blob: bb9d37f93ab8b26b0217574a1cc40902703d4751 [file] [log] [blame]
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_snake_case)]
use prelude::v1::*;
use os::unix::prelude::*;
use collections::HashMap;
use env;
use ffi::{OsString, OsStr, CString, CStr};
use fmt;
use io::{self, Error, ErrorKind};
use libc::{self, pid_t, c_void, c_int, gid_t, uid_t};
use ptr;
use sys::fd::FileDesc;
use sys::fs::{File, OpenOptions};
use sys::pipe::AnonPipe;
use sys::{self, cvt, cvt_r};
////////////////////////////////////////////////////////////////////////////////
// Command
////////////////////////////////////////////////////////////////////////////////
#[derive(Clone)]
pub struct Command {
pub program: CString,
pub args: Vec<CString>,
pub env: Option<HashMap<OsString, OsString>>,
pub cwd: Option<CString>,
pub uid: Option<uid_t>,
pub gid: Option<gid_t>,
pub session_leader: bool,
}
impl Command {
pub fn new(program: &OsStr) -> Command {
Command {
program: os2c(program),
args: Vec::new(),
env: None,
cwd: None,
uid: None,
gid: None,
session_leader: false,
}
}
pub fn arg(&mut self, arg: &OsStr) {
self.args.push(os2c(arg));
}
pub fn args<'a, I: Iterator<Item = &'a OsStr>>(&mut self, args: I) {
self.args.extend(args.map(os2c));
}
fn init_env_map(&mut self) {
if self.env.is_none() {
self.env = Some(env::vars_os().collect());
}
}
pub fn env(&mut self, key: &OsStr, val: &OsStr) {
self.init_env_map();
self.env.as_mut().unwrap().insert(key.to_os_string(), val.to_os_string());
}
pub fn env_remove(&mut self, key: &OsStr) {
self.init_env_map();
self.env.as_mut().unwrap().remove(&key.to_os_string());
}
pub fn env_clear(&mut self) {
self.env = Some(HashMap::new())
}
pub fn cwd(&mut self, dir: &OsStr) {
self.cwd = Some(os2c(dir));
}
}
fn os2c(s: &OsStr) -> CString {
CString::new(s.as_bytes()).unwrap()
}
////////////////////////////////////////////////////////////////////////////////
// Processes
////////////////////////////////////////////////////////////////////////////////
/// Unix exit statuses
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitStatus(c_int);
#[cfg(any(target_os = "linux", target_os = "android",
target_os = "nacl"))]
mod status_imp {
pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 }
pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff }
pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f }
}
#[cfg(any(target_os = "macos",
target_os = "ios",
target_os = "freebsd",
target_os = "dragonfly",
target_os = "bitrig",
target_os = "netbsd",
target_os = "openbsd"))]
mod status_imp {
pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 }
pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 }
pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 }
}
impl ExitStatus {
fn exited(&self) -> bool {
status_imp::WIFEXITED(self.0)
}
pub fn success(&self) -> bool {
self.code() == Some(0)
}
pub fn code(&self) -> Option<i32> {
if self.exited() {
Some(status_imp::WEXITSTATUS(self.0))
} else {
None
}
}
pub fn signal(&self) -> Option<i32> {
if !self.exited() {
Some(status_imp::WTERMSIG(self.0))
} else {
None
}
}
}
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let Some(code) = self.code() {
write!(f, "exit code: {}", code)
} else {
let signal = self.signal().unwrap();
write!(f, "signal: {}", signal)
}
}
}
/// The unique id of the process (this should never be negative).
