| //! Util methods for [`rustc_middle::ty`] |
| |
| #![allow(clippy::module_name_repetitions)] |
| |
| use core::ops::ControlFlow; |
| use itertools::Itertools; |
| use rustc_abi::VariantIdx; |
| use rustc_ast::ast::Mutability; |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet}; |
| use rustc_hir as hir; |
| use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res}; |
| use rustc_hir::def_id::DefId; |
| use rustc_hir::{Expr, FnDecl, LangItem, TyKind}; |
| use rustc_hir_analysis::lower_ty; |
| use rustc_infer::infer::TyCtxtInferExt; |
| use rustc_lint::LateContext; |
| use rustc_middle::mir::ConstValue; |
| use rustc_middle::mir::interpret::Scalar; |
| use rustc_middle::traits::EvaluationResult; |
| use rustc_middle::ty::layout::ValidityRequirement; |
| use rustc_middle::ty::{ |
| self, AdtDef, AliasTy, AssocItem, AssocTag, Binder, BoundRegion, FnSig, GenericArg, GenericArgKind, GenericArgsRef, |
| GenericParamDefKind, IntTy, ParamEnv, Region, RegionKind, TraitRef, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, |
| TypeVisitableExt, TypeVisitor, UintTy, Upcast, VariantDef, VariantDiscr, |
| }; |
| use rustc_span::symbol::Ident; |
| use rustc_span::{DUMMY_SP, Span, Symbol, sym}; |
| use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _; |
| use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt; |
| use rustc_trait_selection::traits::{Obligation, ObligationCause}; |
| use std::assert_matches::debug_assert_matches; |
| use std::collections::hash_map::Entry; |
| use std::iter; |
| |
| use crate::{def_path_def_ids, match_def_path, path_res}; |
| |
| mod type_certainty; |
| pub use type_certainty::expr_type_is_certain; |
| |
| /// Lower a [`hir::Ty`] to a [`rustc_middle::ty::Ty`]. |
| pub fn ty_from_hir_ty<'tcx>(cx: &LateContext<'tcx>, hir_ty: &hir::Ty<'tcx>) -> Ty<'tcx> { |
| cx.maybe_typeck_results() |
| .and_then(|results| { |
| if results.hir_owner == hir_ty.hir_id.owner { |
| results.node_type_opt(hir_ty.hir_id) |
| } else { |
| None |
| } |
| }) |
| .unwrap_or_else(|| lower_ty(cx.tcx, hir_ty)) |
| } |
| |
| /// Checks if the given type implements copy. |
| pub fn is_copy<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { |
| cx.type_is_copy_modulo_regions(ty) |
| } |
| |
| /// This checks whether a given type is known to implement Debug. |
| pub fn has_debug_impl<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { |
| cx.tcx |
| .get_diagnostic_item(sym::Debug) |
| .is_some_and(|debug| implements_trait(cx, ty, debug, &[])) |
| } |
| |
| /// Checks whether a type can be partially moved. |
| pub fn can_partially_move_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { |
| if has_drop(cx, ty) || is_copy(cx, ty) { |
| return false; |
| } |
| match ty.kind() { |
| ty::Param(_) => false, |
| ty::Adt(def, subs) => def.all_fields().any(|f| !is_copy(cx, f.ty(cx.tcx, subs))), |
| _ => true, |
| } |
| } |
| |
| /// Walks into `ty` and returns `true` if any inner type is an instance of the given adt |
| /// constructor. |
| pub fn contains_adt_constructor<'tcx>(ty: Ty<'tcx>, adt: AdtDef<'tcx>) -> bool { |
| ty.walk().any(|inner| match inner.unpack() { |
| GenericArgKind::Type(inner_ty) => inner_ty.ty_adt_def() == Some(adt), |
| GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => false, |
| }) |
| } |
| |
| /// Walks into `ty` and returns `true` if any inner type is an instance of the given type, or adt |
| /// constructor of the same type. |
| /// |
| /// This method also recurses into opaque type predicates, so call it with `impl Trait<U>` and `U` |
| /// will also return `true`. |
| pub fn contains_ty_adt_constructor_opaque<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, needle: Ty<'tcx>) -> bool { |
| fn contains_ty_adt_constructor_opaque_inner<'tcx>( |
| cx: &LateContext<'tcx>, |
| ty: Ty<'tcx>, |
| needle: Ty<'tcx>, |
| seen: &mut FxHashSet<DefId>, |
| ) -> bool { |
| ty.walk().any(|inner| match inner.unpack() { |
| GenericArgKind::Type(inner_ty) => { |
| if inner_ty == needle { |
| return true; |
| } |
| |
| if inner_ty.ty_adt_def() == needle.ty_adt_def() { |
| return true; |
| } |
| |
| if let ty::Alias(ty::Opaque, AliasTy { def_id, .. }) = *inner_ty.kind() { |
| if !seen.insert(def_id) { |
| return false; |
| } |
| |
| for (predicate, _span) in cx.tcx.explicit_item_self_bounds(def_id).iter_identity_copied() { |
| match predicate.kind().skip_binder() { |
| // For `impl Trait<U>`, it will register a predicate of `T: Trait<U>`, so we go through |
| // and check substitutions to find `U`. |
| ty::ClauseKind::Trait(trait_predicate) => { |
| if trait_predicate |
| .trait_ref |
| .args |
| .types() |
| .skip(1) // Skip the implicit `Self` generic parameter |
| .any(|ty| contains_ty_adt_constructor_opaque_inner(cx, ty, needle, seen)) |
| { |
| return true; |
| } |
| }, |
| // For `impl Trait<Assoc=U>`, it will register a predicate of `<T as Trait>::Assoc = U`, |
| // so we check the term for `U`. |
| ty::ClauseKind::Projection(projection_predicate) => { |
| if let ty::TermKind::Ty(ty) = projection_predicate.term.unpack() |
| && contains_ty_adt_constructor_opaque_inner(cx, ty, needle, seen) |
| { |
| return true; |
| } |
| }, |
| _ => (), |
| } |
| } |
| } |
| |
| false |
| }, |
| GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => false, |
| }) |
| } |
| |
| // A hash set to ensure that the same opaque type (`impl Trait` in RPIT or TAIT) is not |
| // visited twice. |
| let mut seen = FxHashSet::default(); |
| contains_ty_adt_constructor_opaque_inner(cx, ty, needle, &mut seen) |
| } |
| |
| /// Resolves `<T as Iterator>::Item` for `T` |
| /// Do not invoke without first verifying that the type implements `Iterator` |
| pub fn get_iterator_item_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> { |
| cx.tcx |
| .get_diagnostic_item(sym::Iterator) |
| .and_then(|iter_did| cx.get_associated_type(ty, iter_did, sym::Item)) |
| } |
| |
| /// Get the diagnostic name of a type, e.g. `sym::HashMap`. To check if a type |
| /// implements a trait marked with a diagnostic item use [`implements_trait`]. |
| /// |
| /// For a further exploitation what diagnostic items are see [diagnostic items] in |
| /// rustc-dev-guide. |
| /// |
| /// [Diagnostic Items]: https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html |
| pub fn get_type_diagnostic_name(cx: &LateContext<'_>, ty: Ty<'_>) -> Option<Symbol> { |
| match ty.kind() { |
