blob: 850045382e1f2c95d1f30d75557f403a352ffa49 [file] [log] [blame]
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Rustdoc's HTML Rendering module
//!
//! This modules contains the bulk of the logic necessary for rendering a
//! rustdoc `clean::Crate` instance to a set of static HTML pages. This
//! rendering process is largely driven by the `format!` syntax extension to
//! perform all I/O into files and streams.
//!
//! The rendering process is largely driven by the `Context` and `Cache`
//! structures. The cache is pre-populated by crawling the crate in question,
//! and then it is shared among the various rendering threads. The cache is meant
//! to be a fairly large structure not implementing `Clone` (because it's shared
//! among threads). The context, however, should be a lightweight structure. This
//! is cloned per-thread and contains information about what is currently being
//! rendered.
//!
//! In order to speed up rendering (mostly because of markdown rendering), the
//! rendering process has been parallelized. This parallelization is only
//! exposed through the `crate` method on the context, and then also from the
//! fact that the shared cache is stored in TLS (and must be accessed as such).
//!
//! In addition to rendering the crate itself, this module is also responsible
//! for creating the corresponding search index and source file renderings.
//! These threads are not parallelized (they haven't been a bottleneck yet), and
//! both occur before the crate is rendered.
pub use self::ExternalLocation::*;
use std::ascii::AsciiExt;
use std::cell::RefCell;
use std::cmp::Ordering;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::default::Default;
use std::error;
use std::fmt::{self, Display, Formatter};
use std::fs::{self, File};
use std::io::prelude::*;
use std::io::{self, BufWriter, BufReader};
use std::iter::repeat;
use std::mem;
use std::path::{PathBuf, Path};
use std::str;
use std::sync::Arc;
use externalfiles::ExternalHtml;
use serialize::json::{self, ToJson};
use syntax::{abi, ast};
use rustc::middle::cstore::LOCAL_CRATE;
use rustc::middle::def_id::{CRATE_DEF_INDEX, DefId};
use rustc::middle::privacy::AccessLevels;
use rustc::middle::stability;
use rustc_front::hir;
use clean::{self, SelfTy};
use doctree;
use fold::DocFolder;
use html::escape::Escape;
use html::format::{ConstnessSpace};
use html::format::{TyParamBounds, WhereClause, href, AbiSpace};
use html::format::{VisSpace, Method, UnsafetySpace, MutableSpace};
use html::item_type::ItemType;
use html::markdown::{self, Markdown};
use html::{highlight, layout};
/// A pair of name and its optional document.
pub type NameDoc = (String, Option<String>);
/// Major driving force in all rustdoc rendering. This contains information
/// about where in the tree-like hierarchy rendering is occurring and controls
/// how the current page is being rendered.
///
/// It is intended that this context is a lightweight object which can be fairly
/// easily cloned because it is cloned per work-job (about once per item in the
/// rustdoc tree).
#[derive(Clone)]
pub struct Context {
/// Current hierarchy of components leading down to what's currently being
/// rendered
pub current: Vec<String>,
/// String representation of how to get back to the root path of the 'doc/'
/// folder in terms of a relative URL.
pub root_path: String,
/// The path to the crate root source minus the file name.
/// Used for simplifying paths to the highlighted source code files.
pub src_root: PathBuf,
/// The current destination folder of where HTML artifacts should be placed.
/// This changes as the context descends into the module hierarchy.
pub dst: PathBuf,
/// This describes the layout of each page, and is not modified after
/// creation of the context (contains info like the favicon and added html).
pub layout: layout::Layout,
/// This flag indicates whether [src] links should be generated or not. If
/// the source files are present in the html rendering, then this will be
/// `true`.
pub include_sources: bool,
/// A flag, which when turned off, will render pages which redirect to the
/// real location of an item. This is used to allow external links to
/// publicly reused items to redirect to the right location.
pub render_redirect_pages: bool,
/// All the passes that were run on this crate.
pub passes: HashSet<String>,
/// The base-URL of the issue tracker for when an item has been tagged with
/// an issue number.
pub issue_tracker_base_url: Option<String>,
}
/// Indicates where an external crate can be found.
pub enum ExternalLocation {
/// Remote URL root of the external crate
Remote(String),
/// This external crate can be found in the local doc/ folder
Local,
/// The external crate could not be found.
Unknown,
}
/// Metadata about an implementor of a trait.
pub struct Implementor {
pub def_id: DefId,
pub stability: Option<clean::Stability>,
pub impl_: clean::Impl,
}
/// Metadata about implementations for a type.
#[derive(Clone)]
pub struct Impl {
pub impl_: clean::Impl,
pub dox: Option<String>,
pub stability: Option<clean::Stability>,
}
impl Impl {
fn trait_did(&self) -> Option<DefId> {
self.impl_.trait_.as_ref().and_then(|tr| {
if let clean::ResolvedPath { did, .. } = *tr {Some(did)} else {None}
})
}
}
#[derive(Debug)]
pub struct Error {
file: PathBuf,
error: io::Error,
}
impl error::Error for Error {
fn description(&self) -> &str {
self.error.description()
}
}
impl Display for Error {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "\"{}\": {}", self.file.display(), self.error)
}
}
impl Error {
pub fn new(e: io::Error, file: &Path) -> Error {
Error {
file: file.to_path_buf(),
error: e,
}
}
}
macro_rules! try_err {
($e:expr, $file:expr) => ({
match $e {
Ok(e) => e,
Err(e) => return Err(Error::new(e, $file)),
}
})
}
/// This cache is used to store information about the `clean::Crate` being
/// rendered in order to provide more useful documentation. This contains
/// information like all implementors of a trait, all traits a type implements,
/// documentation for all known traits, etc.
///
/// This structure purposefully does not implement `Clone` because it's intended
/// to be a fairly large and expensive structure to clone. Instead this adheres
/// to `Send` so it may be stored in a `Arc` instance and shared among the various
/// rendering threads.
#[derive(Default)]
pub struct Cache {
/// Mapping of typaram ids to the name of the type parameter. This is used
/// when pretty-printing a type (so pretty printing doesn't have to
/// painfully maintain a context like this)
pub typarams: HashMap<DefId, String>,
/// Maps a type id to all known implementations for that type. This is only
/// recognized for intra-crate `ResolvedPath` types, and is used to print
/// out extra documentation on the page of an enum/struct.
///
/// The values of the map are a list of implementations and documentation
/// found on that implementation.
pub impls: HashMap<DefId, Vec<Impl>>,
/// Maintains a mapping of local crate node ids to the fully qualified name
/// and "short type description" of that node. This is used when generating
/// URLs when a type is being linked to. External paths are not located in
/// this map because the `External` type itself has all the information
/// necessary.
pub paths: HashMap<DefId, (Vec<String>, ItemType)>,
/// Similar to `paths`, but only holds external paths. This is only used for
/// generating explicit hyperlinks to other crates.
pub external_paths: HashMap<DefId, Vec<String>>,
/// This map contains information about all known traits of this crate.