pub struct Process {
pid: pid_t
}
pub enum Stdio {
Inherit,
None,
Raw(c_int),
}
pub type RawStdio = FileDesc;
const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX";
impl Process {
pub unsafe fn kill(&self) -> io::Result<()> {
try!(cvt(libc::kill(self.pid, libc::SIGKILL)));
Ok(())
}
pub fn spawn(cfg: &Command,
in_fd: Stdio,
out_fd: Stdio,
err_fd: Stdio) -> io::Result<Process> {
let dirp = cfg.cwd.as_ref().map(|c| c.as_ptr()).unwrap_or(ptr::null());
let (envp, _a, _b) = make_envp(cfg.env.as_ref());
let (argv, _a) = make_argv(&cfg.program, &cfg.args);
let (input, output) = try!(sys::pipe::anon_pipe());
let pid = unsafe {
match libc::fork() {
0 => {
drop(input);
Process::child_after_fork(cfg, output, argv, envp, dirp,
in_fd, out_fd, err_fd)
}
n if n < 0 => return Err(Error::last_os_error()),
n => n,
}
};
let p = Process{ pid: pid };
drop(output);
let mut bytes = [0; 8];
// loop to handle EINTR
loop {
match input.read(&mut bytes) {
Ok(0) => return Ok(p),
Ok(8) => {
assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]),
"Validation on the CLOEXEC pipe failed: {:?}", bytes);
let errno = combine(&bytes[0.. 4]);
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
return Err(Error::from_raw_os_error(errno))
}
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => {
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("the CLOEXEC pipe failed: {:?}", e)
},
Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("short read on the CLOEXEC pipe")
}
}
}
fn combine(arr: &[u8]) -> i32 {
let a = arr[0] as u32;
let b = arr[1] as u32;
let c = arr[2] as u32;
let d = arr[3] as u32;
((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32
}
}
// And at this point we've reached a special time in the life of the
// child. The child must now be considered hamstrung and unable to
// do anything other than syscalls really. Consider the following
// scenario:
//
// 1. Thread A of process 1 grabs the malloc() mutex
// 2. Thread B of process 1 forks(), creating thread C
// 3. Thread C of process 2 then attempts to malloc()
// 4. The memory of process 2 is the same as the memory of
// process 1, so the mutex is locked.
//
// This situation looks a lot like deadlock, right? It turns out
// that this is what pthread_atfork() takes care of, which is
// presumably implemented across platforms. The first thing that
// threads to *before* forking is to do things like grab the malloc
// mutex, and then after the fork they unlock it.
//
// Despite this information, libnative's spawn has been witnessed to
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
// all collected backtraces point at malloc/free traffic in the
// child spawned process.
//
// For this reason, the block of code below should contain 0
// invocations of either malloc of free (or their related friends).
//
// As an example of not having malloc/free traffic, we don't close
// this file descriptor by dropping the FileDesc (which contains an
// allocation). Instead we just close it manually. This will never
// have the drop glue anyway because this code never returns (the
// child will either exec() or invoke libc::exit)
unsafe fn child_after_fork(cfg: &Command,
mut output: AnonPipe,
argv: *const *const libc::c_char,
envp: *const libc::c_void,
dirp: *const libc::c_char,
in_fd: Stdio,
out_fd: Stdio,
err_fd: Stdio) -> ! {
fn fail(output: &mut AnonPipe) -> ! {
let errno = sys::os::errno() as u32;
let bytes = [
(errno >> 24) as u8,
(errno >> 16) as u8,
(errno >> 8) as u8,
(errno >> 0) as u8,
CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1],
CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3]
];
// pipe I/O up to PIPE_BUF bytes should be atomic, and then we want
// to be sure we *don't* run at_exit destructors as we're being torn
// down regardless
assert!(output.write(&bytes).is_ok());
unsafe { libc::_exit(1) }
}
// Make sure that the source descriptors are not an stdio descriptor,
// otherwise the order which we set the child's descriptors may blow
// away a descriptor which we are hoping to save. For example,
// suppose we want the child's stderr to be the parent's stdout, and
// the child's stdout to be the parent's stderr. No matter which we
// dup first, the second will get overwritten prematurely.
let maybe_migrate = |src: Stdio, output: &mut AnonPipe| {
match src {
Stdio::Raw(fd @ libc::STDIN_FILENO) |
Stdio::Raw(fd @ libc::STDOUT_FILENO) |
Stdio::Raw(fd @ libc::STDERR_FILENO) => {
let fd = match cvt_r(|| libc::dup(fd)) {
Ok(fd) => fd,
Err(_) => fail(output),
};
let fd = FileDesc::new(fd);
fd.set_cloexec();
Stdio::Raw(fd.into_raw())
},
s @ Stdio::None |
s @ Stdio::Inherit |
s @ Stdio::Raw(_) => s,
}
};
let setup = |src: Stdio, dst: c_int| {
match src {
Stdio::Inherit => true,
Stdio::Raw(fd) => cvt_r(|| libc::dup2(fd, dst)).is_ok(),
// If a stdio file descriptor is set to be ignored, we open up
// /dev/null into that file descriptor. Otherwise, the first
// file descriptor opened up in the child would be numbered as
// one of the stdio file descriptors, which is likely to wreak
// havoc.
