| // Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| #![allow(non_snake_case)] |
| |
| use prelude::v1::*; |
| use os::unix::prelude::*; |
| |
| use collections::HashMap; |
| use env; |
| use ffi::{OsString, OsStr, CString, CStr}; |
| use fmt; |
| use io::{self, Error, ErrorKind}; |
| use libc::{self, pid_t, c_void, c_int, gid_t, uid_t}; |
| use ptr; |
| use sys::fd::FileDesc; |
| use sys::fs::{File, OpenOptions}; |
| use sys::pipe::AnonPipe; |
| use sys::{self, cvt, cvt_r}; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Command |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #[derive(Clone)] |
| pub struct Command { |
| pub program: CString, |
| pub args: Vec<CString>, |
| pub env: Option<HashMap<OsString, OsString>>, |
| pub cwd: Option<CString>, |
| pub uid: Option<uid_t>, |
| pub gid: Option<gid_t>, |
| pub session_leader: bool, |
| } |
| |
| impl Command { |
| pub fn new(program: &OsStr) -> Command { |
| Command { |
| program: os2c(program), |
| args: Vec::new(), |
| env: None, |
| cwd: None, |
| uid: None, |
| gid: None, |
| session_leader: false, |
| } |
| } |
| |
| pub fn arg(&mut self, arg: &OsStr) { |
| self.args.push(os2c(arg)); |
| } |
| pub fn args<'a, I: Iterator<Item = &'a OsStr>>(&mut self, args: I) { |
| self.args.extend(args.map(os2c)); |
| } |
| fn init_env_map(&mut self) { |
| if self.env.is_none() { |
| self.env = Some(env::vars_os().collect()); |
| } |
| } |
| pub fn env(&mut self, key: &OsStr, val: &OsStr) { |
| self.init_env_map(); |
| self.env.as_mut().unwrap().insert(key.to_os_string(), val.to_os_string()); |
| } |
| pub fn env_remove(&mut self, key: &OsStr) { |
| self.init_env_map(); |
| self.env.as_mut().unwrap().remove(&key.to_os_string()); |
| } |
| pub fn env_clear(&mut self) { |
| self.env = Some(HashMap::new()) |
| } |
| pub fn cwd(&mut self, dir: &OsStr) { |
| self.cwd = Some(os2c(dir)); |
| } |
| } |
| |
| fn os2c(s: &OsStr) -> CString { |
| CString::new(s.as_bytes()).unwrap() |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Processes |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| /// Unix exit statuses |
| #[derive(PartialEq, Eq, Clone, Copy, Debug)] |
| pub struct ExitStatus(c_int); |
| |
| #[cfg(any(target_os = "linux", target_os = "android", |
| target_os = "nacl"))] |
| mod status_imp { |
| pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 } |
| pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff } |
| pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f } |
| } |
| |
| #[cfg(any(target_os = "macos", |
| target_os = "ios", |
| target_os = "freebsd", |
| target_os = "dragonfly", |
| target_os = "bitrig", |
| target_os = "netbsd", |
| target_os = "openbsd"))] |
| mod status_imp { |
| pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 } |
| pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 } |
| pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 } |
| } |
| |
| impl ExitStatus { |
| fn exited(&self) -> bool { |
| status_imp::WIFEXITED(self.0) |
| } |
| |
| pub fn success(&self) -> bool { |
| self.code() == Some(0) |
| } |
| |
| pub fn code(&self) -> Option<i32> { |
| if self.exited() { |
| Some(status_imp::WEXITSTATUS(self.0)) |
| } else { |
| None |
| } |
| } |
| |
| pub fn signal(&self) -> Option<i32> { |
| if !self.exited() { |
| Some(status_imp::WTERMSIG(self.0)) |
| } else { |
| None |
| } |
| } |
| } |
| |
| impl fmt::Display for ExitStatus { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| if let Some(code) = self.code() { |
