interpret::InvalidProgramInfo::$($tt)*
)
};
}
#[macro_export]
macro_rules! err_ub {
($($tt:tt)*) => {
$crate::mir::interpret::InterpError::UndefinedBehavior(
$crate::mir::interpret::UndefinedBehaviorInfo::$($tt)*
)
};
}
#[macro_export]
macro_rules! err_ub_format {
($($tt:tt)*) => { err_ub!(Ub(format!($($tt)*))) };
}
#[macro_export]
macro_rules! err_panic {
($($tt:tt)*) => {
$crate::mir::interpret::InterpError::Panic(
$crate::mir::interpret::PanicInfo::$($tt)*
)
};
}
#[macro_export]
macro_rules! err_exhaust {
($($tt:tt)*) => {
$crate::mir::interpret::InterpError::ResourceExhaustion(
$crate::mir::interpret::ResourceExhaustionInfo::$($tt)*
)
};
}
#[macro_export]
macro_rules! throw_unsup {
($($tt:tt)*) => { return Err(err_unsup!($($tt)*).into()) };
}
#[macro_export]
macro_rules! throw_unsup_format {
($($tt:tt)*) => { throw_unsup!(Unsupported(format!($($tt)*))) };
}
#[macro_export]
macro_rules! throw_inval {
($($tt:tt)*) => { return Err(err_inval!($($tt)*).into()) };
}
#[macro_export]
macro_rules! throw_ub {
($($tt:tt)*) => { return Err(err_ub!($($tt)*).into()) };
}
#[macro_export]
macro_rules! throw_ub_format {
($($tt:tt)*) => { throw_ub!(Ub(format!($($tt)*))) };
}
#[macro_export]
macro_rules! throw_panic {
($($tt:tt)*) => { return Err(err_panic!($($tt)*).into()) };
}
#[macro_export]
macro_rules! throw_exhaust {
($($tt:tt)*) => { return Err(err_exhaust!($($tt)*).into()) };
}
mod error;
mod value;
mod allocation;
mod pointer;
pub use self::error::{
InterpErrorInfo, InterpResult, InterpError, AssertMessage, ConstEvalErr, struct_error,
FrameInfo, ConstEvalRawResult, ConstEvalResult, ErrorHandled, PanicInfo, UnsupportedOpInfo,
InvalidProgramInfo, ResourceExhaustionInfo, UndefinedBehaviorInfo,
};
pub use self::value::{Scalar, ScalarMaybeUndef, RawConst, ConstValue, get_slice_bytes};
pub use self::allocation::{Allocation, AllocationExtra, Relocations, UndefMask};
pub use self::pointer::{Pointer, PointerArithmetic, CheckInAllocMsg};
use crate::mir;
use crate::hir::def_id::DefId;
use crate::ty::{self, TyCtxt, Instance, subst::GenericArgKind};
use crate::ty::codec::TyDecoder;
use crate::ty::layout::{self, Size};
use std::io;
use std::fmt;
use std::num::NonZeroU32;
use std::sync::atomic::{AtomicU32, Ordering};
use rustc_serialize::{Encoder, Decodable, Encodable};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::{Lock, HashMapExt};
use rustc_data_structures::tiny_list::TinyList;
use rustc_macros::HashStable;
use byteorder::{WriteBytesExt, ReadBytesExt, LittleEndian, BigEndian};
/// Uniquely identifies one of the following:
/// - A constant
/// - A static
/// - A const fn where all arguments (if any) are zero-sized types
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, RustcEncodable, RustcDecodable)]
#[derive(HashStable, Lift)]
pub struct GlobalId<'tcx> {
/// For a constant or static, the `Instance` of the item itself.
/// For a promoted global, the `Instance` of the function they belong to.
pub instance: ty::Instance<'tcx>,
/// The index for promoted globals within their function's `mir::Body`.
pub promoted: Option<mir::Promoted>,
}
#[derive(Copy, Clone, Eq, Hash, Ord, PartialEq, PartialOrd, Debug)]
pub struct AllocId(pub u64);
impl rustc_serialize::UseSpecializedEncodable for AllocId {}
impl rustc_serialize::UseSpecializedDecodable for AllocId {}
#[derive(RustcDecodable, RustcEncodable)]
enum AllocDiscriminant {
Alloc,
Fn,
Static,
}
pub fn specialized_encode_alloc_id<'tcx, E: Encoder>(
encoder: &mut E,
tcx: TyCtxt<'tcx>,
alloc_id: AllocId,
) -> Result<(), E::Error> {
let alloc: GlobalAlloc<'tcx> = tcx.alloc_map.lock().get(alloc_id)
.expect("no value for given alloc ID");
match alloc {
GlobalAlloc::Memory(alloc) => {
trace!("encoding {:?} with {:#?}", alloc_id, alloc);
AllocDiscriminant::Alloc.encode(encoder)?;
alloc.encode(encoder)?;
}
GlobalAlloc::Function(fn_instance) => {
trace!("encoding {:?} with {:#?}", alloc_id, fn_instance);
AllocDiscriminant::Fn.encode(encoder)?;
fn_instance.encode(encoder)?;
}
GlobalAlloc::Static(did) => {
// References to statics doesn't need to know about their allocations,
// just about its `DefId`.