| ty::Adt(adt, _) => cx.tcx.get_diagnostic_name(adt.did()), |
| _ => None, |
| } |
| } |
| |
| /// Returns true if `ty` is a type on which calling `Clone` through a function instead of |
| /// as a method, such as `Arc::clone()` is considered idiomatic. |
| /// |
| /// Lints should avoid suggesting to replace instances of `ty::Clone()` by `.clone()` for objects |
| /// of those types. |
| pub fn should_call_clone_as_function(cx: &LateContext<'_>, ty: Ty<'_>) -> bool { |
| matches!( |
| get_type_diagnostic_name(cx, ty), |
| Some(sym::Arc | sym::ArcWeak | sym::Rc | sym::RcWeak) |
| ) |
| } |
| |
| /// If `ty` is known to have a `iter` or `iter_mut` method, returns a symbol representing the type. |
| pub fn has_iter_method(cx: &LateContext<'_>, probably_ref_ty: Ty<'_>) -> Option<Symbol> { |
| // FIXME: instead of this hard-coded list, we should check if `<adt>::iter` |
| // exists and has the desired signature. Unfortunately FnCtxt is not exported |
| // so we can't use its `lookup_method` method. |
| let into_iter_collections: &[Symbol] = &[ |
| sym::Vec, |
| sym::Option, |
| sym::Result, |
| sym::BTreeMap, |
| sym::BTreeSet, |
| sym::VecDeque, |
| sym::LinkedList, |
| sym::BinaryHeap, |
| sym::HashSet, |
| sym::HashMap, |
| sym::PathBuf, |
| sym::Path, |
| sym::Receiver, |
| ]; |
| |
| let ty_to_check = match probably_ref_ty.kind() { |
| ty::Ref(_, ty_to_check, _) => *ty_to_check, |
| _ => probably_ref_ty, |
| }; |
| |
| let def_id = match ty_to_check.kind() { |
| ty::Array(..) => return Some(sym::array), |
| ty::Slice(..) => return Some(sym::slice), |
| ty::Adt(adt, _) => adt.did(), |
| _ => return None, |
| }; |
| |
| for &name in into_iter_collections { |
| if cx.tcx.is_diagnostic_item(name, def_id) { |
| return Some(cx.tcx.item_name(def_id)); |
| } |
| } |
| None |
| } |
| |
| /// Checks whether a type implements a trait. |
| /// The function returns false in case the type contains an inference variable. |
| /// |
| /// See: |
| /// * [`get_trait_def_id`](super::get_trait_def_id) to get a trait [`DefId`]. |
| /// * [Common tools for writing lints] for an example how to use this function and other options. |
| /// |
| /// [Common tools for writing lints]: https://github.com/rust-lang/rust-clippy/blob/master/book/src/development/common_tools_writing_lints.md#checking-if-a-type-implements-a-specific-trait |
| pub fn implements_trait<'tcx>( |
| cx: &LateContext<'tcx>, |
| ty: Ty<'tcx>, |
| trait_id: DefId, |
| args: &[GenericArg<'tcx>], |
| ) -> bool { |
| implements_trait_with_env_from_iter( |
| cx.tcx, |
| cx.typing_env(), |
| ty, |
| trait_id, |
| None, |
| args.iter().map(|&x| Some(x)), |
| ) |
| } |
| |
| /// Same as `implements_trait` but allows using a `ParamEnv` different from the lint context. |
| /// |
| /// The `callee_id` argument is used to determine whether this is a function call in a `const fn` |
| /// environment, used for checking const traits. |
| pub fn implements_trait_with_env<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| typing_env: ty::TypingEnv<'tcx>, |
| ty: Ty<'tcx>, |
| trait_id: DefId, |
| callee_id: Option<DefId>, |
| args: &[GenericArg<'tcx>], |
| ) -> bool { |
| implements_trait_with_env_from_iter(tcx, typing_env, ty, trait_id, callee_id, args.iter().map(|&x| Some(x))) |
| } |
| |
| /// Same as `implements_trait_from_env` but takes the arguments as an iterator. |
| pub fn implements_trait_with_env_from_iter<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| typing_env: ty::TypingEnv<'tcx>, |
| ty: Ty<'tcx>, |
| trait_id: DefId, |
| callee_id: Option<DefId>, |
| args: impl IntoIterator<Item = impl Into<Option<GenericArg<'tcx>>>>, |
| ) -> bool { |
| // Clippy shouldn't have infer types |
| assert!(!ty.has_infer()); |
| |
| // If a `callee_id` is passed, then we assert that it is a body owner |
| // through calling `body_owner_kind`, which would panic if the callee |
| // does not have a body. |
| if let Some(callee_id) = callee_id { |
| let _ = tcx.hir_body_owner_kind(callee_id); |
| } |
| |
| let ty = tcx.erase_regions(ty); |
| if ty.has_escaping_bound_vars() { |
| return false; |
| } |
| |
| let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env); |
| let args = args |
| .into_iter() |
| .map(|arg| arg.into().unwrap_or_else(|| infcx.next_ty_var(DUMMY_SP).into())) |
| .collect::<Vec<_>>(); |
| |
| let trait_ref = TraitRef::new(tcx, trait_id, [GenericArg::from(ty)].into_iter().chain(args)); |
| |
| debug_assert_matches!( |
| tcx.def_kind(trait_id), |
| DefKind::Trait | DefKind::TraitAlias, |
| "`DefId` must belong to a trait or trait alias" |
| ); |
| #[cfg(debug_assertions)] |
| assert_generic_args_match(tcx, trait_id, trait_ref.args); |
| |
| let obligation = Obligation { |
| cause: ObligationCause::dummy(), |
| param_env, |
| recursion_depth: 0, |
| predicate: trait_ref.upcast(tcx), |
| }; |
| infcx |
| .evaluate_obligation(&obligation) |
| .is_ok_and(EvaluationResult::must_apply_modulo_regions) |
| } |
| |
| /// Checks whether this type implements `Drop`. |
| pub fn has_drop<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { |
| match ty.ty_adt_def() { |
| Some(def) => def.has_dtor(cx.tcx), |
| None => false, |
| } |
| } |
| |
| // Returns whether the type has #[must_use] attribute |
| pub fn is_must_use_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { |
| match ty.kind() { |
| ty::Adt(adt, _) => cx.tcx.has_attr(adt.did(), sym::must_use), |
| ty::Foreign(did) => cx.tcx.has_attr(*did, sym::must_use), |
| ty::Slice(ty) | ty::Array(ty, _) | ty::RawPtr(ty, _) | ty::Ref(_, ty, _) => { |
| // for the Array case we don't need to care for the len == 0 case |
| // because we don't want to lint functions returning empty arrays |
| is_must_use_ty(cx, *ty) |
| }, |
| ty::Tuple(args) => args.iter().any(|ty| is_must_use_ty(cx, ty)), |
| ty::Alias(ty::Opaque, AliasTy { def_id, .. }) => { |
| for (predicate, _) in cx.tcx.explicit_item_self_bounds(def_id).skip_binder() { |
| if let ty::ClauseKind::Trait(trait_predicate) = predicate.kind().skip_binder() |
| && cx.tcx.has_attr(trait_predicate.trait_ref.def_id, sym::must_use) |
| { |
| return true; |
| } |
| } |
| false |
| }, |
| ty::Dynamic(binder, _, _) => { |
| for predicate in *binder { |
| if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate.skip_binder() |
| && cx.tcx.has_attr(trait_ref.def_id, sym::must_use) |
| { |
| return true; |
| } |
| } |
| false |
| }, |
| _ => false, |
