blob: 613f66d7ffd7ee2422151a22fa4734ac1e82df47 [file] [log] [blame]
use super::{InferCtxt, FixupError, FixupResult, Span};
use super::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use crate::ty::{self, Ty, Const, TyCtxt, TypeFoldable, InferConst};
use crate::ty::fold::{TypeFolder, TypeVisitor};
///////////////////////////////////////////////////////////////////////////
// OPPORTUNISTIC VAR RESOLVER
/// The opportunistic resolver can be used at any time. It simply replaces
/// type/const variables that have been unified with the things they have
/// been unified with (similar to `shallow_resolve`, but deep). This is
/// useful for printing messages etc but also required at various
/// points for correctness.
pub struct OpportunisticVarResolver<'a, 'tcx> {
infcx: &'a InferCtxt<'a, 'tcx>,
}
impl<'a, 'tcx> OpportunisticVarResolver<'a, 'tcx> {
#[inline]
pub fn new(infcx: &'a InferCtxt<'a, 'tcx>) -> Self {
OpportunisticVarResolver { infcx }
}
}
impl<'a, 'tcx> TypeFolder<'tcx> for OpportunisticVarResolver<'a, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
if !t.has_infer_types() && !t.has_infer_consts() {
t // micro-optimize -- if there is nothing in this type that this fold affects...
} else {
let t = self.infcx.shallow_resolve(t);
t.super_fold_with(self)
}
}
fn fold_const(&mut self, ct: &'tcx Const<'tcx>) -> &'tcx Const<'tcx> {
if !ct.has_infer_consts() {
ct // micro-optimize -- if there is nothing in this const that this fold affects...
} else {
let ct = self.infcx.shallow_resolve(ct);
ct.super_fold_with(self)
}
}
}
/// The opportunistic type and region resolver is similar to the
/// opportunistic type resolver, but also opportunistically resolves
/// regions. It is useful for canonicalization.
pub struct OpportunisticTypeAndRegionResolver<'a, 'tcx> {
infcx: &'a InferCtxt<'a, 'tcx>,
}
impl<'a, 'tcx> OpportunisticTypeAndRegionResolver<'a, 'tcx> {
pub fn new(infcx: &'a InferCtxt<'a, 'tcx>) -> Self {
OpportunisticTypeAndRegionResolver { infcx }
}
}
impl<'a, 'tcx> TypeFolder<'tcx> for OpportunisticTypeAndRegionResolver<'a, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
if !t.needs_infer() {
t // micro-optimize -- if there is nothing in this type that this fold affects...
} else {
let t0 = self.infcx.shallow_resolve(t);
t0.super_fold_with(self)
}
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match *r {
ty::ReVar(rid) =>
self.infcx.borrow_region_constraints()
.opportunistic_resolve_var(self.tcx(), rid),
_ =>
r,
}
}
fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
if !ct.needs_infer() {
ct // micro-optimize -- if there is nothing in this const that this fold affects...
} else {
let c0 = self.infcx.shallow_resolve(ct);
c0.super_fold_with(self)
}
}
}
///////////////////////////////////////////////////////////////////////////
// UNRESOLVED TYPE FINDER
/// The unresolved type **finder** walks a type searching for
/// type variables that don't yet have a value. The first unresolved type is stored.
/// It does not construct the fully resolved type (which might
/// involve some hashing and so forth).
pub struct UnresolvedTypeFinder<'a, 'tcx> {
infcx: &'a InferCtxt<'a, 'tcx>,
/// Used to find the type parameter name and location for error reporting.
pub first_unresolved: Option<(Ty<'tcx>, Option<Span>)>,
}
impl<'a, 'tcx> UnresolvedTypeFinder<'a, 'tcx> {
pub fn new(infcx: &'a InferCtxt<'a, 'tcx>) -> Self {
UnresolvedTypeFinder { infcx, first_unresolved: None }
}
}
impl<'a, 'tcx> TypeVisitor<'tcx> for UnresolvedTypeFinder<'a, 'tcx> {
fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
let t = self.infcx.shallow_resolve(t);
if t.has_infer_types() {
if let ty::Infer(infer_ty) = t.kind {
// Since we called `shallow_resolve` above, this must
// be an (as yet...) unresolved inference variable.
let ty_var_span =
if let ty::TyVar(ty_vid) = infer_ty {
let ty_vars = self.infcx.type_variables.borrow();
if let TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeParameterDefinition(_),
span,
} = *ty_vars.var_origin(ty_vid)
{
Some(span)
} else {
None
}
} else {
None
};
self.first_unresolved = Some((t, ty_var_span));
true // Halt visiting.
} else {
// Otherwise, visit its contents.
t.super_visit_with(self)
}
} else {
// All type variables in inference types must already be resolved,
// - no need to visit the contents, continue visiting.
false
}
}
}
///////////////////////////////////////////////////////////////////////////
// FULL TYPE RESOLUTION
/// Full type resolution replaces all type and region variables with
/// their concrete results. If any variable cannot be replaced (never unified, etc)
/// then an `Err` result is returned.
pub fn fully_resolve<'a, 'tcx, T>(infcx: &InferCtxt<'a, 'tcx>, value: &T) -> FixupResult<'tcx, T>
where
T: TypeFoldable<'tcx>,
{
let mut full_resolver = FullTypeResolver { infcx: infcx, err: None };
let result = value.fold_with(&mut full_resolver);
match full_resolver.err {
None => Ok(result),
Some(e) => Err(e),
}
}
// N.B. This type is not public because the protocol around checking the
// `err` field is not enforcable otherwise.
struct FullTypeResolver<'a, 'tcx> {
infcx: &'a InferCtxt<'a, 'tcx>,
err: Option<FixupError<'tcx>>,
}
impl<'a, 'tcx> TypeFolder<'tcx> for FullTypeResolver<'a, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
if !t.needs_infer() && !ty::keep_local(&t) {
t // micro-optimize -- if there is nothing in this type that this fold affects...
// ^ we need to have the `keep_local` check to un-default
// defaulted tuples.
} else {
let t = self.infcx.shallow_resolve(t);
match t.kind {
ty::Infer(ty::TyVar(vid)) => {
self.err = Some(FixupError::UnresolvedTy(vid));
self.tcx().types.err
}
ty::Infer(ty::IntVar(vid)) => {
self.err = Some(FixupError::UnresolvedIntTy(vid));
self.tcx().types.err
}
ty::Infer(ty::FloatVar(vid)) => {
self.err = Some(FixupError::UnresolvedFloatTy(vid));
self.tcx().types.err
}
ty::Infer(_) => {
bug!("Unexpected type in full type resolver: {:?}", t);
}
_ => {
t.super_fold_with(self)
}
}
}
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match *r {
ty::ReVar(rid) => self.infcx.lexical_region_resolutions
.borrow()
.as_ref()
.expect("region resolution not performed")
.resolve_var(rid),
_ => r,
}
}
fn fold_const(&mut self, c: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
if !c.needs_infer() && !ty::keep_local(&c) {
c // micro-optimize -- if there is nothing in this const that this fold affects...
// ^ we need to have the `keep_local` check to un-default
// defaulted tuples.
} else {
let c = self.infcx.shallow_resolve(c);
match c.val {
ty::ConstKind::Infer(InferConst::Var(vid)) => {
self.err = Some(FixupError::UnresolvedConst(vid));
return self.tcx().consts.err;
}
ty::ConstKind::Infer(InferConst::Fresh(_)) => {
bug!("Unexpected const in full const resolver: {:?}", c);
}
_ => {}
}
c.super_fold_with(self)
}
}
}