| write!(f, "exit code: {}", code) |
| } else { |
| let signal = self.signal().unwrap(); |
| write!(f, "signal: {}", signal) |
| } |
| } |
| } |
| |
| /// The unique id of the process (this should never be negative). |
| pub struct Process { |
| pid: pid_t |
| } |
| |
| pub enum Stdio { |
| Inherit, |
| None, |
| Raw(c_int), |
| } |
| |
| pub type RawStdio = FileDesc; |
| |
| const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX"; |
| |
| impl Process { |
| pub unsafe fn kill(&self) -> io::Result<()> { |
| try!(cvt(libc::kill(self.pid, libc::SIGKILL))); |
| Ok(()) |
| } |
| |
| pub fn spawn(cfg: &Command, |
| in_fd: Stdio, |
| out_fd: Stdio, |
| err_fd: Stdio) -> io::Result<Process> { |
| let dirp = cfg.cwd.as_ref().map(|c| c.as_ptr()).unwrap_or(ptr::null()); |
| |
| let (envp, _a, _b) = make_envp(cfg.env.as_ref()); |
| let (argv, _a) = make_argv(&cfg.program, &cfg.args); |
| let (input, output) = try!(sys::pipe::anon_pipe()); |
| |
| let pid = unsafe { |
| match libc::fork() { |
| 0 => { |
| drop(input); |
| Process::child_after_fork(cfg, output, argv, envp, dirp, |
| in_fd, out_fd, err_fd) |
| } |
| n if n < 0 => return Err(Error::last_os_error()), |
| n => n, |
| } |
| }; |
| |
| let p = Process{ pid: pid }; |
| drop(output); |
| let mut bytes = [0; 8]; |
| |
| // loop to handle EINTR |
| loop { |
| match input.read(&mut bytes) { |
| Ok(0) => return Ok(p), |
| Ok(8) => { |
| assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]), |
| "Validation on the CLOEXEC pipe failed: {:?}", bytes); |
| let errno = combine(&bytes[0.. 4]); |
| assert!(p.wait().is_ok(), |
| "wait() should either return Ok or panic"); |
| return Err(Error::from_raw_os_error(errno)) |
| } |
| Err(ref e) if e.kind() == ErrorKind::Interrupted => {} |
| Err(e) => { |
| assert!(p.wait().is_ok(), |
| "wait() should either return Ok or panic"); |
| panic!("the CLOEXEC pipe failed: {:?}", e) |
| }, |
| Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic |
| assert!(p.wait().is_ok(), |
| "wait() should either return Ok or panic"); |
| panic!("short read on the CLOEXEC pipe") |
| } |
| } |
| } |
| |
| fn combine(arr: &[u8]) -> i32 { |
| let a = arr[0] as u32; |
| let b = arr[1] as u32; |
| let c = arr[2] as u32; |
| let d = arr[3] as u32; |
| |
| ((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32 |
| } |
| } |
| |
| // And at this point we've reached a special time in the life of the |
| // child. The child must now be considered hamstrung and unable to |
| // do anything other than syscalls really. Consider the following |
| // scenario: |
| // |
| // 1. Thread A of process 1 grabs the malloc() mutex |
| // 2. Thread B of process 1 forks(), creating thread C |
| // 3. Thread C of process 2 then attempts to malloc() |
| // 4. The memory of process 2 is the same as the memory of |
| // process 1, so the mutex is locked. |
| // |
| // This situation looks a lot like deadlock, right? It turns out |
| // that this is what pthread_atfork() takes care of, which is |
| // presumably implemented across platforms. The first thing that |
| // threads to *before* forking is to do things like grab the malloc |
| // mutex, and then after the fork they unlock it. |
| // |
| // Despite this information, libnative's spawn has been witnessed to |
| // deadlock on both OSX and FreeBSD. I'm not entirely sure why, but |
| // all collected backtraces point at malloc/free traffic in the |
| // child spawned process. |
| // |
| // For this reason, the block of code below should contain 0 |