| } |
| } |
| |
| // FIXME: Per https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/infer/at/struct.At.html#method.normalize |
| // this function can be removed once the `normalize` method does not panic when normalization does |
| // not succeed |
| /// Checks if `Ty` is normalizable. This function is useful |
| /// to avoid crashes on `layout_of`. |
| pub fn is_normalizable<'tcx>(cx: &LateContext<'tcx>, param_env: ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { |
| is_normalizable_helper(cx, param_env, ty, 0, &mut FxHashMap::default()) |
| } |
| |
| fn is_normalizable_helper<'tcx>( |
| cx: &LateContext<'tcx>, |
| param_env: ParamEnv<'tcx>, |
| ty: Ty<'tcx>, |
| depth: usize, |
| cache: &mut FxHashMap<Ty<'tcx>, bool>, |
| ) -> bool { |
| if let Some(&cached_result) = cache.get(&ty) { |
| return cached_result; |
| } |
| if !cx.tcx.recursion_limit().value_within_limit(depth) { |
| return false; |
| } |
| // Prevent recursive loops by answering `true` to recursive requests with the same |
| // type. This will be adjusted when the outermost call analyzes all the type |
| // components. |
| cache.insert(ty, true); |
| let infcx = cx.tcx.infer_ctxt().build(cx.typing_mode()); |
| let cause = ObligationCause::dummy(); |
| let result = if infcx.at(&cause, param_env).query_normalize(ty).is_ok() { |
| match ty.kind() { |
| ty::Adt(def, args) => def.variants().iter().all(|variant| { |
| variant |
| .fields |
| .iter() |
| .all(|field| is_normalizable_helper(cx, param_env, field.ty(cx.tcx, args), depth + 1, cache)) |
| }), |
| _ => ty.walk().all(|generic_arg| match generic_arg.unpack() { |
| GenericArgKind::Type(inner_ty) if inner_ty != ty => { |
| is_normalizable_helper(cx, param_env, inner_ty, depth + 1, cache) |
| }, |
| _ => true, // if inner_ty == ty, we've already checked it |
| }), |
| } |
| } else { |
| false |
| }; |
| cache.insert(ty, result); |
| result |
| } |
| |
| /// Returns `true` if the given type is a non aggregate primitive (a `bool` or `char`, any |
| /// integer or floating-point number type). |
| /// |
| /// For checking aggregation of primitive types (e.g. tuples and slices of primitive type) see |
| /// `is_recursively_primitive_type` |
| pub fn is_non_aggregate_primitive_type(ty: Ty<'_>) -> bool { |
| matches!(ty.kind(), ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_)) |
| } |
| |
| /// Returns `true` if the given type is a primitive (a `bool` or `char`, any integer or |
| /// floating-point number type, a `str`, or an array, slice, or tuple of those types). |
| pub fn is_recursively_primitive_type(ty: Ty<'_>) -> bool { |
| match *ty.kind() { |
| ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str => true, |
| ty::Ref(_, inner, _) if inner.is_str() => true, |
| ty::Array(inner_type, _) | ty::Slice(inner_type) => is_recursively_primitive_type(inner_type), |
| ty::Tuple(inner_types) => inner_types.iter().all(is_recursively_primitive_type), |
| _ => false, |
| } |
| } |
| |
| /// Checks if the type is a reference equals to a diagnostic item |
| pub fn is_type_ref_to_diagnostic_item(cx: &LateContext<'_>, ty: Ty<'_>, diag_item: Symbol) -> bool { |
| match ty.kind() { |
| ty::Ref(_, ref_ty, _) => match ref_ty.kind() { |
| ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did()), |
| _ => false, |
| }, |
| _ => false, |
| } |
| } |
| |
| /// Checks if the type is equal to a diagnostic item. To check if a type implements a |
| /// trait marked with a diagnostic item use [`implements_trait`]. |
| /// |
| /// For a further exploitation what diagnostic items are see [diagnostic items] in |
| /// rustc-dev-guide. |
| /// |
| /// --- |
| /// |
| /// If you change the signature, remember to update the internal lint `MatchTypeOnDiagItem` |
| /// |
| /// [Diagnostic Items]: https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html |
| pub fn is_type_diagnostic_item(cx: &LateContext<'_>, ty: Ty<'_>, diag_item: Symbol) -> bool { |
| match ty.kind() { |
| ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did()), |
| _ => false, |
| } |
| } |
| |
| /// Checks if the type is equal to a lang item. |
| /// |
| /// Returns `false` if the `LangItem` is not defined. |
| pub fn is_type_lang_item(cx: &LateContext<'_>, ty: Ty<'_>, lang_item: LangItem) -> bool { |
| match ty.kind() { |
| ty::Adt(adt, _) => cx.tcx.lang_items().get(lang_item) == Some(adt.did()), |
| _ => false, |
| } |
| } |
| |
| /// Return `true` if the passed `typ` is `isize` or `usize`. |
| pub fn is_isize_or_usize(typ: Ty<'_>) -> bool { |
| matches!(typ.kind(), ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize)) |
| } |
| |
| /// Checks if type is struct, enum or union type with the given def path. |
| /// |
| /// If the type is a diagnostic item, use `is_type_diagnostic_item` instead. |
| /// If you change the signature, remember to update the internal lint `MatchTypeOnDiagItem` |
| pub fn match_type(cx: &LateContext<'_>, ty: Ty<'_>, path: &[&str]) -> bool { |
| match ty.kind() { |
| ty::Adt(adt, _) => match_def_path(cx, adt.did(), path), |
| _ => false, |
| } |
| } |
| |
| /// Checks if the drop order for a type matters. |
| /// |
| /// Some std types implement drop solely to deallocate memory. For these types, and composites |
| /// containing them, changing the drop order won't result in any observable side effects. |
| pub fn needs_ordered_drop<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { |
| fn needs_ordered_drop_inner<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, seen: &mut FxHashSet<Ty<'tcx>>) -> bool { |
| if !seen.insert(ty) { |
| return false; |
| } |
| if !ty.has_significant_drop(cx.tcx, cx.typing_env()) { |
| false |
| } |
| // Check for std types which implement drop, but only for memory allocation. |
| else if is_type_lang_item(cx, ty, LangItem::OwnedBox) |
| || matches!( |
| get_type_diagnostic_name(cx, ty), |
| Some(sym::HashSet | sym::Rc | sym::Arc | sym::cstring_type | sym::RcWeak | sym::ArcWeak) |
| ) |
| { |
| // Check all of the generic arguments. |
| if let ty::Adt(_, subs) = ty.kind() { |
| subs.types().any(|ty| needs_ordered_drop_inner(cx, ty, seen)) |
| } else { |
| true |
| } |
| } else if !cx |
| .tcx |
| .lang_items() |
| .drop_trait() |
| .is_some_and(|id| implements_trait(cx, ty, id, &[])) |
| { |
| // This type doesn't implement drop, so no side effects here. |
| // Check if any component type has any. |