Stdio::None => {
let mut opts = OpenOptions::new();
opts.read(dst == libc::STDIN_FILENO);
opts.write(dst != libc::STDIN_FILENO);
let devnull = CStr::from_ptr(b"/dev/null\0".as_ptr()
as *const _);
if let Ok(f) = File::open_c(devnull, &opts) {
cvt_r(|| libc::dup2(f.fd().raw(), dst)).is_ok()
} else {
false
}
}
}
};
// Make sure we migrate all source descriptors before
// we start overwriting them
let in_fd = maybe_migrate(in_fd, &mut output);
let out_fd = maybe_migrate(out_fd, &mut output);
let err_fd = maybe_migrate(err_fd, &mut output);
if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }
if let Some(u) = cfg.gid {
if libc::setgid(u as libc::gid_t) != 0 {
fail(&mut output);
}
}
if let Some(u) = cfg.uid {
// When dropping privileges from root, the `setgroups` call
// will remove any extraneous groups. If we don't call this,
// then even though our uid has dropped, we may still have
// groups that enable us to do super-user things. This will
// fail if we aren't root, so don't bother checking the
// return value, this is just done as an optimistic
// privilege dropping function.
let _ = libc::setgroups(0, ptr::null());
if libc::setuid(u as libc::uid_t) != 0 {
fail(&mut output);
}
}
if cfg.session_leader {
// Don't check the error of setsid because it fails if we're the
// process leader already. We just forked so it shouldn't return
// error, but ignore it anyway.
let _ = libc::setsid();
}
if !dirp.is_null() && libc::chdir(dirp) == -1 {
fail(&mut output);
}
if !envp.is_null() {
*sys::os::environ() = envp as *const _;
}
#[cfg(not(target_os = "nacl"))]
unsafe fn reset_signal_handling(output: &mut AnonPipe) {
use mem;
// Reset signal handling so the child process starts in a
// standardized state. libstd ignores SIGPIPE, and signal-handling
// libraries often set a mask. Child processes inherit ignored
// signals and the signal mask from their parent, but most
// UNIX programs do not reset these things on their own, so we
// need to clean things up now to avoid confusing the program
// we're about to run.
let mut set: libc::sigset_t = mem::uninitialized();
if libc::sigemptyset(&mut set) != 0 ||
libc::pthread_sigmask(libc::SIG_SETMASK, &set, ptr::null_mut()) != 0 ||
libc::signal(
libc::SIGPIPE, mem::transmute(libc::SIG_DFL)
) == mem::transmute(libc::SIG_ERR)
{
fail(output);
}
}
#[cfg(target_os = "nacl")]
unsafe fn reset_signal_handling(_output: &mut AnonPipe) {
// NaCl has no signal support.
}
reset_signal_handling(&mut output);
let _ = libc::execvp(*argv, argv);
fail(&mut output)
}
pub fn id(&self) -> u32 {
self.pid as u32
}
pub fn wait(&self) -> io::Result<ExitStatus> {
let mut status = 0 as c_int;
try!(cvt_r(|| unsafe { libc::waitpid(self.pid, &mut status, 0) }));
Ok(ExitStatus(status))
}
pub fn try_wait(&self) -> Option<ExitStatus> {
let mut status = 0 as c_int;
match cvt_r(|| unsafe {
libc::waitpid(self.pid, &mut status, libc::WNOHANG)
}) {
Ok(0) => None,
Ok(n) if n == self.pid => Some(ExitStatus(status)),
Ok(n) => panic!("unknown pid: {}", n),
Err(e) => panic!("unknown waitpid error: {}", e),
}
}
}
fn make_argv(prog: &CString, args: &[CString])
-> (*const *const libc::c_char, Vec<*const libc::c_char>)
{
let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1);
// Convert the CStrings into an array of pointers. Note: the
// lifetime of the various CStrings involved is guaranteed to be
// larger than the lifetime of our invocation of cb, but this is
// technically unsafe as the callback could leak these pointers
// out of our scope.