| // invocations of either malloc of free (or their related friends). |
| // |
| // As an example of not having malloc/free traffic, we don't close |
| // this file descriptor by dropping the FileDesc (which contains an |
| // allocation). Instead we just close it manually. This will never |
| // have the drop glue anyway because this code never returns (the |
| // child will either exec() or invoke libc::exit) |
| unsafe fn child_after_fork(cfg: &Command, |
| mut output: AnonPipe, |
| argv: *const *const libc::c_char, |
| envp: *const libc::c_void, |
| dirp: *const libc::c_char, |
| in_fd: Stdio, |
| out_fd: Stdio, |
| err_fd: Stdio) -> ! { |
| fn fail(output: &mut AnonPipe) -> ! { |
| let errno = sys::os::errno() as u32; |
| let bytes = [ |
| (errno >> 24) as u8, |
| (errno >> 16) as u8, |
| (errno >> 8) as u8, |
| (errno >> 0) as u8, |
| CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1], |
| CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3] |
| ]; |
| // pipe I/O up to PIPE_BUF bytes should be atomic, and then we want |
| // to be sure we *don't* run at_exit destructors as we're being torn |
| // down regardless |
| assert!(output.write(&bytes).is_ok()); |
| unsafe { libc::_exit(1) } |
| } |
| |
| // Make sure that the source descriptors are not an stdio descriptor, |
| // otherwise the order which we set the child's descriptors may blow |
| // away a descriptor which we are hoping to save. For example, |
| // suppose we want the child's stderr to be the parent's stdout, and |
| // the child's stdout to be the parent's stderr. No matter which we |
| // dup first, the second will get overwritten prematurely. |
| let maybe_migrate = |src: Stdio, output: &mut AnonPipe| { |
| match src { |
| Stdio::Raw(fd @ libc::STDIN_FILENO) | |
| Stdio::Raw(fd @ libc::STDOUT_FILENO) | |
| Stdio::Raw(fd @ libc::STDERR_FILENO) => { |
| let fd = match cvt_r(|| libc::dup(fd)) { |
| Ok(fd) => fd, |
| Err(_) => fail(output), |
| }; |
| let fd = FileDesc::new(fd); |
| fd.set_cloexec(); |
| Stdio::Raw(fd.into_raw()) |
| }, |
| |
| s @ Stdio::None | |
| s @ Stdio::Inherit | |
| s @ Stdio::Raw(_) => s, |
| } |
| }; |
| |
| let setup = |src: Stdio, dst: c_int| { |
| match src { |
| Stdio::Inherit => true, |
| Stdio::Raw(fd) => cvt_r(|| libc::dup2(fd, dst)).is_ok(), |
| |
| // If a stdio file descriptor is set to be ignored, we open up |
| // /dev/null into that file descriptor. Otherwise, the first |
| // file descriptor opened up in the child would be numbered as |
| // one of the stdio file descriptors, which is likely to wreak |
| // havoc. |
| Stdio::None => { |
| let mut opts = OpenOptions::new(); |
| opts.read(dst == libc::STDIN_FILENO); |
| opts.write(dst != libc::STDIN_FILENO); |
| let devnull = CStr::from_ptr(b"/dev/null\0".as_ptr() |
| as *const _); |
| if let Ok(f) = File::open_c(devnull, &opts) { |
| cvt_r(|| libc::dup2(f.fd().raw(), dst)).is_ok() |
| } else { |
| false |
| } |
| } |
| } |
| }; |
| |
| // Make sure we migrate all source descriptors before |
| // we start overwriting them |
| let in_fd = maybe_migrate(in_fd, &mut output); |
| let out_fd = maybe_migrate(out_fd, &mut output); |
| let err_fd = maybe_migrate(err_fd, &mut output); |
| |
| if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) } |
| if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) } |
| if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) } |
| |
| if let Some(u) = cfg.gid { |
| if libc::setgid(u as libc::gid_t) != 0 { |
| fail(&mut output); |