/// Implementations of a crate should inherit the documentation of the
/// parent trait if no extra documentation is specified, and default methods
/// should show up in documentation about trait implementations.
pub traits: HashMap<DefId, clean::Trait>,
/// When rendering traits, it's often useful to be able to list all
/// implementors of the trait, and this mapping is exactly, that: a mapping
/// of trait ids to the list of known implementors of the trait
pub implementors: HashMap<DefId, Vec<Implementor>>,
/// Cache of where external crate documentation can be found.
pub extern_locations: HashMap<ast::CrateNum, (String, ExternalLocation)>,
/// Cache of where documentation for primitives can be found.
pub primitive_locations: HashMap<clean::PrimitiveType, ast::CrateNum>,
/// Set of definitions which have been inlined from external crates.
pub inlined: HashSet<DefId>,
// Private fields only used when initially crawling a crate to build a cache
stack: Vec<String>,
parent_stack: Vec<DefId>,
search_index: Vec<IndexItem>,
privmod: bool,
remove_priv: bool,
access_levels: AccessLevels<DefId>,
deref_trait_did: Option<DefId>,
// In rare case where a structure is defined in one module but implemented
// in another, if the implementing module is parsed before defining module,
// then the fully qualified name of the structure isn't presented in `paths`
// yet when its implementation methods are being indexed. Caches such methods
// and their parent id here and indexes them at the end of crate parsing.
orphan_methods: Vec<(DefId, clean::Item)>,
}
/// Helper struct to render all source code to HTML pages
struct SourceCollector<'a> {
cx: &'a mut Context,
/// Processed source-file paths
seen: HashSet<String>,
/// Root destination to place all HTML output into
dst: PathBuf,
}
/// Wrapper struct to render the source code of a file. This will do things like
/// adding line numbers to the left-hand side.
struct Source<'a>(&'a str);
// Helper structs for rendering items/sidebars and carrying along contextual
// information
#[derive(Copy, Clone)]
struct Item<'a> {
cx: &'a Context,
item: &'a clean::Item,
}
struct Sidebar<'a> { cx: &'a Context, item: &'a clean::Item, }
/// Struct representing one entry in the JS search index. These are all emitted
/// by hand to a large JS file at the end of cache-creation.
struct IndexItem {
ty: ItemType,
name: String,
path: String,
desc: String,
parent: Option<DefId>,
search_type: Option<IndexItemFunctionType>,
}
/// A type used for the search index.
struct Type {
name: Option<String>,
}
impl fmt::Display for Type {
/// Formats type as {name: $name}.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// Wrapping struct fmt should never call us when self.name is None,
// but just to be safe we write `null` in that case.
match self.name {
Some(ref n) => write!(f, "{{\"name\":\"{}\"}}", n),
None => write!(f, "null")
}
}
}
/// Full type of functions/methods in the search index.
struct IndexItemFunctionType {
inputs: Vec<Type>,
output: Option<Type>
}
impl fmt::Display for IndexItemFunctionType {
/// Formats a full fn type as a JSON {inputs: [Type], outputs: Type/null}.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// If we couldn't figure out a type, just write `null`.
if self.inputs.iter().any(|ref i| i.name.is_none()) ||
(self.output.is_some() && self.output.as_ref().unwrap().name.is_none()) {
return write!(f, "null")
}
let inputs: Vec<String> = self.inputs.iter().map(|ref t| {
format!("{}", t)
}).collect();
try!(write!(f, "{{\"inputs\":[{}],\"output\":", inputs.join(",")));
match self.output {
Some(ref t) => try!(write!(f, "{}", t)),
None => try!(write!(f, "null"))
};
Ok(try!(write!(f, "}}")))
}
}
// TLS keys used to carry information around during rendering.
thread_local!(static CACHE_KEY: RefCell<Arc<Cache>> = Default::default());
thread_local!(pub static CURRENT_LOCATION_KEY: RefCell<Vec<String>> =
RefCell::new(Vec::new()));
thread_local!(static USED_ID_MAP: RefCell<HashMap<String, usize>> =
RefCell::new(init_ids()));
fn init_ids() -> HashMap<String, usize> {
[
"main",
"search",
"help",
"TOC",
"render-detail",
"associated-types",
"associated-const",
"required-methods",
"provided-methods",
"implementors",
"implementors-list",
"methods",
"deref-methods",
"implementations",
"derived_implementations"
].into_iter().map(|id| (String::from(*id), 1)).collect::<HashMap<_, _>>()
}
/// This method resets the local table of used ID attributes. This is typically
/// used at the beginning of rendering an entire HTML page to reset from the
/// previous state (if any).
pub fn reset_ids() {
USED_ID_MAP.with(|s| *s.borrow_mut() = init_ids());
}
pub fn derive_id(candidate: String) -> String {
USED_ID_MAP.with(|map| {
let id = match map.borrow_mut().get_mut(&candidate) {
None => candidate,
Some(a) => {
let id = format!("{}-{}", candidate, *a);
*a += 1;
id
}
};
map.borrow_mut().insert(id.clone(), 1);
id
})
}
/// Generates the documentation for `crate` into the directory `dst`
pub fn run(mut krate: clean::Crate,
external_html: &ExternalHtml,
dst: PathBuf,
passes: HashSet<String>) -> Result<(), Error> {
let src_root = match krate.src.parent() {
Some(p) => p.to_path_buf(),
None => PathBuf::new(),
};
let mut cx = Context {
dst: dst,
src_root: src_root,
passes: passes,
current: Vec::new(),
root_path: String::new(),
layout: layout::Layout {
logo: "".to_string(),
favicon: "".to_string(),
external_html: external_html.clone(),
krate: krate.name.clone(),
playground_url: "".to_string(),
},
include_sources: true,
render_redirect_pages: false,
issue_tracker_base_url: None,
};
try_err!(mkdir(&cx.dst), &cx.dst);
// Crawl the crate attributes looking for attributes which control how we're
// going to emit HTML
let default: &[_] = &[];
match krate.module.as_ref().map(|m| m.doc_list().unwrap_or(default)) {
Some(attrs) => {
for attr in attrs {
match *attr {
clean::NameValue(ref x, ref s)
if "html_favicon_url" == *x => {
cx.layout.favicon = s.to_string();
}
clean::NameValue(ref x, ref s)
if "html_logo_url" == *x => {
cx.layout.logo = s.to_string();
}
clean::NameValue(ref x, ref s)
if "html_playground_url" == *x => {
cx.layout.playground_url = s.to_string();
markdown::PLAYGROUND_KRATE.with(|slot| {
if slot.borrow().is_none() {
let name = krate.name.clone();
*slot.borrow_mut() = Some(Some(name));
}
});
}
clean::NameValue(ref x, ref s)
if "issue_tracker_base_url" == *x => {
cx.issue_tracker_base_url = Some(s.to_string());
}
clean::Word(ref x)
if "html_no_source" == *x => {
cx.include_sources = false;
}
_ => {}
}
}
}
None => {}
}
// Crawl the crate to build various caches used for the output
let analysis = ::ANALYSISKEY.with(|a| a.clone());
let analysis = analysis.borrow();
let access_levels = analysis.as_ref().map(|a| a.access_levels.clone());
let access_levels = access_levels.unwrap_or(Default::default());
let paths: HashMap<DefId, (Vec<String>, ItemType)> =
analysis.as_ref().map(|a| {
let paths = a.external_paths.borrow_mut().take().unwrap();
paths.into_iter().map(|(k, (v, t))| (k, (v, ItemType::from_type_kind(t)))).collect()
}).unwrap_or(HashMap::new());
let mut cache = Cache {
impls: HashMap::new(),
external_paths: paths.iter().map(|(&k, v)| (k, v.0.clone()))
.collect(),
paths: paths,
implementors: HashMap::new(),
stack: Vec::new(),
parent_stack: Vec::new(),
search_index: Vec::new(),
extern_locations: HashMap::new(),
primitive_locations: HashMap::new(),
remove_priv: cx.passes.contains("strip-private"),
privmod: false,
access_levels: access_levels,
orphan_methods: Vec::new(),
traits: mem::replace(&mut krate.external_traits, HashMap::new()),
deref_trait_did: analysis.as_ref().and_then(|a| a.deref_trait_did),
typarams: analysis.as_ref().map(|a| {
a.external_typarams.borrow_mut().take().unwrap()
}).unwrap_or(HashMap::new()),
inlined: analysis.as_ref().map(|a| {
a.inlined.borrow_mut().take().unwrap()
}).unwrap_or(HashSet::new()),
};
// Cache where all our extern crates are located
for &(n, ref e) in &krate.externs {
cache.extern_locations.insert(n, (e.name.clone(),
extern_location(e, &cx.dst)));
let did = DefId { krate: n, index: CRATE_DEF_INDEX };
cache.paths.insert(did, (vec![e.name.to_string()], ItemType::Module));
}
// Cache where all known primitives have their documentation located.