| match ty.kind() { |
| ty::Tuple(fields) => fields.iter().any(|ty| needs_ordered_drop_inner(cx, ty, seen)), |
| ty::Array(ty, _) => needs_ordered_drop_inner(cx, *ty, seen), |
| ty::Adt(adt, subs) => adt |
| .all_fields() |
| .map(|f| f.ty(cx.tcx, subs)) |
| .any(|ty| needs_ordered_drop_inner(cx, ty, seen)), |
| _ => true, |
| } |
| } else { |
| true |
| } |
| } |
| |
| needs_ordered_drop_inner(cx, ty, &mut FxHashSet::default()) |
| } |
| |
| /// Peels off all references on the type. Returns the underlying type, the number of references |
| /// removed, and whether the pointer is ultimately mutable or not. |
| pub fn peel_mid_ty_refs_is_mutable(ty: Ty<'_>) -> (Ty<'_>, usize, Mutability) { |
| fn f(ty: Ty<'_>, count: usize, mutability: Mutability) -> (Ty<'_>, usize, Mutability) { |
| match ty.kind() { |
| ty::Ref(_, ty, Mutability::Mut) => f(*ty, count + 1, mutability), |
| ty::Ref(_, ty, Mutability::Not) => f(*ty, count + 1, Mutability::Not), |
| _ => (ty, count, mutability), |
| } |
| } |
| f(ty, 0, Mutability::Mut) |
| } |
| |
| /// Returns `true` if the given type is an `unsafe` function. |
| pub fn type_is_unsafe_function<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { |
| match ty.kind() { |
| ty::FnDef(..) | ty::FnPtr(..) => ty.fn_sig(cx.tcx).safety().is_unsafe(), |
| _ => false, |
| } |
| } |
| |
| /// Returns the base type for HIR references and pointers. |
| pub fn walk_ptrs_hir_ty<'tcx>(ty: &'tcx hir::Ty<'tcx>) -> &'tcx hir::Ty<'tcx> { |
| match ty.kind { |
| TyKind::Ptr(ref mut_ty) | TyKind::Ref(_, ref mut_ty) => walk_ptrs_hir_ty(mut_ty.ty), |
| _ => ty, |
| } |
| } |
| |
| /// Returns the base type for references and raw pointers, and count reference |
| /// depth. |
| pub fn walk_ptrs_ty_depth(ty: Ty<'_>) -> (Ty<'_>, usize) { |
| fn inner(ty: Ty<'_>, depth: usize) -> (Ty<'_>, usize) { |
| match ty.kind() { |
| ty::Ref(_, ty, _) => inner(*ty, depth + 1), |
| _ => (ty, depth), |
| } |
| } |
| inner(ty, 0) |
| } |
| |
| /// Returns `true` if types `a` and `b` are same types having same `Const` generic args, |
| /// otherwise returns `false` |
| pub fn same_type_and_consts<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool { |
| match (&a.kind(), &b.kind()) { |
| (&ty::Adt(did_a, args_a), &ty::Adt(did_b, args_b)) => { |
| if did_a != did_b { |
| return false; |
| } |
| |
| args_a |
| .iter() |
| .zip(args_b.iter()) |
| .all(|(arg_a, arg_b)| match (arg_a.unpack(), arg_b.unpack()) { |
| (GenericArgKind::Const(inner_a), GenericArgKind::Const(inner_b)) => inner_a == inner_b, |
| (GenericArgKind::Type(type_a), GenericArgKind::Type(type_b)) => { |
| same_type_and_consts(type_a, type_b) |
| }, |
| _ => true, |
| }) |
| }, |
| _ => a == b, |
| } |
| } |
| |
| /// Checks if a given type looks safe to be uninitialized. |
| pub fn is_uninit_value_valid_for_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { |
| let typing_env = cx.typing_env().with_post_analysis_normalized(cx.tcx); |
| cx.tcx |
| .check_validity_requirement((ValidityRequirement::Uninit, typing_env.as_query_input(ty))) |
| .unwrap_or_else(|_| is_uninit_value_valid_for_ty_fallback(cx, ty)) |
| } |
| |
| /// A fallback for polymorphic types, which are not supported by `check_validity_requirement`. |
| fn is_uninit_value_valid_for_ty_fallback<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { |
| match *ty.kind() { |
| // The array length may be polymorphic, let's try the inner type. |
| ty::Array(component, _) => is_uninit_value_valid_for_ty(cx, component), |
| // Peek through tuples and try their fallbacks. |
| ty::Tuple(types) => types.iter().all(|ty| is_uninit_value_valid_for_ty(cx, ty)), |
| // Unions are always fine right now. |
| // This includes MaybeUninit, the main way people use uninitialized memory. |
| ty::Adt(adt, _) if adt.is_union() => true, |
| // Types (e.g. `UnsafeCell<MaybeUninit<T>>`) that recursively contain only types that can be uninit |
| // can themselves be uninit too. |
| // This purposefully ignores enums as they may have a discriminant that can't be uninit. |
| ty::Adt(adt, args) if adt.is_struct() => adt |
| .all_fields() |
| .all(|field| is_uninit_value_valid_for_ty(cx, field.ty(cx.tcx, args))), |
| // For the rest, conservatively assume that they cannot be uninit. |
| _ => false, |
| } |
| } |
| |
| /// Gets an iterator over all predicates which apply to the given item. |
| pub fn all_predicates_of(tcx: TyCtxt<'_>, id: DefId) -> impl Iterator<Item = &(ty::Clause<'_>, Span)> { |
| let mut next_id = Some(id); |
| iter::from_fn(move || { |
| next_id.take().map(|id| { |
| let preds = tcx.predicates_of(id); |
| next_id = preds.parent; |
| preds.predicates.iter() |
| }) |
| }) |
| .flatten() |
| } |
| |
| /// A signature for a function like type. |
| #[derive(Clone, Copy)] |
| pub enum ExprFnSig<'tcx> { |
| Sig(Binder<'tcx, FnSig<'tcx>>, Option<DefId>), |
| Closure(Option<&'tcx FnDecl<'tcx>>, Binder<'tcx, FnSig<'tcx>>), |
| Trait(Binder<'tcx, Ty<'tcx>>, Option<Binder<'tcx, Ty<'tcx>>>, Option<DefId>), |
| } |
| impl<'tcx> ExprFnSig<'tcx> { |
| /// Gets the argument type at the given offset. This will return `None` when the index is out of |
| /// bounds only for variadic functions, otherwise this will panic. |
| pub fn input(self, i: usize) -> Option<Binder<'tcx, Ty<'tcx>>> { |
| match self { |
| Self::Sig(sig, _) => { |
| if sig.c_variadic() { |
| sig.inputs().map_bound(|inputs| inputs.get(i).copied()).transpose() |
| } else { |
| Some(sig.input(i)) |
| } |
| }, |
| Self::Closure(_, sig) => Some(sig.input(0).map_bound(|ty| ty.tuple_fields()[i])), |
| Self::Trait(inputs, _, _) => Some(inputs.map_bound(|ty| ty.tuple_fields()[i])), |
| } |
| } |
| |
| /// Gets the argument type at the given offset. For closures this will also get the type as |
| /// written. This will return `None` when the index is out of bounds only for variadic |
| /// functions, otherwise this will panic. |
| pub fn input_with_hir(self, i: usize) -> Option<(Option<&'tcx hir::Ty<'tcx>>, Binder<'tcx, Ty<'tcx>>)> { |
| match self { |
| Self::Sig(sig, _) => { |
| if sig.c_variadic() { |
| sig.inputs() |
| .map_bound(|inputs| inputs.get(i).copied()) |
| .transpose() |
| .map(|arg| (None, arg)) |
| } else { |
| Some((None, sig.input(i))) |
| } |
| }, |
| Self::Closure(decl, sig) => Some(( |
| decl.and_then(|decl| decl.inputs.get(i)), |
| sig.input(0).map_bound(|ty| ty.tuple_fields()[i]), |
| )), |