| } |
| } |
| if let Some(u) = cfg.uid { |
| // When dropping privileges from root, the `setgroups` call |
| // will remove any extraneous groups. If we don't call this, |
| // then even though our uid has dropped, we may still have |
| // groups that enable us to do super-user things. This will |
| // fail if we aren't root, so don't bother checking the |
| // return value, this is just done as an optimistic |
| // privilege dropping function. |
| let _ = libc::setgroups(0, ptr::null()); |
| |
| if libc::setuid(u as libc::uid_t) != 0 { |
| fail(&mut output); |
| } |
| } |
| if cfg.session_leader { |
| // Don't check the error of setsid because it fails if we're the |
| // process leader already. We just forked so it shouldn't return |
| // error, but ignore it anyway. |
| let _ = libc::setsid(); |
| } |
| if !dirp.is_null() && libc::chdir(dirp) == -1 { |
| fail(&mut output); |
| } |
| if !envp.is_null() { |
| *sys::os::environ() = envp as *const _; |
| } |
| |
| #[cfg(not(target_os = "nacl"))] |
| unsafe fn reset_signal_handling(output: &mut AnonPipe) { |
| use mem; |
| // Reset signal handling so the child process starts in a |
| // standardized state. libstd ignores SIGPIPE, and signal-handling |
| // libraries often set a mask. Child processes inherit ignored |
| // signals and the signal mask from their parent, but most |
| // UNIX programs do not reset these things on their own, so we |
| // need to clean things up now to avoid confusing the program |
| // we're about to run. |
| let mut set: libc::sigset_t = mem::uninitialized(); |
| if libc::sigemptyset(&mut set) != 0 || |
| libc::pthread_sigmask(libc::SIG_SETMASK, &set, ptr::null_mut()) != 0 || |
| libc::signal( |
| libc::SIGPIPE, mem::transmute(libc::SIG_DFL) |
| ) == mem::transmute(libc::SIG_ERR) |
| { |
| fail(output); |
| } |
| } |
| #[cfg(target_os = "nacl")] |
| unsafe fn reset_signal_handling(_output: &mut AnonPipe) { |
| // NaCl has no signal support. |
| } |
| reset_signal_handling(&mut output); |
| |
| let _ = libc::execvp(*argv, argv); |
| fail(&mut output) |
| } |
| |
| pub fn id(&self) -> u32 { |
| self.pid as u32 |
| } |
| |
| pub fn wait(&self) -> io::Result<ExitStatus> { |
| let mut status = 0 as c_int; |
| try!(cvt_r(|| unsafe { libc::waitpid(self.pid, &mut status, 0) })); |
| Ok(ExitStatus(status)) |
| } |
| |
| pub fn try_wait(&self) -> Option<ExitStatus> { |
| let mut status = 0 as c_int; |
| match cvt_r(|| unsafe { |
| libc::waitpid(self.pid, &mut status, libc::WNOHANG) |
| }) { |
| Ok(0) => None, |
| Ok(n) if n == self.pid => Some(ExitStatus(status)), |
| Ok(n) => panic!("unknown pid: {}", n), |
| Err(e) => panic!("unknown waitpid error: {}", e), |
| } |
| } |
| } |
| |
| fn make_argv(prog: &CString, args: &[CString]) |
| -> (*const *const libc::c_char, Vec<*const libc::c_char>) |
| { |
| let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1); |
| |
| // Convert the CStrings into an array of pointers. Note: the |
| // lifetime of the various CStrings involved is guaranteed to be |
| // larger than the lifetime of our invocation of cb, but this is |
| // technically unsafe as the callback could leak these pointers |
| // out of our scope. |
| ptrs.push(prog.as_ptr()); |
| ptrs.extend(args.iter().map(|tmp| tmp.as_ptr())); |
| |
| // Add a terminating null pointer (required by libc). |
| ptrs.push(ptr::null()); |
| |
| (ptrs.as_ptr(), ptrs) |
| } |
| |
| fn make_envp(env: Option<&HashMap<OsString, OsString>>) |
| -> (*const c_void, Vec<Vec<u8>>, Vec<*const libc::c_char>) |