//
// Favor linking to as local extern as possible, so iterate all crates in
// reverse topological order.
for &(n, ref e) in krate.externs.iter().rev() {
for &prim in &e.primitives {
cache.primitive_locations.insert(prim, n);
}
}
for &prim in &krate.primitives {
cache.primitive_locations.insert(prim, LOCAL_CRATE);
}
cache.stack.push(krate.name.clone());
krate = cache.fold_crate(krate);
// Build our search index
let index = build_index(&krate, &mut cache);
// Freeze the cache now that the index has been built. Put an Arc into TLS
// for future parallelization opportunities
let cache = Arc::new(cache);
CACHE_KEY.with(|v| *v.borrow_mut() = cache.clone());
CURRENT_LOCATION_KEY.with(|s| s.borrow_mut().clear());
try!(write_shared(&cx, &krate, &*cache, index));
let krate = try!(render_sources(&mut cx, krate));
// And finally render the whole crate's documentation
cx.krate(krate)
}
fn build_index(krate: &clean::Crate, cache: &mut Cache) -> String {
// Build the search index from the collected metadata
let mut nodeid_to_pathid = HashMap::new();
let mut pathid_to_nodeid = Vec::new();
{
let Cache { ref mut search_index,
ref orphan_methods,
ref mut paths, .. } = *cache;
// Attach all orphan methods to the type's definition if the type
// has since been learned.
for &(did, ref item) in orphan_methods {
match paths.get(&did) {
Some(&(ref fqp, _)) => {
// Needed to determine `self` type.
let parent_basename = Some(fqp[fqp.len() - 1].clone());
search_index.push(IndexItem {
ty: shortty(item),
name: item.name.clone().unwrap(),
path: fqp[..fqp.len() - 1].join("::"),
desc: shorter(item.doc_value()),
parent: Some(did),
search_type: get_index_search_type(&item, parent_basename),
});
},
None => {}
}
}
// Reduce `NodeId` in paths into smaller sequential numbers,
// and prune the paths that do not appear in the index.
for item in search_index.iter() {
match item.parent {
Some(nodeid) => {
if !nodeid_to_pathid.contains_key(&nodeid) {
let pathid = pathid_to_nodeid.len();
nodeid_to_pathid.insert(nodeid, pathid);
pathid_to_nodeid.push(nodeid);
}
}
None => {}
}
}
assert_eq!(nodeid_to_pathid.len(), pathid_to_nodeid.len());
}
// Collect the index into a string
let mut w = io::Cursor::new(Vec::new());
write!(&mut w, r#"searchIndex['{}'] = {{"items":["#, krate.name).unwrap();
let mut lastpath = "".to_string();
for (i, item) in cache.search_index.iter().enumerate() {
// Omit the path if it is same to that of the prior item.
let path;
if lastpath == item.path {
path = "";
} else {
lastpath = item.path.to_string();
path = &item.path;
};
if i > 0 {
write!(&mut w, ",").unwrap();
}
write!(&mut w, r#"[{},"{}","{}",{}"#,
item.ty as usize, item.name, path,
item.desc.to_json().to_string()).unwrap();
match item.parent {
Some(nodeid) => {
let pathid = *nodeid_to_pathid.get(&nodeid).unwrap();
write!(&mut w, ",{}", pathid).unwrap();
}
None => write!(&mut w, ",null").unwrap()
}
match item.search_type {
Some(ref t) => write!(&mut w, ",{}", t).unwrap(),
None => write!(&mut w, ",null").unwrap()
}
write!(&mut w, "]").unwrap();
}
write!(&mut w, r#"],"paths":["#).unwrap();
for (i, &did) in pathid_to_nodeid.iter().enumerate() {
let &(ref fqp, short) = cache.paths.get(&did).unwrap();
if i > 0 {
write!(&mut w, ",").unwrap();
}
write!(&mut w, r#"[{},"{}"]"#,
short as usize, *fqp.last().unwrap()).unwrap();
}
write!(&mut w, "]}};").unwrap();
String::from_utf8(w.into_inner()).unwrap()
}
fn write_shared(cx: &Context,
krate: &clean::Crate,
cache: &Cache,
search_index: String) -> Result<(), Error> {
// Write out the shared files. Note that these are shared among all rustdoc
// docs placed in the output directory, so this needs to be a synchronized
// operation with respect to all other rustdocs running around.
try_err!(mkdir(&cx.dst), &cx.dst);
let _lock = ::flock::Lock::new(&cx.dst.join(".lock"));
// Add all the static files. These may already exist, but we just
// overwrite them anyway to make sure that they're fresh and up-to-date.
try!(write(cx.dst.join("jquery.js"),
include_bytes!("static/jquery-2.1.4.min.js")));
try!(write(cx.dst.join("main.js"),
include_bytes!("static/main.js")));
try!(write(cx.dst.join("playpen.js"),
include_bytes!("static/playpen.js")));
try!(write(cx.dst.join("rustdoc.css"),
include_bytes!("static/rustdoc.css")));
try!(write(cx.dst.join("main.css"),
include_bytes!("static/styles/main.css")));
try!(write(cx.dst.join("normalize.css"),
include_bytes!("static/normalize.css")));
try!(write(cx.dst.join("FiraSans-Regular.woff"),
include_bytes!("static/FiraSans-Regular.woff")));
try!(write(cx.dst.join("FiraSans-Medium.woff"),
include_bytes!("static/FiraSans-Medium.woff")));
try!(write(cx.dst.join("FiraSans-LICENSE.txt"),
include_bytes!("static/FiraSans-LICENSE.txt")));
try!(write(cx.dst.join("Heuristica-Italic.woff"),
include_bytes!("static/Heuristica-Italic.woff")));
try!(write(cx.dst.join("Heuristica-LICENSE.txt"),
include_bytes!("static/Heuristica-LICENSE.txt")));
try!(write(cx.dst.join("SourceSerifPro-Regular.woff"),
include_bytes!("static/SourceSerifPro-Regular.woff")));
try!(write(cx.dst.join("SourceSerifPro-Bold.woff"),
include_bytes!("static/SourceSerifPro-Bold.woff")));
try!(write(cx.dst.join("SourceSerifPro-LICENSE.txt"),
include_bytes!("static/SourceSerifPro-LICENSE.txt")));
try!(write(cx.dst.join("SourceCodePro-Regular.woff"),
include_bytes!("static/SourceCodePro-Regular.woff")));
try!(write(cx.dst.join("SourceCodePro-Semibold.woff"),
include_bytes!("static/SourceCodePro-Semibold.woff")));
try!(write(cx.dst.join("SourceCodePro-LICENSE.txt"),
include_bytes!("static/SourceCodePro-LICENSE.txt")));
try!(write(cx.dst.join("LICENSE-MIT.txt"),
include_bytes!("static/LICENSE-MIT.txt")));
try!(write(cx.dst.join("LICENSE-APACHE.txt"),
include_bytes!("static/LICENSE-APACHE.txt")));
try!(write(cx.dst.join("COPYRIGHT.txt"),
include_bytes!("static/COPYRIGHT.txt")));
fn collect(path: &Path, krate: &str,
key: &str) -> io::Result<Vec<String>> {
let mut ret = Vec::new();
if path.exists() {
for line in BufReader::new(try!(File::open(path))).lines() {
let line = try!(line);
if !line.starts_with(key) {
continue
}
if line.starts_with(&format!("{}['{}']", key, krate)) {
continue
}
ret.push(line.to_string());
}
}
return Ok(ret);
}
// Update the search index
let dst = cx.dst.join("search-index.js");
let all_indexes = try_err!(collect(&dst, &krate.name, "searchIndex"), &dst);
let mut w = try_err!(File::create(&dst), &dst);
try_err!(writeln!(&mut w, "var searchIndex = {{}};"), &dst);
try_err!(writeln!(&mut w, "{}", search_index), &dst);
for index in &all_indexes {
try_err!(writeln!(&mut w, "{}", *index), &dst);
}
try_err!(writeln!(&mut w, "initSearch(searchIndex);"), &dst);
// Update the list of all implementors for traits
let dst = cx.dst.join("implementors");
try_err!(mkdir(&dst), &dst);
for (&did, imps) in &cache.implementors {
// Private modules can leak through to this phase of rustdoc, which
// could contain implementations for otherwise private types. In some
// rare cases we could find an implementation for an item which wasn't
// indexed, so we just skip this step in that case.