| Self::Trait(inputs, _, _) => Some((None, inputs.map_bound(|ty| ty.tuple_fields()[i]))), |
| } |
| } |
| |
| /// Gets the result type, if one could be found. Note that the result type of a trait may not be |
| /// specified. |
| pub fn output(self) -> Option<Binder<'tcx, Ty<'tcx>>> { |
| match self { |
| Self::Sig(sig, _) | Self::Closure(_, sig) => Some(sig.output()), |
| Self::Trait(_, output, _) => output, |
| } |
| } |
| |
| pub fn predicates_id(&self) -> Option<DefId> { |
| if let ExprFnSig::Sig(_, id) | ExprFnSig::Trait(_, _, id) = *self { |
| id |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// If the expression is function like, get the signature for it. |
| pub fn expr_sig<'tcx>(cx: &LateContext<'tcx>, expr: &Expr<'_>) -> Option<ExprFnSig<'tcx>> { |
| if let Res::Def(DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn) | DefKind::AssocFn, id) = path_res(cx, expr) { |
| Some(ExprFnSig::Sig(cx.tcx.fn_sig(id).instantiate_identity(), Some(id))) |
| } else { |
| ty_sig(cx, cx.typeck_results().expr_ty_adjusted(expr).peel_refs()) |
| } |
| } |
| |
| /// If the type is function like, get the signature for it. |
| pub fn ty_sig<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<ExprFnSig<'tcx>> { |
| if let Some(boxed_ty) = ty.boxed_ty() { |
| return ty_sig(cx, boxed_ty); |
| } |
| match *ty.kind() { |
| ty::Closure(id, subs) => { |
| let decl = id |
| .as_local() |
| .and_then(|id| cx.tcx.hir_fn_decl_by_hir_id(cx.tcx.local_def_id_to_hir_id(id))); |
| Some(ExprFnSig::Closure(decl, subs.as_closure().sig())) |
| }, |
| ty::FnDef(id, subs) => Some(ExprFnSig::Sig(cx.tcx.fn_sig(id).instantiate(cx.tcx, subs), Some(id))), |
| ty::Alias(ty::Opaque, AliasTy { def_id, args, .. }) => sig_from_bounds( |
| cx, |
| ty, |
| cx.tcx.item_self_bounds(def_id).iter_instantiated(cx.tcx, args), |
| cx.tcx.opt_parent(def_id), |
| ), |
| ty::FnPtr(sig_tys, hdr) => Some(ExprFnSig::Sig(sig_tys.with(hdr), None)), |
| ty::Dynamic(bounds, _, _) => { |
| let lang_items = cx.tcx.lang_items(); |
| match bounds.principal() { |
| Some(bound) |
| if Some(bound.def_id()) == lang_items.fn_trait() |
| || Some(bound.def_id()) == lang_items.fn_once_trait() |
| || Some(bound.def_id()) == lang_items.fn_mut_trait() => |
| { |
| let output = bounds |
| .projection_bounds() |
| .find(|p| lang_items.fn_once_output().is_some_and(|id| id == p.item_def_id())) |
| .map(|p| p.map_bound(|p| p.term.expect_type())); |
| Some(ExprFnSig::Trait(bound.map_bound(|b| b.args.type_at(0)), output, None)) |
| }, |
| _ => None, |
| } |
| }, |
| ty::Alias(ty::Projection, proj) => match cx.tcx.try_normalize_erasing_regions(cx.typing_env(), ty) { |
| Ok(normalized_ty) if normalized_ty != ty => ty_sig(cx, normalized_ty), |
| _ => sig_for_projection(cx, proj).or_else(|| sig_from_bounds(cx, ty, cx.param_env.caller_bounds(), None)), |
| }, |
| ty::Param(_) => sig_from_bounds(cx, ty, cx.param_env.caller_bounds(), None), |
| _ => None, |
| } |
| } |
| |
| fn sig_from_bounds<'tcx>( |
| cx: &LateContext<'tcx>, |
| ty: Ty<'tcx>, |
| predicates: impl IntoIterator<Item = ty::Clause<'tcx>>, |
| predicates_id: Option<DefId>, |
| ) -> Option<ExprFnSig<'tcx>> { |
| let mut inputs = None; |
| let mut output = None; |
| let lang_items = cx.tcx.lang_items(); |
| |
| for pred in predicates { |
| match pred.kind().skip_binder() { |
| ty::ClauseKind::Trait(p) |
| if (lang_items.fn_trait() == Some(p.def_id()) |
| || lang_items.fn_mut_trait() == Some(p.def_id()) |
| || lang_items.fn_once_trait() == Some(p.def_id())) |
| && p.self_ty() == ty => |
| { |
| let i = pred.kind().rebind(p.trait_ref.args.type_at(1)); |
| if inputs.is_some_and(|inputs| i != inputs) { |
| // Multiple different fn trait impls. Is this even allowed? |
| return None; |
| } |
| inputs = Some(i); |
| }, |
| ty::ClauseKind::Projection(p) |
| if Some(p.projection_term.def_id) == lang_items.fn_once_output() |
| && p.projection_term.self_ty() == ty => |
| { |
| if output.is_some() { |
| // Multiple different fn trait impls. Is this even allowed? |
| return None; |
| } |
| output = Some(pred.kind().rebind(p.term.expect_type())); |
| }, |
| _ => (), |
| } |
| } |
| |
| inputs.map(|ty| ExprFnSig::Trait(ty, output, predicates_id)) |
| } |
| |
| fn sig_for_projection<'tcx>(cx: &LateContext<'tcx>, ty: AliasTy<'tcx>) -> Option<ExprFnSig<'tcx>> { |
| let mut inputs = None; |
| let mut output = None; |
| let lang_items = cx.tcx.lang_items(); |
| |
| for (pred, _) in cx |
| .tcx |
| .explicit_item_bounds(ty.def_id) |
| .iter_instantiated_copied(cx.tcx, ty.args) |
| { |
| match pred.kind().skip_binder() { |
| ty::ClauseKind::Trait(p) |
| if (lang_items.fn_trait() == Some(p.def_id()) |
| || lang_items.fn_mut_trait() == Some(p.def_id()) |
| || lang_items.fn_once_trait() == Some(p.def_id())) => |
| { |
| let i = pred.kind().rebind(p.trait_ref.args.type_at(1)); |
| |
| if inputs.is_some_and(|inputs| inputs != i) { |
| // Multiple different fn trait impls. Is this even allowed? |
| return None; |
| } |
| inputs = Some(i); |
| }, |
| ty::ClauseKind::Projection(p) if Some(p.projection_term.def_id) == lang_items.fn_once_output() => { |
| if output.is_some() { |
| // Multiple different fn trait impls. Is this even allowed? |
| return None; |
| } |
| output = pred.kind().rebind(p.term.as_type()).transpose(); |
| }, |
| _ => (), |
| } |
| } |
| |
| inputs.map(|ty| ExprFnSig::Trait(ty, output, None)) |
| } |
| |
| #[derive(Clone, Copy)] |
| pub enum EnumValue { |
| Unsigned(u128), |
| Signed(i128), |
| } |
| impl core::ops::Add<u32> for EnumValue { |
| type Output = Self; |
| fn add(self, n: u32) -> Self::Output { |
| match self { |
| Self::Unsigned(x) => Self::Unsigned(x + u128::from(n)), |
| Self::Signed(x) => Self::Signed(x + i128::from(n)), |
| } |
| } |
| } |
| |
| /// Attempts to read the given constant as though it were an enum value. |
| pub fn read_explicit_enum_value(tcx: TyCtxt<'_>, id: DefId) -> Option<EnumValue> { |
| if let Ok(ConstValue::Scalar(Scalar::Int(value))) = tcx.const_eval_poly(id) { |
| match tcx.type_of(id).instantiate_identity().kind() { |
| ty::Int(_) => Some(EnumValue::Signed(value.to_int(value.size()))), |
| ty::Uint(_) => Some(EnumValue::Unsigned(value.to_uint(value.size()))), |
| _ => None, |
| } |
| } else { |
| None |
| } |
| } |
| |
| /// Gets the value of the given variant. |
| pub fn get_discriminant_value(tcx: TyCtxt<'_>, adt: AdtDef<'_>, i: VariantIdx) -> EnumValue { |