| { |
| // On posixy systems we can pass a char** for envp, which is a |
| // null-terminated array of "k=v\0" strings. Since we must create |
| // these strings locally, yet expose a raw pointer to them, we |
| // create a temporary vector to own the CStrings that outlives the |
| // call to cb. |
| if let Some(env) = env { |
| let mut tmps = Vec::with_capacity(env.len()); |
| |
| for pair in env { |
| let mut kv = Vec::new(); |
| kv.extend_from_slice(pair.0.as_bytes()); |
| kv.push('=' as u8); |
| kv.extend_from_slice(pair.1.as_bytes()); |
| kv.push(0); // terminating null |
| tmps.push(kv); |
| } |
| |
| let mut ptrs: Vec<*const libc::c_char> = |
| tmps.iter() |
| .map(|tmp| tmp.as_ptr() as *const libc::c_char) |
| .collect(); |
| ptrs.push(ptr::null()); |
| |
| (ptrs.as_ptr() as *const _, tmps, ptrs) |
| } else { |
| (ptr::null(), Vec::new(), Vec::new()) |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| use prelude::v1::*; |
| |
| use ffi::OsStr; |
| use mem; |
| use ptr; |
| use libc; |
| use sys::{self, cvt}; |
| |
| macro_rules! t { |
| ($e:expr) => { |
| match $e { |
| Ok(t) => t, |
| Err(e) => panic!("received error for `{}`: {}", stringify!($e), e), |
| } |
| } |
| } |
| |
| #[cfg(not(target_os = "android"))] |
| extern { |
| #[cfg_attr(target_os = "netbsd", link_name = "__sigaddset14")] |
| fn sigaddset(set: *mut libc::sigset_t, signum: libc::c_int) -> libc::c_int; |
| } |
| |
| #[cfg(target_os = "android")] |
| unsafe fn sigaddset(set: *mut libc::sigset_t, signum: libc::c_int) -> libc::c_int { |
| use slice; |
| |
| let raw = slice::from_raw_parts_mut(set as *mut u8, mem::size_of::<libc::sigset_t>()); |
| let bit = (signum - 1) as usize; |
| raw[bit / 8] |= 1 << (bit % 8); |
| return 0; |
| } |
| |
| // See #14232 for more information, but it appears that signal delivery to a |
| // newly spawned process may just be raced in the OSX, so to prevent this |
| // test from being flaky we ignore it on OSX. |
| #[test] |
| #[cfg_attr(target_os = "macos", ignore)] |
| #[cfg_attr(target_os = "nacl", ignore)] // no signals on NaCl. |
| fn test_process_mask() { |
| unsafe { |
| // Test to make sure that a signal mask does not get inherited. |
| let cmd = Command::new(OsStr::new("cat")); |
| let (stdin_read, stdin_write) = t!(sys::pipe::anon_pipe()); |
| let (stdout_read, stdout_write) = t!(sys::pipe::anon_pipe()); |
| |
| let mut set: libc::sigset_t = mem::uninitialized(); |
| let mut old_set: libc::sigset_t = mem::uninitialized(); |
| t!(cvt(libc::sigemptyset(&mut set))); |
| t!(cvt(sigaddset(&mut set, libc::SIGINT))); |
| t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &set, &mut old_set))); |
| |
| let cat = t!(Process::spawn(&cmd, Stdio::Raw(stdin_read.raw()), |
| Stdio::Raw(stdout_write.raw()), |
| Stdio::None)); |
| drop(stdin_read); |
| drop(stdout_write); |
| |
| t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &old_set, |
| ptr::null_mut()))); |
| |
| t!(cvt(libc::kill(cat.id() as libc::pid_t, libc::SIGINT))); |
| // We need to wait until SIGINT is definitely delivered. The |
| // easiest way is to write something to cat, and try to read it |
| // back: if SIGINT is unmasked, it'll get delivered when cat is |
| // next scheduled. |
| let _ = stdin_write.write(b"Hello"); |
| drop(stdin_write); |
| |
| // Either EOF or failure (EPIPE) is okay. |
| let mut buf = [0; 5]; |
| if let Ok(ret) = stdout_read.read(&mut buf) { |
| assert!(ret == 0); |
| } |
| |
| t!(cat.wait()); |
| } |
| } |
| } |