blob: 8ad6990a75dafde22bc5f83f394f71659ca27364 [file] [log] [blame]
use crate::ty::{self, FloatVarValue, IntVarValue, Ty, TyCtxt, InferConst};
use rustc_data_structures::unify::{NoError, EqUnifyValue, UnifyKey, UnifyValue, UnificationTable};
use rustc_data_structures::unify::InPlace;
use syntax_pos::{Span, DUMMY_SP};
use syntax::symbol::Symbol;
use std::cmp;
use std::marker::PhantomData;
use std::cell::RefMut;
pub trait ToType {
fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
}
impl UnifyKey for ty::IntVid {
type Value = Option<IntVarValue>;
fn index(&self) -> u32 { self.index }
fn from_index(i: u32) -> ty::IntVid { ty::IntVid { index: i } }
fn tag() -> &'static str { "IntVid" }
}
impl EqUnifyValue for IntVarValue {}
#[derive(PartialEq, Copy, Clone, Debug)]
pub struct RegionVidKey {
/// The minimum region vid in the unification set. This is needed
/// to have a canonical name for a type to prevent infinite
/// recursion.
pub min_vid: ty::RegionVid
}
impl UnifyValue for RegionVidKey {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
let min_vid = if value1.min_vid.index() < value2.min_vid.index() {
value1.min_vid
} else {
value2.min_vid
};
Ok(RegionVidKey { min_vid })
}
}
impl UnifyKey for ty::RegionVid {
type Value = RegionVidKey;
fn index(&self) -> u32 { u32::from(*self) }
fn from_index(i: u32) -> ty::RegionVid { ty::RegionVid::from(i) }
fn tag() -> &'static str { "RegionVid" }
}
impl ToType for IntVarValue {
fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match *self {
ty::IntType(i) => tcx.mk_mach_int(i),
ty::UintType(i) => tcx.mk_mach_uint(i),
}
}
}
// Floating point type keys
impl UnifyKey for ty::FloatVid {
type Value = Option<FloatVarValue>;
fn index(&self) -> u32 { self.index }
fn from_index(i: u32) -> ty::FloatVid { ty::FloatVid { index: i } }
fn tag() -> &'static str { "FloatVid" }
}
impl EqUnifyValue for FloatVarValue {}
impl ToType for FloatVarValue {
fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
tcx.mk_mach_float(self.0)
}
}
// Generic consts.
#[derive(Copy, Clone, Debug)]
pub struct ConstVariableOrigin {
pub kind: ConstVariableOriginKind,
pub span: Span,
}
/// Reasons to create a const inference variable
#[derive(Copy, Clone, Debug)]
pub enum ConstVariableOriginKind {
MiscVariable,
ConstInference,
ConstParameterDefinition(Symbol),
SubstitutionPlaceholder,
}
#[derive(Copy, Clone, Debug)]
pub enum ConstVariableValue<'tcx> {
Known { value: &'tcx ty::Const<'tcx> },
Unknown { universe: ty::UniverseIndex },
}
impl<'tcx> ConstVariableValue<'tcx> {
/// If this value is known, returns the const it is known to be.
/// Otherwise, `None`.
pub fn known(&self) -> Option<&'tcx ty::Const<'tcx>> {
match *self {
ConstVariableValue::Unknown { .. } => None,
ConstVariableValue::Known { value } => Some(value),
}
}
pub fn is_unknown(&self) -> bool {
match *self {
ConstVariableValue::Unknown { .. } => true,
ConstVariableValue::Known { .. } => false,
}
}
}
#[derive(Copy, Clone, Debug)]
pub struct ConstVarValue<'tcx> {
pub origin: ConstVariableOrigin,
pub val: ConstVariableValue<'tcx>,
}
impl<'tcx> UnifyKey for ty::ConstVid<'tcx> {
type Value = ConstVarValue<'tcx>;
fn index(&self) -> u32 { self.index }
fn from_index(i: u32) -> Self { ty::ConstVid { index: i, phantom: PhantomData } }
fn tag() -> &'static str { "ConstVid" }
}
impl<'tcx> UnifyValue for ConstVarValue<'tcx> {
type Error = (&'tcx ty::Const<'tcx>, &'tcx ty::Const<'tcx>);
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, Self::Error> {
let val = match (value1.val, value2.val) {
(
ConstVariableValue::Known { .. },
ConstVariableValue::Known { .. }
) => {
bug!("equating two const variables, both of which have known values")
}
// If one side is known, prefer that one.
(ConstVariableValue::Known { .. }, ConstVariableValue::Unknown { .. }) => {
Ok(value1.val)
}
(ConstVariableValue::Unknown { .. }, ConstVariableValue::Known { .. }) => {
Ok(value2.val)
}
// If both sides are *unknown*, it hardly matters, does it?
(ConstVariableValue::Unknown { universe: universe1 },
ConstVariableValue::Unknown { universe: universe2 }) => {
// If we unify two unbound variables, ?T and ?U, then whatever
// value they wind up taking (which must be the same value) must
// be nameable by both universes. Therefore, the resulting
// universe is the minimum of the two universes, because that is
// the one which contains the fewest names in scope.
let universe = cmp::min(universe1, universe2);
Ok(ConstVariableValue::Unknown { universe })
}
}?;
Ok(ConstVarValue {
origin: ConstVariableOrigin {
kind: ConstVariableOriginKind::ConstInference,
span: DUMMY_SP,
},
val,
})
}
}
impl<'tcx> EqUnifyValue for &'tcx ty::Const<'tcx> {}
pub fn replace_if_possible(
mut table: RefMut<'_, UnificationTable<InPlace<ty::ConstVid<'tcx>>>>,
c: &'tcx ty::Const<'tcx>
) -> &'tcx ty::Const<'tcx> {
if let ty::Const { val: ty::ConstKind::Infer(InferConst::Var(vid)), .. } = c {
match table.probe_value(*vid).val.known() {
Some(c) => c,
None => c,
}
} else {
c
}
}