| let variant = &adt.variant(i); |
| match variant.discr { |
| VariantDiscr::Explicit(id) => read_explicit_enum_value(tcx, id).unwrap(), |
| VariantDiscr::Relative(x) => match adt.variant((i.as_usize() - x as usize).into()).discr { |
| VariantDiscr::Explicit(id) => read_explicit_enum_value(tcx, id).unwrap() + x, |
| VariantDiscr::Relative(_) => EnumValue::Unsigned(x.into()), |
| }, |
| } |
| } |
| |
| /// Check if the given type is either `core::ffi::c_void`, `std::os::raw::c_void`, or one of the |
| /// platform specific `libc::<platform>::c_void` types in libc. |
| pub fn is_c_void(cx: &LateContext<'_>, ty: Ty<'_>) -> bool { |
| if let ty::Adt(adt, _) = ty.kind() |
| && let &[krate, .., name] = &*cx.get_def_path(adt.did()) |
| && let sym::libc | sym::core | sym::std = krate |
| && name == sym::c_void |
| { |
| true |
| } else { |
| false |
| } |
| } |
| |
| pub fn for_each_top_level_late_bound_region<B>( |
| ty: Ty<'_>, |
| f: impl FnMut(BoundRegion) -> ControlFlow<B>, |
| ) -> ControlFlow<B> { |
| struct V<F> { |
| index: u32, |
| f: F, |
| } |
| impl<'tcx, B, F: FnMut(BoundRegion) -> ControlFlow<B>> TypeVisitor<TyCtxt<'tcx>> for V<F> { |
| type Result = ControlFlow<B>; |
| fn visit_region(&mut self, r: Region<'tcx>) -> Self::Result { |
| if let RegionKind::ReBound(idx, bound) = r.kind() |
| && idx.as_u32() == self.index |
| { |
| (self.f)(bound) |
| } else { |
| ControlFlow::Continue(()) |
| } |
| } |
| fn visit_binder<T: TypeVisitable<TyCtxt<'tcx>>>(&mut self, t: &Binder<'tcx, T>) -> Self::Result { |
| self.index += 1; |
| let res = t.super_visit_with(self); |
| self.index -= 1; |
| res |
| } |
| } |
| ty.visit_with(&mut V { index: 0, f }) |
| } |
| |
| pub struct AdtVariantInfo { |
| pub ind: usize, |
| pub size: u64, |
| |
| /// (ind, size) |
| pub fields_size: Vec<(usize, u64)>, |
| } |
| |
| impl AdtVariantInfo { |
| /// Returns ADT variants ordered by size |
| pub fn new<'tcx>(cx: &LateContext<'tcx>, adt: AdtDef<'tcx>, subst: GenericArgsRef<'tcx>) -> Vec<Self> { |
| let mut variants_size = adt |
| .variants() |
| .iter() |
| .enumerate() |
| .map(|(i, variant)| { |
| let mut fields_size = variant |
| .fields |
| .iter() |
| .enumerate() |
| .map(|(i, f)| (i, approx_ty_size(cx, f.ty(cx.tcx, subst)))) |
| .collect::<Vec<_>>(); |
| fields_size.sort_by(|(_, a_size), (_, b_size)| (a_size.cmp(b_size))); |
| |
| Self { |
| ind: i, |
| size: fields_size.iter().map(|(_, size)| size).sum(), |
| fields_size, |
| } |
| }) |
| .collect::<Vec<_>>(); |
| variants_size.sort_by(|a, b| (b.size.cmp(&a.size))); |
| variants_size |
| } |
| } |
| |
| /// Gets the struct or enum variant from the given `Res` |
| pub fn adt_and_variant_of_res<'tcx>(cx: &LateContext<'tcx>, res: Res) -> Option<(AdtDef<'tcx>, &'tcx VariantDef)> { |
| match res { |
| Res::Def(DefKind::Struct, id) => { |
| let adt = cx.tcx.adt_def(id); |
| Some((adt, adt.non_enum_variant())) |
| }, |
| Res::Def(DefKind::Variant, id) => { |
| let adt = cx.tcx.adt_def(cx.tcx.parent(id)); |
| Some((adt, adt.variant_with_id(id))) |
| }, |
| Res::Def(DefKind::Ctor(CtorOf::Struct, _), id) => { |
| let adt = cx.tcx.adt_def(cx.tcx.parent(id)); |
| Some((adt, adt.non_enum_variant())) |
| }, |
| Res::Def(DefKind::Ctor(CtorOf::Variant, _), id) => { |
| let var_id = cx.tcx.parent(id); |
| let adt = cx.tcx.adt_def(cx.tcx.parent(var_id)); |
| Some((adt, adt.variant_with_id(var_id))) |
| }, |
| Res::SelfCtor(id) => { |
| let adt = cx.tcx.type_of(id).instantiate_identity().ty_adt_def().unwrap(); |
| Some((adt, adt.non_enum_variant())) |
| }, |
| _ => None, |
| } |
| } |
| |
| /// Comes up with an "at least" guesstimate for the type's size, not taking into |
| /// account the layout of type parameters. |
| pub fn approx_ty_size<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> u64 { |
| use rustc_middle::ty::layout::LayoutOf; |
| if !is_normalizable(cx, cx.param_env, ty) { |
| return 0; |
| } |
| match (cx.layout_of(ty).map(|layout| layout.size.bytes()), ty.kind()) { |
| (Ok(size), _) => size, |
| (Err(_), ty::Tuple(list)) => list.iter().map(|t| approx_ty_size(cx, t)).sum(), |
| (Err(_), ty::Array(t, n)) => n.try_to_target_usize(cx.tcx).unwrap_or_default() * approx_ty_size(cx, *t), |
| (Err(_), ty::Adt(def, subst)) if def.is_struct() => def |
| .variants() |
| .iter() |
| .map(|v| { |
| v.fields |
| .iter() |
| .map(|field| approx_ty_size(cx, field.ty(cx.tcx, subst))) |
| .sum::<u64>() |
| }) |
| .sum(), |
| (Err(_), ty::Adt(def, subst)) if def.is_enum() => def |
| .variants() |
| .iter() |
| .map(|v| { |
| v.fields |
| .iter() |
| .map(|field| approx_ty_size(cx, field.ty(cx.tcx, subst))) |
| .sum::<u64>() |
| }) |
| .max() |
| .unwrap_or_default(), |
| (Err(_), ty::Adt(def, subst)) if def.is_union() => def |
| .variants() |
| .iter() |
| .map(|v| { |
| v.fields |
| .iter() |
| .map(|field| approx_ty_size(cx, field.ty(cx.tcx, subst))) |
| .max() |
| .unwrap_or_default() |
| }) |
| .max() |
| .unwrap_or_default(), |
| (Err(_), _) => 0, |
| } |
| } |
| |
| /// Asserts that the given arguments match the generic parameters of the given item. |
| #[allow(dead_code)] |
| fn assert_generic_args_match<'tcx>(tcx: TyCtxt<'tcx>, did: DefId, args: &[GenericArg<'tcx>]) { |
| let g = tcx.generics_of(did); |
| let parent = g.parent.map(|did| tcx.generics_of(did)); |
| let count = g.parent_count + g.own_params.len(); |
| let params = parent |
| .map_or([].as_slice(), |p| p.own_params.as_slice()) |
| .iter() |
| .chain(&g.own_params) |
| .map(|x| &x.kind); |
| |
| assert!( |
| count == args.len(), |
| "wrong number of arguments for `{did:?}`: expected `{count}`, found {}\n\ |
| note: the expected arguments are: `[{}]`\n\ |
| the given arguments are: `{args:#?}`", |
| args.len(), |
| params.clone().map(GenericParamDefKind::descr).format(", "), |
| ); |
| |
| if let Some((idx, (param, arg))) = |
| params |
| .clone() |
| .zip(args.iter().map(|&x| x.unpack())) |
| .enumerate() |
| .find(|(_, (param, arg))| match (param, arg) { |
| (GenericParamDefKind::Lifetime, GenericArgKind::Lifetime(_)) |
| | (GenericParamDefKind::Type { .. }, GenericArgKind::Type(_)) |
| | (GenericParamDefKind::Const { .. }, GenericArgKind::Const(_)) => false, |
| ( |
| GenericParamDefKind::Lifetime |
| | GenericParamDefKind::Type { .. } |
| | GenericParamDefKind::Const { .. }, |
| _, |
| ) => true, |
| }) |
| { |
| panic!( |
| "incorrect argument for `{did:?}` at index `{idx}`: expected a {}, found `{arg:?}`\n\ |