//
// FIXME: this is a vague explanation for why this can't be a `get`, in
// theory it should be...
let &(ref remote_path, remote_item_type) = match cache.paths.get(&did) {
Some(p) => p,
None => continue,
};
let mut mydst = dst.clone();
for part in &remote_path[..remote_path.len() - 1] {
mydst.push(part);
try_err!(mkdir(&mydst), &mydst);
}
mydst.push(&format!("{}.{}.js",
remote_item_type.to_static_str(),
remote_path[remote_path.len() - 1]));
let all_implementors = try_err!(collect(&mydst, &krate.name,
"implementors"),
&mydst);
try_err!(mkdir(mydst.parent().unwrap()),
&mydst.parent().unwrap().to_path_buf());
let mut f = BufWriter::new(try_err!(File::create(&mydst), &mydst));
try_err!(writeln!(&mut f, "(function() {{var implementors = {{}};"), &mydst);
for implementor in &all_implementors {
try_err!(write!(&mut f, "{}", *implementor), &mydst);
}
try_err!(write!(&mut f, r"implementors['{}'] = [", krate.name), &mydst);
for imp in imps {
// If the trait and implementation are in the same crate, then
// there's no need to emit information about it (there's inlining
// going on). If they're in different crates then the crate defining
// the trait will be interested in our implementation.
if imp.def_id.krate == did.krate { continue }
try_err!(write!(&mut f, r#""{}","#, imp.impl_), &mydst);
}
try_err!(writeln!(&mut f, r"];"), &mydst);
try_err!(writeln!(&mut f, "{}", r"
if (window.register_implementors) {
window.register_implementors(implementors);
} else {
window.pending_implementors = implementors;
}
"), &mydst);
try_err!(writeln!(&mut f, r"}})()"), &mydst);
}
Ok(())
}
fn render_sources(cx: &mut Context,
krate: clean::Crate) -> Result<clean::Crate, Error> {
info!("emitting source files");
let dst = cx.dst.join("src");
try_err!(mkdir(&dst), &dst);
let dst = dst.join(&krate.name);
try_err!(mkdir(&dst), &dst);
let mut folder = SourceCollector {
dst: dst,
seen: HashSet::new(),
cx: cx,
};
// skip all invalid spans
folder.seen.insert("".to_string());
Ok(folder.fold_crate(krate))
}
/// Writes the entire contents of a string to a destination, not attempting to
/// catch any errors.
fn write(dst: PathBuf, contents: &[u8]) -> Result<(), Error> {
Ok(try_err!(try_err!(File::create(&dst), &dst).write_all(contents), &dst))
}
/// Makes a directory on the filesystem, failing the thread if an error occurs and
/// skipping if the directory already exists.
fn mkdir(path: &Path) -> io::Result<()> {
if !path.exists() {
fs::create_dir(path)
} else {
Ok(())
}
}
/// Returns a documentation-level item type from the item.
fn shortty(item: &clean::Item) -> ItemType {
ItemType::from_item(item)
}
/// Takes a path to a source file and cleans the path to it. This canonicalizes
/// things like ".." to components which preserve the "top down" hierarchy of a
/// static HTML tree. Each component in the cleaned path will be passed as an
/// argument to `f`. The very last component of the path (ie the file name) will
/// be passed to `f` if `keep_filename` is true, and ignored otherwise.
// FIXME (#9639): The closure should deal with &[u8] instead of &str
// FIXME (#9639): This is too conservative, rejecting non-UTF-8 paths
fn clean_srcpath<F>(src_root: &Path, p: &Path, keep_filename: bool, mut f: F) where
F: FnMut(&str),
{
// make it relative, if possible
let p = p.strip_prefix(src_root).unwrap_or(p);
let mut iter = p.iter().map(|x| x.to_str().unwrap()).peekable();
while let Some(c) = iter.next() {
if !keep_filename && iter.peek().is_none() {
break;
}
if ".." == c {
f("up");
} else {
f(c)
}
}
}
/// Attempts to find where an external crate is located, given that we're
/// rendering in to the specified source destination.
fn extern_location(e: &clean::ExternalCrate, dst: &Path) -> ExternalLocation {
// See if there's documentation generated into the local directory
let local_location = dst.join(&e.name);
if local_location.is_dir() {
return Local;
}
// Failing that, see if there's an attribute specifying where to find this
// external crate
for attr in &e.attrs {
match *attr {
clean::List(ref x, ref list) if "doc" == *x => {
for attr in list {
match *attr {
clean::NameValue(ref x, ref s)
if "html_root_url" == *x => {
if s.ends_with("/") {
return Remote(s.to_string());
}
return Remote(format!("{}/", s));
}
_ => {}
}
}
}
_ => {}
}
}
// Well, at least we tried.
return Unknown;
}
impl<'a> DocFolder for SourceCollector<'a> {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
// If we're including source files, and we haven't seen this file yet,
// then we need to render it out to the filesystem
if self.cx.include_sources && !self.seen.contains(&item.source.filename) {
// If it turns out that we couldn't read this file, then we probably
// can't read any of the files (generating html output from json or
// something like that), so just don't include sources for the
// entire crate. The other option is maintaining this mapping on a
// per-file basis, but that's probably not worth it...
self.cx
.include_sources = match self.emit_source(&item.source .filename) {
Ok(()) => true,
Err(e) => {
println!("warning: source code was requested to be rendered, \
but processing `{}` had an error: {}",
item.source.filename, e);
println!(" skipping rendering of source code");
false
}
};
self.seen.insert(item.source.filename.clone());
}
self.fold_item_recur(item)
}
}
impl<'a> SourceCollector<'a> {
/// Renders the given filename into its corresponding HTML source file.
fn emit_source(&mut self, filename: &str) -> io::Result<()> {
let p = PathBuf::from(filename);
// If we couldn't open this file, then just returns because it
// probably means that it's some standard library macro thing and we
// can't have the source to it anyway.
let mut contents = Vec::new();
match File::open(&p).and_then(|mut f| f.read_to_end(&mut contents)) {
Ok(r) => r,
// macros from other libraries get special filenames which we can
// safely ignore
Err(..) if filename.starts_with("<") &&
filename.ends_with("macros>") => return Ok(()),
Err(e) => return Err(e)
};
let contents = str::from_utf8(&contents).unwrap();
// Remove the utf-8 BOM if any
let contents = if contents.starts_with("\u{feff}") {
&contents[3..]
} else {
contents
};
// Create the intermediate directories
let mut cur = self.dst.clone();
let mut root_path = String::from("../../");
clean_srcpath(&self.cx.src_root, &p, false, |component| {
cur.push(component);
mkdir(&cur).unwrap();
root_path.push_str("../");
});
let mut fname = p.file_name().expect("source has no filename")
.to_os_string();
fname.push(".html");
cur.push(&fname[..]);
let mut w = BufWriter::new(try!(File::create(&cur)));
let title = format!("{} -- source", cur.file_name().unwrap()
.to_string_lossy());
let desc = format!("Source to the Rust file `{}`.", filename);
let page = layout::Page {
title: &title,
ty: "source",
root_path: &root_path,
description: &desc,
keywords: get_basic_keywords(),
};
try!(layout::render(&mut w, &self.cx.layout,
&page, &(""), &Source(contents)));
try!(w.flush());
return Ok(());
}
}
impl DocFolder for Cache {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
// If this is a private module, we don't want it in the search index.