AllocDiscriminant::Static.encode(encoder)?;
did.encode(encoder)?;
}
}
Ok(())
}
// Used to avoid infinite recursion when decoding cyclic allocations.
type DecodingSessionId = NonZeroU32;
#[derive(Clone)]
enum State {
Empty,
InProgressNonAlloc(TinyList<DecodingSessionId>),
InProgress(TinyList<DecodingSessionId>, AllocId),
Done(AllocId),
}
pub struct AllocDecodingState {
// For each `AllocId`, we keep track of which decoding state it's currently in.
decoding_state: Vec<Lock<State>>,
// The offsets of each allocation in the data stream.
data_offsets: Vec<u32>,
}
impl AllocDecodingState {
pub fn new_decoding_session(&self) -> AllocDecodingSession<'_> {
static DECODER_SESSION_ID: AtomicU32 = AtomicU32::new(0);
let counter = DECODER_SESSION_ID.fetch_add(1, Ordering::SeqCst);
// Make sure this is never zero.
let session_id = DecodingSessionId::new((counter & 0x7FFFFFFF) + 1).unwrap();
AllocDecodingSession {
state: self,
session_id,
}
}
pub fn new(data_offsets: Vec<u32>) -> Self {
let decoding_state = vec![Lock::new(State::Empty); data_offsets.len()];
Self {
decoding_state,
data_offsets,
}
}
}
#[derive(Copy, Clone)]
pub struct AllocDecodingSession<'s> {
state: &'s AllocDecodingState,
session_id: DecodingSessionId,
}
impl<'s> AllocDecodingSession<'s> {
/// Decodes an `AllocId` in a thread-safe way.
pub fn decode_alloc_id<D>(&self, decoder: &mut D) -> Result<AllocId, D::Error>
where
D: TyDecoder<'tcx>,
{
// Read the index of the allocation.
let idx = decoder.read_u32()? as usize;
let pos = self.state.data_offsets[idx] as usize;
// Decode the `AllocDiscriminant` now so that we know if we have to reserve an
// `AllocId`.
let (alloc_kind, pos) = decoder.with_position(pos, |decoder| {
let alloc_kind = AllocDiscriminant::decode(decoder)?;
Ok((alloc_kind, decoder.position()))
})?;
// Check the decoding state to see if it's already decoded or if we should
// decode it here.
let alloc_id = {
let mut entry = self.state.decoding_state[idx].lock();
match *entry {
State::Done(alloc_id) => {
return Ok(alloc_id);
}
ref mut entry @ State::Empty => {
// We are allowed to decode.
match alloc_kind {
AllocDiscriminant::Alloc => {
// If this is an allocation, we need to reserve an
// `AllocId` so we can decode cyclic graphs.
let alloc_id = decoder.tcx().alloc_map.lock().reserve();
*entry = State::InProgress(
TinyList::new_single(self.session_id),
alloc_id);
Some(alloc_id)
},
AllocDiscriminant::Fn | AllocDiscriminant::Static => {
// Fns and statics cannot be cyclic, and their `AllocId`
// is determined later by interning.
*entry = State::InProgressNonAlloc(
TinyList::new_single(self.session_id));
None
}
}
}
State::InProgressNonAlloc(ref mut sessions) => {
if sessions.contains(&self.session_id) {
bug!("this should be unreachable");
} else {
// Start decoding concurrently.
sessions.insert(self.session_id);
None
}
}
State::InProgress(ref mut sessions, alloc_id) => {
if sessions.contains(&self.session_id) {
// Don't recurse.
return Ok(alloc_id)
} else {
// Start decoding concurrently.
sessions.insert(self.session_id);
Some(alloc_id)
}
}
}
};
// Now decode the actual data.
let alloc_id = decoder.with_position(pos, |decoder| {
match alloc_kind {
AllocDiscriminant::Alloc => {
let alloc = <&'tcx Allocation as Decodable>::decode(decoder)?;
// We already have a reserved `AllocId`.