| note: the expected arguments are `[{}]`\n\ |
| the given arguments are `{args:#?}`", |
| param.descr(), |
| params.clone().map(GenericParamDefKind::descr).format(", "), |
| ); |
| } |
| } |
| |
| /// Returns whether `ty` is never-like; i.e., `!` (never) or an enum with zero variants. |
| pub fn is_never_like(ty: Ty<'_>) -> bool { |
| ty.is_never() || (ty.is_enum() && ty.ty_adt_def().is_some_and(|def| def.variants().is_empty())) |
| } |
| |
| /// Makes the projection type for the named associated type in the given impl or trait impl. |
| /// |
| /// This function is for associated types which are "known" to exist, and as such, will only return |
| /// `None` when debug assertions are disabled in order to prevent ICE's. With debug assertions |
| /// enabled this will check that the named associated type exists, the correct number of |
| /// arguments are given, and that the correct kinds of arguments are given (lifetime, |
| /// constant or type). This will not check if type normalization would succeed. |
| pub fn make_projection<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| container_id: DefId, |
| assoc_ty: Symbol, |
| args: impl IntoIterator<Item = impl Into<GenericArg<'tcx>>>, |
| ) -> Option<AliasTy<'tcx>> { |
| fn helper<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| container_id: DefId, |
| assoc_ty: Symbol, |
| args: GenericArgsRef<'tcx>, |
| ) -> Option<AliasTy<'tcx>> { |
| let Some(assoc_item) = tcx.associated_items(container_id).find_by_ident_and_kind( |
| tcx, |
| Ident::with_dummy_span(assoc_ty), |
| AssocTag::Type, |
| container_id, |
| ) else { |
| debug_assert!(false, "type `{assoc_ty}` not found in `{container_id:?}`"); |
| return None; |
| }; |
| #[cfg(debug_assertions)] |
| assert_generic_args_match(tcx, assoc_item.def_id, args); |
| |
| Some(AliasTy::new_from_args(tcx, assoc_item.def_id, args)) |
| } |
| helper( |
| tcx, |
| container_id, |
| assoc_ty, |
| tcx.mk_args_from_iter(args.into_iter().map(Into::into)), |
| ) |
| } |
| |
| /// Normalizes the named associated type in the given impl or trait impl. |
| /// |
| /// This function is for associated types which are "known" to be valid with the given |
| /// arguments, and as such, will only return `None` when debug assertions are disabled in order |
| /// to prevent ICE's. With debug assertions enabled this will check that type normalization |
| /// succeeds as well as everything checked by `make_projection`. |
| pub fn make_normalized_projection<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| typing_env: ty::TypingEnv<'tcx>, |
| container_id: DefId, |
| assoc_ty: Symbol, |
| args: impl IntoIterator<Item = impl Into<GenericArg<'tcx>>>, |
| ) -> Option<Ty<'tcx>> { |
| fn helper<'tcx>(tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, ty: AliasTy<'tcx>) -> Option<Ty<'tcx>> { |
| #[cfg(debug_assertions)] |
| if let Some((i, arg)) = ty |
| .args |
| .iter() |
| .enumerate() |
| .find(|(_, arg)| arg.has_escaping_bound_vars()) |
| { |
| debug_assert!( |
| false, |
| "args contain late-bound region at index `{i}` which can't be normalized.\n\ |
| use `TyCtxt::instantiate_bound_regions_with_erased`\n\ |
| note: arg is `{arg:#?}`", |
| ); |
| return None; |
| } |
| match tcx.try_normalize_erasing_regions(typing_env, Ty::new_projection_from_args(tcx, ty.def_id, ty.args)) { |
| Ok(ty) => Some(ty), |
| Err(e) => { |
| debug_assert!(false, "failed to normalize type `{ty}`: {e:#?}"); |
| None |
| }, |
| } |
| } |
| helper(tcx, typing_env, make_projection(tcx, container_id, assoc_ty, args)?) |
| } |
| |
| /// Helper to check if given type has inner mutability such as [`std::cell::Cell`] or |
| /// [`std::cell::RefCell`]. |
| #[derive(Default, Debug)] |
| pub struct InteriorMut<'tcx> { |
| ignored_def_ids: FxHashSet<DefId>, |
| ignore_pointers: bool, |
| tys: FxHashMap<Ty<'tcx>, Option<&'tcx ty::List<Ty<'tcx>>>>, |
| } |
| |
| impl<'tcx> InteriorMut<'tcx> { |
| pub fn new(tcx: TyCtxt<'tcx>, ignore_interior_mutability: &[String]) -> Self { |
| let ignored_def_ids = ignore_interior_mutability |
| .iter() |
| .flat_map(|ignored_ty| { |
| let path: Vec<&str> = ignored_ty.split("::").collect(); |
| def_path_def_ids(tcx, path.as_slice()) |
| }) |
| .collect(); |
| |
| Self { |
| ignored_def_ids, |
| ..Self::default() |
| } |
| } |
| |
| pub fn without_pointers(tcx: TyCtxt<'tcx>, ignore_interior_mutability: &[String]) -> Self { |
| Self { |
| ignore_pointers: true, |
| ..Self::new(tcx, ignore_interior_mutability) |
| } |
| } |
| |
| /// Check if given type has interior mutability such as [`std::cell::Cell`] or |
| /// [`std::cell::RefCell`] etc. and if it does, returns a chain of types that causes |
| /// this type to be interior mutable |
| pub fn interior_mut_ty_chain(&mut self, cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<&'tcx ty::List<Ty<'tcx>>> { |
| match self.tys.entry(ty) { |
| Entry::Occupied(o) => return *o.get(), |
| // Temporarily insert a `None` to break cycles |
| Entry::Vacant(v) => v.insert(None), |
| }; |
| |
| let chain = match *ty.kind() { |
| ty::RawPtr(inner_ty, _) if !self.ignore_pointers => self.interior_mut_ty_chain(cx, inner_ty), |
| ty::Ref(_, inner_ty, _) | ty::Slice(inner_ty) => self.interior_mut_ty_chain(cx, inner_ty), |
| ty::Array(inner_ty, size) if size.try_to_target_usize(cx.tcx) != Some(0) => { |
| self.interior_mut_ty_chain(cx, inner_ty) |
| }, |
| ty::Tuple(fields) => fields.iter().find_map(|ty| self.interior_mut_ty_chain(cx, ty)), |
| ty::Adt(def, _) if def.is_unsafe_cell() => Some(ty::List::empty()), |
| ty::Adt(def, args) => { |
| let is_std_collection = matches!( |
| cx.tcx.get_diagnostic_name(def.did()), |
| Some( |
| sym::LinkedList |
| | sym::Vec |
| | sym::VecDeque |
| | sym::BTreeMap |
| | sym::BTreeSet |
| | sym::HashMap |
| | sym::HashSet |
| | sym::Arc |
| | sym::Rc |
| ) |
| ); |
| |
| if is_std_collection || def.is_box() { |
| // Include the types from std collections that are behind pointers internally |
| args.types().find_map(|ty| self.interior_mut_ty_chain(cx, ty)) |
| } else if self.ignored_def_ids.contains(&def.did()) || def.is_phantom_data() { |
| None |
| } else { |
| def.all_fields() |
| .find_map(|f| self.interior_mut_ty_chain(cx, f.ty(cx.tcx, args))) |
| } |
| }, |
| ty::Alias(ty::Projection, _) => match cx.tcx.try_normalize_erasing_regions(cx.typing_env(), ty) { |