let orig_privmod = match item.inner {
clean::ModuleItem(..) => {
let prev = self.privmod;
self.privmod = prev || (self.remove_priv && item.visibility != Some(hir::Public));
prev
}
_ => self.privmod,
};
// Register any generics to their corresponding string. This is used
// when pretty-printing types
match item.inner {
clean::StructItem(ref s) => self.generics(&s.generics),
clean::EnumItem(ref e) => self.generics(&e.generics),
clean::FunctionItem(ref f) => self.generics(&f.generics),
clean::TypedefItem(ref t, _) => self.generics(&t.generics),
clean::TraitItem(ref t) => self.generics(&t.generics),
clean::ImplItem(ref i) => self.generics(&i.generics),
clean::TyMethodItem(ref i) => self.generics(&i.generics),
clean::MethodItem(ref i) => self.generics(&i.generics),
clean::ForeignFunctionItem(ref f) => self.generics(&f.generics),
_ => {}
}
// Propagate a trait methods' documentation to all implementors of the
// trait
if let clean::TraitItem(ref t) = item.inner {
self.traits.insert(item.def_id, t.clone());
}
// Collect all the implementors of traits.
if let clean::ImplItem(ref i) = item.inner {
match i.trait_ {
Some(clean::ResolvedPath{ did, .. }) => {
self.implementors.entry(did).or_insert(vec![]).push(Implementor {
def_id: item.def_id,
stability: item.stability.clone(),
impl_: i.clone(),
});
}
Some(..) | None => {}
}
}
// Index this method for searching later on
if let Some(ref s) = item.name {
let (parent, is_method) = match item.inner {
clean::AssociatedTypeItem(..) |
clean::AssociatedConstItem(..) |
clean::TyMethodItem(..) |
clean::StructFieldItem(..) |
clean::VariantItem(..) => {
((Some(*self.parent_stack.last().unwrap()),
Some(&self.stack[..self.stack.len() - 1])),
false)
}
clean::MethodItem(..) => {
if self.parent_stack.is_empty() {
((None, None), false)
} else {
let last = self.parent_stack.last().unwrap();
let did = *last;
let path = match self.paths.get(&did) {
Some(&(_, ItemType::Trait)) =>
Some(&self.stack[..self.stack.len() - 1]),
// The current stack not necessarily has correlation
// for where the type was defined. On the other
// hand, `paths` always has the right
// information if present.
Some(&(ref fqp, ItemType::Struct)) |
Some(&(ref fqp, ItemType::Enum)) =>
Some(&fqp[..fqp.len() - 1]),
Some(..) => Some(&*self.stack),
None => None
};
((Some(*last), path), true)
}
}
clean::TypedefItem(_, true) => {
// skip associated types in impls
((None, None), false)
}
_ => ((None, Some(&*self.stack)), false)
};
let hidden_field = match item.inner {
clean::StructFieldItem(clean::HiddenStructField) => true,
_ => false
};
match parent {
(parent, Some(path)) if is_method || (!self.privmod && !hidden_field) => {
// Needed to determine `self` type.
let parent_basename = self.parent_stack.first().and_then(|parent| {
match self.paths.get(parent) {
Some(&(ref fqp, _)) => Some(fqp[fqp.len() - 1].clone()),
_ => None
}
});
if item.def_id.index != CRATE_DEF_INDEX {
self.search_index.push(IndexItem {
ty: shortty(&item),
name: s.to_string(),
path: path.join("::").to_string(),
desc: shorter(item.doc_value()),
parent: parent,
search_type: get_index_search_type(&item, parent_basename),
});
}
}
(Some(parent), None) if is_method || (!self.privmod && !hidden_field)=> {
if parent.is_local() {
// We have a parent, but we don't know where they're
// defined yet. Wait for later to index this item.
self.orphan_methods.push((parent, item.clone()))
}
}
_ => {}
}
}
// Keep track of the fully qualified path for this item.
let pushed = if item.name.is_some() {
let n = item.name.as_ref().unwrap();
if !n.is_empty() {
self.stack.push(n.to_string());
true
} else { false }
} else { false };
match item.inner {
clean::StructItem(..) | clean::EnumItem(..) |
clean::TypedefItem(..) | clean::TraitItem(..) |
clean::FunctionItem(..) | clean::ModuleItem(..) |
clean::ForeignFunctionItem(..) if !self.privmod => {
// Reexported items mean that the same id can show up twice
// in the rustdoc ast that we're looking at. We know,
// however, that a reexported item doesn't show up in the
// `public_items` map, so we can skip inserting into the
// paths map if there was already an entry present and we're
// not a public item.
if
!self.paths.contains_key(&item.def_id) ||
!item.def_id.is_local() ||
self.access_levels.is_public(item.def_id)
{
self.paths.insert(item.def_id,
(self.stack.clone(), shortty(&item)));
}
}
// link variants to their parent enum because pages aren't emitted
// for each variant
clean::VariantItem(..) if !self.privmod => {
let mut stack = self.stack.clone();
stack.pop();
self.paths.insert(item.def_id, (stack, ItemType::Enum));
}
clean::PrimitiveItem(..) if item.visibility.is_some() => {
self.paths.insert(item.def_id, (self.stack.clone(),
shortty(&item)));
}
_ => {}
}
// Maintain the parent stack
let parent_pushed = match item.inner {
clean::TraitItem(..) | clean::EnumItem(..) | clean::StructItem(..) => {
self.parent_stack.push(item.def_id);
true
}
clean::ImplItem(ref i) => {
match i.for_ {
clean::ResolvedPath{ did, .. } => {
self.parent_stack.push(did);
true
}
ref t => {
match t.primitive_type() {
Some(prim) => {
let did = DefId::local(prim.to_def_index());
self.parent_stack.push(did);
true
}
_ => false,
}
}
}
}
_ => false
};
// Once we've recursively found all the generics, then hoard off all the
// implementations elsewhere
let ret = match self.fold_item_recur(item) {
Some(item) => {
match item {
clean::Item{ attrs, inner: clean::ImplItem(i), .. } => {
// extract relevant documentation for this impl
let dox = match attrs.into_iter().find(|a| {
match *a {
clean::NameValue(ref x, _)
if "doc" == *x => {
true
}
_ => false
}
}) {
Some(clean::NameValue(_, dox)) => Some(dox),
Some(..) | None => None,
};
// Figure out the id of this impl. This may map to a
// primitive rather than always to a struct/enum.
let did = match i.for_ {
clean::ResolvedPath { did, .. } |
clean::BorrowedRef {
type_: box clean::ResolvedPath { did, .. }, ..
} => {
Some(did)
}
ref t => {
t.primitive_type().and_then(|t| {
self.primitive_locations.get(&t).map(|n| {
let id = t.to_def_index();
DefId { krate: *n, index: id }
})
})
}
};
if let Some(did) = did {
self.impls.entry(did).or_insert(vec![]).push(Impl {
impl_: i,
dox: dox,
stability: item.stability.clone(),
});
}
None
}
i => Some(i),
}
}
i => i,
};
if pushed { self.stack.pop().unwrap(); }
if parent_pushed { self.parent_stack.pop().unwrap(); }
self.privmod = orig_privmod;
return ret;
}
}
impl<'a> Cache {
fn generics(&mut self, generics: &clean::Generics) {
for typ in &generics.type_params {
self.typarams.insert(typ.did, typ.name.clone());
}
}
}
impl Context {
/// Recurse in the directory structure and change the "root path" to make
/// sure it always points to the top (relatively)
fn recurse<T, F>(&mut self, s: String, f: F) -> T where
F: FnOnce(&mut Context) -> T,
{
if s.is_empty() {
panic!("Unexpected empty destination: {:?}", self.current);
}
let prev = self.dst.clone();
self.dst.push(&s);
self.root_path.push_str("../");
self.current.push(s);
info!("Recursing into {}", self.dst.display());
mkdir(&self.dst).unwrap();
let ret = f(self);
info!("Recursed; leaving {}", self.dst.display());
// Go back to where we were at
self.dst = prev;
let len = self.root_path.len();
self.root_path.truncate(len - 3);
self.current.pop().unwrap();
return ret;
}
/// Main method for rendering a crate.