let alloc_id = alloc_id.unwrap();
trace!("decoded alloc {:?}: {:#?}", alloc_id, alloc);
decoder.tcx().alloc_map.lock().set_alloc_id_same_memory(alloc_id, alloc);
Ok(alloc_id)
},
AllocDiscriminant::Fn => {
assert!(alloc_id.is_none());
trace!("creating fn alloc ID");
let instance = ty::Instance::decode(decoder)?;
trace!("decoded fn alloc instance: {:?}", instance);
let alloc_id = decoder.tcx().alloc_map.lock().create_fn_alloc(instance);
Ok(alloc_id)
},
AllocDiscriminant::Static => {
assert!(alloc_id.is_none());
trace!("creating extern static alloc ID");
let did = DefId::decode(decoder)?;
trace!("decoded static def-ID: {:?}", did);
let alloc_id = decoder.tcx().alloc_map.lock().create_static_alloc(did);
Ok(alloc_id)
}
}
})?;
self.state.decoding_state[idx].with_lock(|entry| {
*entry = State::Done(alloc_id);
});
Ok(alloc_id)
}
}
impl fmt::Display for AllocId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
/// An allocation in the global (tcx-managed) memory can be either a function pointer,
/// a static, or a "real" allocation with some data in it.
#[derive(Debug, Clone, Eq, PartialEq, Hash, RustcDecodable, RustcEncodable, HashStable)]
pub enum GlobalAlloc<'tcx> {
/// The alloc ID is used as a function pointer.
Function(Instance<'tcx>),
/// The alloc ID points to a "lazy" static variable that did not get computed (yet).
/// This is also used to break the cycle in recursive statics.
Static(DefId),
/// The alloc ID points to memory.
Memory(&'tcx Allocation),
}
pub struct AllocMap<'tcx> {
/// Maps `AllocId`s to their corresponding allocations.
alloc_map: FxHashMap<AllocId, GlobalAlloc<'tcx>>,
/// Used to ensure that statics and functions only get one associated `AllocId`.
/// Should never contain a `GlobalAlloc::Memory`!
//
// FIXME: Should we just have two separate dedup maps for statics and functions each?
dedup: FxHashMap<GlobalAlloc<'tcx>, AllocId>,
/// The `AllocId` to assign to the next requested ID.
/// Always incremented; never gets smaller.
next_id: AllocId,
}
impl<'tcx> AllocMap<'tcx> {
pub fn new() -> Self {
AllocMap {
alloc_map: Default::default(),
dedup: Default::default(),
next_id: AllocId(0),
}
}
/// Obtains a new allocation ID that can be referenced but does not
/// yet have an allocation backing it.
///
/// Make sure to call `set_alloc_id_memory` or `set_alloc_id_same_memory` before returning such
/// an `AllocId` from a query.
pub fn reserve(
&mut self,
) -> AllocId {
let next = self.next_id;
self.next_id.0 = self.next_id.0
.checked_add(1)
.expect("You overflowed a u64 by incrementing by 1... \
You've just earned yourself a free drink if we ever meet. \
Seriously, how did you do that?!");
next
}
/// Reserves a new ID *if* this allocation has not been dedup-reserved before.
/// Should only be used for function pointers and statics, we don't want
/// to dedup IDs for "real" memory!
fn reserve_and_set_dedup(&mut self, alloc: GlobalAlloc<'tcx>) -> AllocId {
match alloc {
GlobalAlloc::Function(..) | GlobalAlloc::Static(..) => {},
GlobalAlloc::Memory(..) => bug!("Trying to dedup-reserve memory with real data!"),
}
if let Some(&alloc_id) = self.dedup.get(&alloc) {
return alloc_id;
}
let id = self.reserve();
debug!("creating alloc {:?} with id {}", alloc, id);
self.alloc_map.insert(id, alloc.clone());
self.dedup.insert(alloc, id);
id
}
/// Generates an `AllocId` for a static or return a cached one in case this function has been
/// called on the same static before.
pub fn create_static_alloc(&mut self, static_id: DefId) -> AllocId {
self.reserve_and_set_dedup(GlobalAlloc::Static(static_id))
}
/// Generates an `AllocId` for a function. Depending on the function type,
/// this might get deduplicated or assigned a new ID each time.
pub fn create_fn_alloc(&mut self, instance: Instance<'tcx>) -> AllocId {
// Functions cannot be identified by pointers, as asm-equal functions can get deduplicated
// by the linker (we set the "unnamed_addr" attribute for LLVM) and functions can be
// duplicated across crates.
// We thus generate a new `AllocId` for every mention of a function. This means that
// `main as fn() == main as fn()` is false, while `let x = main as fn(); x == x` is true.