| Ok(normalized_ty) if ty != normalized_ty => self.interior_mut_ty_chain(cx, normalized_ty), |
| _ => None, |
| }, |
| _ => None, |
| }; |
| |
| chain.map(|chain| { |
| let list = cx.tcx.mk_type_list_from_iter(chain.iter().chain([ty])); |
| self.tys.insert(ty, Some(list)); |
| list |
| }) |
| } |
| |
| /// Check if given type has interior mutability such as [`std::cell::Cell`] or |
| /// [`std::cell::RefCell`] etc. |
| pub fn is_interior_mut_ty(&mut self, cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { |
| self.interior_mut_ty_chain(cx, ty).is_some() |
| } |
| } |
| |
| pub fn make_normalized_projection_with_regions<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| typing_env: ty::TypingEnv<'tcx>, |
| container_id: DefId, |
| assoc_ty: Symbol, |
| args: impl IntoIterator<Item = impl Into<GenericArg<'tcx>>>, |
| ) -> Option<Ty<'tcx>> { |
| fn helper<'tcx>(tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, ty: AliasTy<'tcx>) -> Option<Ty<'tcx>> { |
| #[cfg(debug_assertions)] |
| if let Some((i, arg)) = ty |
| .args |
| .iter() |
| .enumerate() |
| .find(|(_, arg)| arg.has_escaping_bound_vars()) |
| { |
| debug_assert!( |
| false, |
| "args contain late-bound region at index `{i}` which can't be normalized.\n\ |
| use `TyCtxt::instantiate_bound_regions_with_erased`\n\ |
| note: arg is `{arg:#?}`", |
| ); |
| return None; |
| } |
| let cause = ObligationCause::dummy(); |
| let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env); |
| match infcx |
| .at(&cause, param_env) |
| .query_normalize(Ty::new_projection_from_args(tcx, ty.def_id, ty.args)) |
| { |
| Ok(ty) => Some(ty.value), |
| Err(e) => { |
| debug_assert!(false, "failed to normalize type `{ty}`: {e:#?}"); |
| None |
| }, |
| } |
| } |
| helper(tcx, typing_env, make_projection(tcx, container_id, assoc_ty, args)?) |
| } |
| |
| pub fn normalize_with_regions<'tcx>(tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { |
| let cause = ObligationCause::dummy(); |
| let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env); |
| infcx |
| .at(&cause, param_env) |
| .query_normalize(ty) |
| .map_or(ty, |ty| ty.value) |
| } |
| |
| /// Checks if the type is `core::mem::ManuallyDrop<_>` |
| pub fn is_manually_drop(ty: Ty<'_>) -> bool { |
| ty.ty_adt_def().is_some_and(AdtDef::is_manually_drop) |
| } |
| |
| /// Returns the deref chain of a type, starting with the type itself. |
| pub fn deref_chain<'cx, 'tcx>(cx: &'cx LateContext<'tcx>, ty: Ty<'tcx>) -> impl Iterator<Item = Ty<'tcx>> + 'cx { |
| iter::successors(Some(ty), |&ty| { |
| if let Some(deref_did) = cx.tcx.lang_items().deref_trait() |
| && implements_trait(cx, ty, deref_did, &[]) |
| { |
| make_normalized_projection(cx.tcx, cx.typing_env(), deref_did, sym::Target, [ty]) |
| } else { |
| None |
| } |
| }) |
| } |
| |
| /// Checks if a Ty<'_> has some inherent method Symbol. |
| /// |
| /// This does not look for impls in the type's `Deref::Target` type. |
| /// If you need this, you should wrap this call in `clippy_utils::ty::deref_chain().any(...)`. |
| pub fn get_adt_inherent_method<'a>(cx: &'a LateContext<'_>, ty: Ty<'_>, method_name: Symbol) -> Option<&'a AssocItem> { |
| if let Some(ty_did) = ty.ty_adt_def().map(AdtDef::did) { |
| cx.tcx.inherent_impls(ty_did).iter().find_map(|&did| { |
| cx.tcx |
| .associated_items(did) |
| .filter_by_name_unhygienic(method_name) |
| .next() |
| .filter(|item| item.as_tag() == AssocTag::Fn) |
| }) |
| } else { |
| None |
| } |
| } |
| |
| /// Gets the type of a field by name. |
| pub fn get_field_by_name<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, name: Symbol) -> Option<Ty<'tcx>> { |
| match *ty.kind() { |
| ty::Adt(def, args) if def.is_union() || def.is_struct() => def |
| .non_enum_variant() |
| .fields |
| .iter() |
| .find(|f| f.name == name) |
| .map(|f| f.ty(tcx, args)), |
| ty::Tuple(args) => name.as_str().parse::<usize>().ok().and_then(|i| args.get(i).copied()), |
| _ => None, |
| } |
| } |
| |
| /// Check if `ty` is an `Option` and return its argument type if it is. |
| pub fn option_arg_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> { |
| match ty.kind() { |
| ty::Adt(adt, args) => cx |
| .tcx |
| .is_diagnostic_item(sym::Option, adt.did()) |
| .then(|| args.type_at(0)), |
| _ => None, |
| } |
| } |
| |
| /// Check if a Ty<'_> of `Iterator` contains any mutable access to non-owning types by checking if |
| /// it contains fields of mutable references or pointers, or references/pointers to non-`Freeze` |
| /// types, or `PhantomData` types containing any of the previous. This can be used to check whether |
| /// skipping iterating over an iterator will change its behavior. |
| pub fn has_non_owning_mutable_access<'tcx>(cx: &LateContext<'tcx>, iter_ty: Ty<'tcx>) -> bool { |
| fn normalize_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { |
| cx.tcx.try_normalize_erasing_regions(cx.typing_env(), ty).unwrap_or(ty) |
| } |
| |
| /// Check if `ty` contains mutable references or equivalent, which includes: |
| /// - A mutable reference/pointer. |
| /// - A reference/pointer to a non-`Freeze` type. |
| /// - A `PhantomData` type containing any of the previous. |
| fn has_non_owning_mutable_access_inner<'tcx>( |
| cx: &LateContext<'tcx>, |
| phantoms: &mut FxHashSet<Ty<'tcx>>, |
| ty: Ty<'tcx>, |
| ) -> bool { |
| match ty.kind() { |
| ty::Adt(adt_def, args) if adt_def.is_phantom_data() => { |
| phantoms.insert(ty) |
| && args |
| .types() |
| .any(|arg_ty| has_non_owning_mutable_access_inner(cx, phantoms, arg_ty)) |
| }, |
| ty::Adt(adt_def, args) => adt_def.all_fields().any(|field| { |
| has_non_owning_mutable_access_inner(cx, phantoms, normalize_ty(cx, field.ty(cx.tcx, args))) |
| }), |
| ty::Array(elem_ty, _) | ty::Slice(elem_ty) => has_non_owning_mutable_access_inner(cx, phantoms, *elem_ty), |
| ty::RawPtr(pointee_ty, mutability) | ty::Ref(_, pointee_ty, mutability) => { |
| mutability.is_mut() || !pointee_ty.is_freeze(cx.tcx, cx.typing_env()) |
| }, |
| ty::Closure(_, closure_args) => { |
| matches!(closure_args.types().next_back(), Some(captures) if has_non_owning_mutable_access_inner(cx, phantoms, captures)) |
| }, |
| ty::Tuple(tuple_args) => tuple_args |
| .iter() |
| .any(|arg_ty| has_non_owning_mutable_access_inner(cx, phantoms, arg_ty)), |
| _ => false, |
| } |
| } |
| |
| let mut phantoms = FxHashSet::default(); |
| has_non_owning_mutable_access_inner(cx, &mut phantoms, iter_ty) |
| } |