ptrs.push(prog.as_ptr());
ptrs.extend(args.iter().map(|tmp| tmp.as_ptr()));
// Add a terminating null pointer (required by libc).
ptrs.push(ptr::null());
(ptrs.as_ptr(), ptrs)
}
fn make_envp(env: Option<&HashMap<OsString, OsString>>)
-> (*const c_void, Vec<Vec<u8>>, Vec<*const libc::c_char>)
{
// On posixy systems we can pass a char** for envp, which is a
// null-terminated array of "k=v\0" strings. Since we must create
// these strings locally, yet expose a raw pointer to them, we
// create a temporary vector to own the CStrings that outlives the
// call to cb.
if let Some(env) = env {
let mut tmps = Vec::with_capacity(env.len());
for pair in env {
let mut kv = Vec::new();
kv.extend_from_slice(pair.0.as_bytes());
kv.push('=' as u8);
kv.extend_from_slice(pair.1.as_bytes());
kv.push(0); // terminating null
tmps.push(kv);
}
let mut ptrs: Vec<*const libc::c_char> =
tmps.iter()
.map(|tmp| tmp.as_ptr() as *const libc::c_char)
.collect();
ptrs.push(ptr::null());
(ptrs.as_ptr() as *const _, tmps, ptrs)
} else {
(ptr::null(), Vec::new(), Vec::new())
}
}
#[cfg(test)]
mod tests {
use super::*;
use prelude::v1::*;
use ffi::OsStr;
use mem;
use ptr;
use libc;
use sys::{self, cvt};
macro_rules! t {
($e:expr) => {
match $e {
Ok(t) => t,
Err(e) => panic!("received error for `{}`: {}", stringify!($e), e),
}
}
}
#[cfg(not(target_os = "android"))]
extern {
#[cfg_attr(target_os = "netbsd", link_name = "__sigaddset14")]
fn sigaddset(set: *mut libc::sigset_t, signum: libc::c_int) -> libc::c_int;
}
#[cfg(target_os = "android")]
unsafe fn sigaddset(set: *mut libc::sigset_t, signum: libc::c_int) -> libc::c_int {
use slice;
let raw = slice::from_raw_parts_mut(set as *mut u8, mem::size_of::<libc::sigset_t>());
let bit = (signum - 1) as usize;
raw[bit / 8] |= 1 << (bit % 8);
return 0;
}
// See #14232 for more information, but it appears that signal delivery to a
// newly spawned process may just be raced in the OSX, so to prevent this
// test from being flaky we ignore it on OSX.
#[test]
#[cfg_attr(target_os = "macos", ignore)]
#[cfg_attr(target_os = "nacl", ignore)] // no signals on NaCl.
fn test_process_mask() {
unsafe {
// Test to make sure that a signal mask does not get inherited.
let cmd = Command::new(OsStr::new("cat"));
let (stdin_read, stdin_write) = t!(sys::pipe::anon_pipe());
let (stdout_read, stdout_write) = t!(sys::pipe::anon_pipe());
let mut set: libc::sigset_t = mem::uninitialized();
let mut old_set: libc::sigset_t = mem::uninitialized();
t!(cvt(libc::sigemptyset(&mut set)));
t!(cvt(sigaddset(&mut set, libc::SIGINT)));
t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &set, &mut old_set)));
let cat = t!(Process::spawn(&cmd, Stdio::Raw(stdin_read.raw()),
Stdio::Raw(stdout_write.raw()),
Stdio::None));
drop(stdin_read);
drop(stdout_write);
t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &old_set,
ptr::null_mut())));
t!(cvt(libc::kill(cat.id() as libc::pid_t, libc::SIGINT)));
// We need to wait until SIGINT is definitely delivered. The
// easiest way is to write something to cat, and try to read it
// back: if SIGINT is unmasked, it'll get delivered when cat is
// next scheduled.
let _ = stdin_write.write(b"Hello");
drop(stdin_write);
// Either EOF or failure (EPIPE) is okay.
let mut buf = [0; 5];
if let Ok(ret) = stdout_read.read(&mut buf) {
assert!(ret == 0);
}
t!(cat.wait());
}
}
}