// However, formatting code relies on function identity (see #58320), so we only do
// this for generic functions. Lifetime parameters are ignored.
let is_generic = instance.substs.into_iter().any(|kind| {
match kind.unpack() {
GenericArgKind::Lifetime(_) => false,
_ => true,
}
});
if is_generic {
// Get a fresh ID.
let id = self.reserve();
self.alloc_map.insert(id, GlobalAlloc::Function(instance));
id
} else {
// Deduplicate.
self.reserve_and_set_dedup(GlobalAlloc::Function(instance))
}
}
/// Interns the `Allocation` and return a new `AllocId`, even if there's already an identical
/// `Allocation` with a different `AllocId`.
/// Statics with identical content will still point to the same `Allocation`, i.e.,
/// their data will be deduplicated through `Allocation` interning -- but they
/// are different places in memory and as such need different IDs.
pub fn create_memory_alloc(&mut self, mem: &'tcx Allocation) -> AllocId {
let id = self.reserve();
self.set_alloc_id_memory(id, mem);
id
}
/// Returns `None` in case the `AllocId` is dangling. An `InterpretCx` can still have a
/// local `Allocation` for that `AllocId`, but having such an `AllocId` in a constant is
/// illegal and will likely ICE.
/// This function exists to allow const eval to detect the difference between evaluation-
/// local dangling pointers and allocations in constants/statics.
#[inline]
pub fn get(&self, id: AllocId) -> Option<GlobalAlloc<'tcx>> {
self.alloc_map.get(&id).cloned()
}
/// Panics if the `AllocId` does not refer to an `Allocation`
pub fn unwrap_memory(&self, id: AllocId) -> &'tcx Allocation {
match self.get(id) {
Some(GlobalAlloc::Memory(mem)) => mem,
_ => bug!("expected allocation ID {} to point to memory", id),
}
}
/// Panics if the `AllocId` does not refer to a function
pub fn unwrap_fn(&self, id: AllocId) -> Instance<'tcx> {
match self.get(id) {
Some(GlobalAlloc::Function(instance)) => instance,
_ => bug!("expected allocation ID {} to point to a function", id),
}
}
/// Freezes an `AllocId` created with `reserve` by pointing it at an `Allocation`. Trying to
/// call this function twice, even with the same `Allocation` will ICE the compiler.
pub fn set_alloc_id_memory(&mut self, id: AllocId, mem: &'tcx Allocation) {
if let Some(old) = self.alloc_map.insert(id, GlobalAlloc::Memory(mem)) {
bug!("tried to set allocation ID {}, but it was already existing as {:#?}", id, old);
}
}
/// Freezes an `AllocId` created with `reserve` by pointing it at an `Allocation`. May be called
/// twice for the same `(AllocId, Allocation)` pair.
fn set_alloc_id_same_memory(&mut self, id: AllocId, mem: &'tcx Allocation) {
self.alloc_map.insert_same(id, GlobalAlloc::Memory(mem));
}
}
////////////////////////////////////////////////////////////////////////////////
// Methods to access integers in the target endianness
////////////////////////////////////////////////////////////////////////////////
#[inline]
pub fn write_target_uint(
endianness: layout::Endian,
mut target: &mut [u8],
data: u128,
) -> Result<(), io::Error> {
let len = target.len();
match endianness {
layout::Endian::Little => target.write_uint128::<LittleEndian>(data, len),
layout::Endian::Big => target.write_uint128::<BigEndian>(data, len),
}
}
#[inline]
pub fn read_target_uint(endianness: layout::Endian, mut source: &[u8]) -> Result<u128, io::Error> {
match endianness {
layout::Endian::Little => source.read_uint128::<LittleEndian>(source.len()),
layout::Endian::Big => source.read_uint128::<BigEndian>(source.len()),
}
}
////////////////////////////////////////////////////////////////////////////////
// Methods to facilitate working with signed integers stored in a u128
////////////////////////////////////////////////////////////////////////////////
/// Truncates `value` to `size` bits and then sign-extend it to 128 bits
/// (i.e., if it is negative, fill with 1's on the left).
#[inline]
pub fn sign_extend(value: u128, size: Size) -> u128 {
let size = size.bits();
if size == 0 {
// Truncated until nothing is left.
return 0;
}
// Sign-extend it.
let shift = 128 - size;
// Shift the unsigned value to the left, then shift back to the right as signed
// (essentially fills with FF on the left).
(((value << shift) as i128) >> shift) as u128
}
/// Truncates `value` to `size` bits.
#[inline]
pub fn truncate(value: u128, size: Size) -> u128 {
let size = size.bits();
if size == 0 {
// Truncated until nothing is left.
return 0;
}
let shift = 128 - size;
// Truncate (shift left to drop out leftover values, shift right to fill with zeroes).
(value << shift) >> shift
}