///
/// This currently isn't parallelized, but it'd be pretty easy to add
/// parallelization to this function.
fn krate(self, mut krate: clean::Crate) -> Result<(), Error> {
let mut item = match krate.module.take() {
Some(i) => i,
None => return Ok(())
};
item.name = Some(krate.name);
// render the crate documentation
let mut work = vec!((self, item));
loop {
match work.pop() {
Some((mut cx, item)) => try!(cx.item(item, |cx, item| {
work.push((cx.clone(), item));
})),
None => break,
}
}
Ok(())
}
/// Non-parallelized version of rendering an item. This will take the input
/// item, render its contents, and then invoke the specified closure with
/// all sub-items which need to be rendered.
///
/// The rendering driver uses this closure to queue up more work.
fn item<F>(&mut self, item: clean::Item, mut f: F) -> Result<(), Error> where
F: FnMut(&mut Context, clean::Item),
{
fn render(w: File, cx: &Context, it: &clean::Item,
pushname: bool) -> io::Result<()> {
// A little unfortunate that this is done like this, but it sure
// does make formatting *a lot* nicer.
CURRENT_LOCATION_KEY.with(|slot| {
*slot.borrow_mut() = cx.current.clone();
});
let mut title = cx.current.join("::");
if pushname {
if !title.is_empty() {
title.push_str("::");
}
title.push_str(it.name.as_ref().unwrap());
}
title.push_str(" - Rust");
let tyname = shortty(it).to_static_str();
let is_crate = match it.inner {
clean::ModuleItem(clean::Module { items: _, is_crate: true }) => true,
_ => false
};
let desc = if is_crate {
format!("API documentation for the Rust `{}` crate.",
cx.layout.krate)
} else {
format!("API documentation for the Rust `{}` {} in crate `{}`.",
it.name.as_ref().unwrap(), tyname, cx.layout.krate)
};
let keywords = make_item_keywords(it);
let page = layout::Page {
ty: tyname,
root_path: &cx.root_path,
title: &title,
description: &desc,
keywords: &keywords,
};
reset_ids();
// We have a huge number of calls to write, so try to alleviate some
// of the pain by using a buffered writer instead of invoking the
// write syscall all the time.
let mut writer = BufWriter::new(w);
if !cx.render_redirect_pages {
try!(layout::render(&mut writer, &cx.layout, &page,
&Sidebar{ cx: cx, item: it },
&Item{ cx: cx, item: it }));
} else {
let mut url = repeat("../").take(cx.current.len())
.collect::<String>();
match cache().paths.get(&it.def_id) {
Some(&(ref names, _)) => {
for name in &names[..names.len() - 1] {
url.push_str(name);
url.push_str("/");
}
url.push_str(&item_path(it));
try!(layout::redirect(&mut writer, &url));
}
None => {}
}
}
writer.flush()
}
// Private modules may survive the strip-private pass if they
// contain impls for public types. These modules can also
// contain items such as publicly reexported structures.
//
// External crates will provide links to these structures, so
// these modules are recursed into, but not rendered normally (a
// flag on the context).
if !self.render_redirect_pages {
self.render_redirect_pages = self.ignore_private_item(&item);
}
match item.inner {
// modules are special because they add a namespace. We also need to
// recurse into the items of the module as well.
clean::ModuleItem(..) => {
let name = item.name.as_ref().unwrap().to_string();
let mut item = Some(item);
self.recurse(name, |this| {
let item = item.take().unwrap();
let joint_dst = this.dst.join("index.html");
let dst = try_err!(File::create(&joint_dst), &joint_dst);
try_err!(render(dst, this, &item, false), &joint_dst);
let m = match item.inner {
clean::ModuleItem(m) => m,
_ => unreachable!()
};
// render sidebar-items.js used throughout this module
{
let items = this.build_sidebar_items(&m);
let js_dst = this.dst.join("sidebar-items.js");
let mut js_out = BufWriter::new(try_err!(File::create(&js_dst), &js_dst));
try_err!(write!(&mut js_out, "initSidebarItems({});",
json::as_json(&items)), &js_dst);
}
for item in m.items {
f(this,item);
}
Ok(())
})
}
// Things which don't have names (like impls) don't get special
// pages dedicated to them.
_ if item.name.is_some() => {
let joint_dst = self.dst.join(&item_path(&item));
let dst = try_err!(File::create(&joint_dst), &joint_dst);
try_err!(render(dst, self, &item, true), &joint_dst);
Ok(())
}
_ => Ok(())
}
}
fn build_sidebar_items(&self, m: &clean::Module) -> BTreeMap<String, Vec<NameDoc>> {
// BTreeMap instead of HashMap to get a sorted output
let mut map = BTreeMap::new();
for item in &m.items {
if self.ignore_private_item(item) { continue }
let short = shortty(item).to_static_str();
let myname = match item.name {
None => continue,
Some(ref s) => s.to_string(),
};
let short = short.to_string();
map.entry(short).or_insert(vec![])
.push((myname, Some(plain_summary_line(item.doc_value()))));
}
for (_, items) in &mut map {
items.sort();
}
return map;
}
fn ignore_private_item(&self, it: &clean::Item) -> bool {
match it.inner {
clean::ModuleItem(ref m) => {
(m.items.is_empty() &&
it.doc_value().is_none() &&
it.visibility != Some(hir::Public)) ||
(self.passes.contains("strip-private") && it.visibility != Some(hir::Public))
}
clean::PrimitiveItem(..) => it.visibility != Some(hir::Public),
_ => false,
}
}
}
impl<'a> Item<'a> {
fn ismodule(&self) -> bool {
match self.item.inner {
clean::ModuleItem(..) => true, _ => false
}
}
/// Generate a url appropriate for an `href` attribute back to the source of
/// this item.
///
/// The url generated, when clicked, will redirect the browser back to the
/// original source code.
///
/// If `None` is returned, then a source link couldn't be generated. This
/// may happen, for example, with externally inlined items where the source
/// of their crate documentation isn't known.
fn href(&self, cx: &Context) -> Option<String> {
let href = if self.item.source.loline == self.item.source.hiline {
format!("{}", self.item.source.loline)
} else {
format!("{}-{}", self.item.source.loline, self.item.source.hiline)
};
// First check to see if this is an imported macro source. In this case
// we need to handle it specially as cross-crate inlined macros have...
// odd locations!
let imported_macro_from = match self.item.inner {
clean::MacroItem(ref m) => m.imported_from.as_ref(),
_ => None,
};
if let Some(krate) = imported_macro_from {
let cache = cache();
let root = cache.extern_locations.values().find(|&&(ref n, _)| {
*krate == *n
}).map(|l| &l.1);
let root = match root {
Some(&Remote(ref s)) => s.to_string(),
Some(&Local) => self.cx.root_path.clone(),
None | Some(&Unknown) => return None,
};
Some(format!("{root}/{krate}/macro.{name}.html?gotomacrosrc=1",
root = root,
krate = krate,
name = self.item.name.as_ref().unwrap()))
// If this item is part of the local crate, then we're guaranteed to
// know the span, so we plow forward and generate a proper url. The url
// has anchors for the line numbers that we're linking to.
} else if self.item.def_id.is_local() {
let mut path = Vec::new();
clean_srcpath(&cx.src_root, Path::new(&self.item.source.filename),
true, |component| {
path.push(component.to_string());
});
Some(format!("{root}src/{krate}/{path}.html#{href}",
root = self.cx.root_path,
krate = self.cx.layout.krate,
path = path.join("/"),
href = href))
// If this item is not part of the local crate, then things get a little
// trickier. We don't actually know the span of the external item, but
// we know that the documentation on the other end knows the span!
//
// In this case, we generate a link to the *documentation* for this type
// in the original crate. There's an extra URL parameter which says that
// we want to go somewhere else, and the JS on the destination page will
// pick it up and instantly redirect the browser to the source code.
//
// If we don't know where the external documentation for this crate is
// located, then we return `None`.
} else {
let cache = cache();
let path = &cache.external_paths[&self.item.def_id];
let root = match cache.extern_locations[&self.item.def_id.krate] {
(_, Remote(ref s)) => s.to_string(),
(_, Local) => self.cx.root_path.clone(),
(_, Unknown) => return None,
};
Some(format!("{root}{path}/{file}?gotosrc={goto}",
root = root,
path = path[..path.len() - 1].join("/"),
file = item_path(self.item),
goto = self.item.def_id.index.as_usize()))
}
}
}
impl<'a> fmt::Display for Item<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
// Write the breadcrumb trail header for the top
try!(write!(fmt, "\n<h1 class='fqn'><span class='in-band'>"));
match self.item.inner {
clean::ModuleItem(ref m) => if m.is_crate {
try!(write!(fmt, "Crate "));
} else {
try!(write!(fmt, "Module "));
},
clean::FunctionItem(..) => try!(write!(fmt, "Function ")),
clean::TraitItem(..) => try!(write!(fmt, "Trait ")),
clean::StructItem(..) => try!(write!(fmt, "Struct ")),
clean::EnumItem(..) => try!(write!(fmt, "Enum ")),
clean::PrimitiveItem(..) => try!(write!(fmt, "Primitive Type ")),
_ => {}
}
let is_primitive = match self.item.inner {
clean::PrimitiveItem(..) => true,
_ => false,
};
if !is_primitive {
let cur = &self.cx.current;
let amt = if self.ismodule() { cur.len() - 1 } else { cur.len() };
for (i, component) in cur.iter().enumerate().take(amt) {
try!(write!(fmt, "<a href='{}index.html'>{}</a>::<wbr>",
repeat("../").take(cur.len() - i - 1)
.collect::<String>(),
component));
}
}
try!(write!(fmt, "<a class='{}' href=''>{}</a>",
shortty(self.item), self.item.name.as_ref().unwrap()));
try!(write!(fmt, "</span>")); // in-band
try!(write!(fmt, "<span class='out-of-band'>"));
try!(write!(fmt,
r##"<span id='render-detail'>
<a id="toggle-all-docs" href="javascript:void(0)" title="collapse all docs">
[<span class='inner'>&#x2212;</span>]
</a>
</span>"##));
// Write `src` tag
//
// When this item is part of a `pub use` in a downstream crate, the
// [src] link in the downstream documentation will actually come back to
// this page, and this link will be auto-clicked. The `id` attribute is
// used to find the link to auto-click.
if self.cx.include_sources && !is_primitive {
match self.href(self.cx) {
Some(l) => {
try!(write!(fmt, "<a id='src-{}' class='srclink' \
href='{}' title='{}'>[src]</a>",
self.item.def_id.index.as_usize(), l, "goto source code"));
}
None => {}
}
}
try!(write!(fmt, "</span>")); // out-of-band
try!(write!(fmt, "</h1>\n"));
match self.item.inner {
clean::ModuleItem(ref m) => {
item_module(fmt, self.cx, self.item, &m.items)
}
clean::FunctionItem(ref f) | clean::ForeignFunctionItem(ref f) =>
item_function(fmt, self.cx, self.item, f),
clean::TraitItem(ref t) => item_trait(fmt, self.cx, self.item, t),
clean::StructItem(ref s) => item_struct(fmt, self.cx, self.item, s),
clean::EnumItem(ref e) => item_enum(fmt, self.cx, self.item, e),
clean::TypedefItem(ref t, _) => item_typedef(fmt, self.cx, self.item, t),
clean::MacroItem(ref m) => item_macro(fmt, self.cx, self.item, m),
clean::PrimitiveItem(ref p) => item_primitive(fmt, self.cx, self.item, p),
clean::StaticItem(ref i) | clean::ForeignStaticItem(ref i) =>
item_static(fmt, self.cx, self.item, i),
clean::ConstantItem(ref c) => item_constant(fmt, self.cx, self.item, c),
_ => Ok(())
}
}
}
fn item_path(item: &clean::Item) -> String {
match item.inner {
clean::ModuleItem(..) => {
format!("{}/index.html", item.name.as_ref().unwrap())
}
_ => {
format!("{}.{}.html",
shortty(item).to_static_str(),
*item.name.as_ref().unwrap())
}
}
}
fn full_path(cx: &Context, item: &clean::Item) -> String {
let mut s = cx.current.join("::");
s.push_str("::");
s.push_str(item.name.as_ref().unwrap());
return s
}
fn shorter<'a>(s: Option<&'a str>) -> String {
match s {
Some(s) => s.lines().take_while(|line|{
(*line).chars().any(|chr|{
!chr.is_whitespace()
})
}).collect::<Vec<_>>().join("\n"),
None => "".to_string()
}
}
#[inline]
fn plain_summary_line(s: Option<&str>) -> String {
let line = shorter(s).replace("\n", " ");
markdown::plain_summary_line(&line[..])
}
fn document(w: &mut fmt::Formatter, cx: &Context, item: &clean::Item) -> fmt::Result {
if let Some(s) = short_stability(item, cx, true) {
try!(write!(w, "<div class='stability'>{}</div>", s));
}
if let Some(s) = item.doc_value() {
try!(write!(w, "<div class='docblock'>{}</div>", Markdown(s)));
}
Ok(())
}
fn item_module(w: &mut fmt::Formatter, cx: &Context,
item: &clean::Item, items: &[clean::Item]) -> fmt::Result {
try!(document(w, cx, item));
let mut indices = (0..items.len()).filter(|i| {
!cx.ignore_private_item(&items[*i])
}).collect::<Vec<usize>>();
// the order of item types in the listing
fn reorder(ty: ItemType) -> u8 {
match ty {
ItemType::ExternCrate => 0,
ItemType::Import => 1,
ItemType::Primitive => 2,
ItemType::Module => 3,
ItemType::Macro => 4,
ItemType::Struct => 5,
ItemType::Enum => 6,
ItemType::Constant => 7,
ItemType::Static => 8,
ItemType::Trait => 9,
ItemType::Function => 10,
ItemType::Typedef => 12,
_ => 13 + ty as u8,
}
}
fn cmp(i1: &clean::Item, i2: &clean::Item, idx1: usize, idx2: usize) -> Ordering {
let ty1 = shortty(i1);
let ty2 = shortty(i2);
if ty1 != ty2 {
return (reorder(ty1), idx1).cmp(&(reorder(ty2), idx2))
}
let s1 = i1.stability.as_ref().map(|s| s.level);
let s2 = i2.stability.as_ref().map(|s| s.level);
match (s1, s2) {
(Some(stability::Unstable), Some(stability::Stable)) => return Ordering::Greater,
(Some(stability::Stable), Some(stability::Unstable)) => return Ordering::Less,
_ => {}
}
i1.name.cmp(&i2.name)
}
indices.sort_by(|&i1, &i2| cmp(&items[i1], &items[i2], i1, i2));
debug!("{:?}", indices);
let mut curty = None;
for &idx in &indices {
let myitem = &items[idx];
let myty = Some(shortty(myitem));
if curty == Some(ItemType::ExternCrate) && myty == Some(ItemType::Import) {
// Put `extern crate` and `use` re-exports in the same section.
curty = myty;
} else if myty != curty {
if curty.is_some() {
try!(write!(w, "</table>"));
}
curty = myty;
let (short, name) = match myty.unwrap() {
ItemType::ExternCrate |
ItemType::Import => ("reexports", "Reexports"),
ItemType::Module => ("modules", "Modules"),
ItemType::Struct => ("structs", "Structs"),
ItemType::Enum => ("enums", "Enums"),
ItemType::Function => ("functions", "Functions"),
ItemType::Typedef => ("types", "Type Definitions"),
ItemType::Static => ("statics", "Statics"),
ItemType::Constant => ("constants", "Constants"),
ItemType::Trait => ("traits", "Traits"),
ItemType::Impl => ("impls", "Implementations"),
ItemType::TyMethod => ("tymethods", "Type Methods"),
ItemType::Method => ("methods", "Methods"),
ItemType::StructField => ("fields", "Struct Fields"),
ItemType::Variant => ("variants", "Variants"),
ItemType::Macro => ("macros", "Macros"),
ItemType::Primitive => ("primitives", "Primitive Types"),
ItemType::AssociatedType => ("associated-types", "Associated Types"),
ItemType::AssociatedConst => ("associated-consts", "Associated Constants"),
};
try!(write!(w, "<h2 id='{id}' class='section-header'>\
<a href=\"#{id}\">{name}</a></h2>\n<table>",
id = derive_id(short.to_owned()), name = name));
}
match myitem.inner {
clean::ExternCrateItem(ref name, ref src) => {
match *src {
Some(ref src) => {
try!(write!(w, "<tr><td><code>{}extern crate {} as {};",
VisSpace(myitem.visibility),
src,
name))
}
None => {
try!(write!(w, "<tr><td><code>{}extern crate {};",
VisSpace(myitem.visibility), name))
}
}
try!(write!(w, "</code></td></tr>"));
}
clean::ImportItem(ref import) => {
try!(write!(w, "<tr><td><code>{}{}</code></td></tr>",
VisSpace(myitem.visibility), *import));
}
_ => {
if myitem.name.is_none() { continue }
let stab_docs = if let Some(s) = short_stability(myitem, cx, false) {
format!("[{}]", s)
} else {
String::new()
};
try!(write!(w, "
<tr class='{stab} module-item'>
<td><a class='{class}' href='{href}'
title='{title}'>{name}</a></td>
<td class='docblock short'>
{stab_docs} {docs}
</td>
</tr>
",
name = *myitem.name.as_ref().unwrap(),
stab_docs = stab_docs,
docs = Markdown(&shorter(myitem.doc_value())),
class = shortty(myitem),
stab = myitem.stability_class(),
href = item_path(myitem),
title = full_path(cx, myitem)));
}
}
}
write!(w, "</table>")
}
fn short_stability(item: &clean::Item, cx: &Context, show_reason: bool) -> Option<String> {
let mut result = item.stability.as_ref().and_then(|stab| {
let reason = if show_reason && !stab.reason.is_empty() {
format!(": {}", stab.reason)
} else {
String::new()
};
let text = if !stab.deprecated_since.is_empty() {
let since = if show_reason {
format!(" since {}", Escape(&stab.deprecated_since))
} else {
String::new()
};
format!("Deprecated{}{}", since, Markdown(&reason))
} else if stab.level == stability::Unstable {
let unstable_extra = if show_reason {
match (!stab.feature.is_empty(), &cx.issue_tracker_base_url, stab.issue) {
(true, &Some(ref tracker_url), Some(issue_no)) if issue_no > 0 =>
format!(" (<code>{}</code> <a href=\"{}{}\">#{}</a>)",
Escape(&stab.feature), tracker_url, issue_no, issue_no),
(false, &Some(ref tracker_url), Some(issue_no)) if issue_no > 0 =>
format!(" (<a href=\"{}{}\">#{}</a>)", Escape(&tracker_url), issue_no,
issue_no),
(true, _, _) =>
format!(" (<code>{}</code>)", Escape(&stab.feature)),
_ => String::new(),
}
} else {
String::new()
};
format!("Unstable{}{}", unstable_extra, Markdown(&reason))
} else {
return None
};
Some(format!("<em class='stab {}'>{}</em>",
item.stability_class(), text))
});
if result.is_none() {
result = item.deprecation.as_ref().and_then(|depr| {
let note = if show_reason && !depr.note.is_empty() {
format!(": {}", depr.note)
} else {
String::new()
};
let since = if show_reason && !depr.since.is_empty() {
format!(" since {}", Escape(&depr.since))
} else {
String::new()
};
let text = format!("Deprecated{}{}", since, Markdown(&note));
Some(format!("<em class='stab deprecated'>{}</em>", text))
});
}
result
}
struct Initializer<'a>(&'a str);
impl<'a> fmt::Display for Initializer<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Initializer(s) = *self;
if s.is_empty() { return Ok(()); }
try!(write!(f, "<code> = </code>"));
write!(f, "<code>{}</code>", s)
}
}
fn item_constant(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
c: &clean::Constant) -> fmt::Result {
try!(write!(w, "<pre class='rust const'>{vis}const \
{name}: {typ}{init}</pre>",
vis = VisSpace(it.visibility),
name = it.name.as_ref().unwrap(),
typ = c.type_,
init = Initializer(&c.expr)));
document(w, cx, it)
}
fn item_static(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
s: &clean::Static) -> fmt::Result {
try!(write!(w, "<pre class='rust static'>{vis}static {mutability}\
{name}: {typ}{init}</pre>",
vis = VisSpace(it.visibility),
mutability = MutableSpace(s.mutability),
name = it.name.as_ref().unwrap(),
typ = s.type_,
init = Initializer(&s.expr)));
document(w, cx, it)
}
fn item_function(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
f: &clean::Function) -> fmt::Result {
try!(write!(w, "<pre class='rust fn'>{vis}{constness}{unsafety}{abi}fn \
{name}{generics}{decl}{where_clause}</pre>",
vis = VisSpace(it.visibility),
constness = ConstnessSpace(f.constness),
unsafety = UnsafetySpace(f.unsafety),
abi = AbiSpace(f.abi),
name = it.name.as_ref().unwrap(),
generics = f.generics,
where_clause = WhereClause(&f.generics),
decl = f.decl));
document(w, cx, it)
}
fn item_trait(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
t: &clean::Trait) -> fmt::Result {
let mut bounds = String::new();
if !t.bounds.is_empty() {
if !bounds.is_empty() {
bounds.push(' ');
}
bounds.push_str(": ");
for (i, p) in t.bounds.iter().enumerate() {
if i > 0 { bounds.push_str(" + "); }
bounds.push_str(&format!("{}", *p));
}
}
// Output the trait definition
try!(write!(w, "<pre class='rust trait'>{}{}trait {}{}{}{} ",
VisSpace(it.visibility),
UnsafetySpace(t.unsafety),
it.name.as_ref().unwrap(),
t.generics,
bounds,
WhereClause(&t.generics)));
let types = t.items.iter().filter(|m| {
match m.inner { clean::AssociatedTypeItem(..) => true, _ => false }
}).collect::<Vec<_>>();
let consts = t.items.iter().filter(|m| {
match m.inner { clean::AssociatedConstItem(..) => true, _ => false }
}).collect::<Vec<_>>();
let required = t.items.iter().filter(|m| {
match m.inner { clean::TyMethodItem(_) => true, _ => false }
}).collect::<Vec<_>>();
let provided = t.items.iter().filter(|m| {
match m.inner { clean::MethodItem(_) => true, _ => false }
}).collect::<Vec<_>>();
if t.items.is_empty() {
try!(write!(w, "{{ }}"));
} else {
try!(write!(w, "{{\n"));
for t in &types {
try!(write!(w, " "));
try!(render_assoc_item(w, t, AssocItemLink::Anchor));
try!(write!(w, ";\n"));
}
if !types.is_empty() && !consts.is_empty() {
try!(w.write_str("\n"));
}
for t in &consts {
try!(write!(w, " "));
try!(render_assoc_item(w, t, AssocItemLink::Anchor));
try!(write!(w, ";\n"));
}
if !consts.is_empty() && !required.is_empty() {
try!(w.write_str("\n"));
}
for m in &required {
try!(write!(w, " "));
try!(render_assoc_item(w, m, AssocItemLink::Anchor));
try!(write!(w, ";\n"));
}
if !required.is_empty() && !provided.is_empty() {
try!(w.write_str("\n"));
}
for m in &provided {
try!(write!(w, " "));
try!(render_assoc_item(w, m, AssocItemLink::Anchor));
try!(write!(w, " {{ ... }}\n"));
}
try!(write!(w, "}}"));
}
try!(write!(w, "</pre>"));
// Trait documentation
try!(document(w, cx, it));
fn trait_item(w: &mut fmt::Formatter, cx: &Context, m: &clean::Item)
-> fmt::Result {
let name = m.name.as_ref().unwrap();
let id = derive_id(format!("{}.{}", shortty(m), name));
try!(write!(w, "<h3 id='{id}' class='method stab {stab}'><code>",
id = id,
stab = m.stability_class()));
try!(render_assoc_item(w, m, AssocItemLink::Anchor));
try!(write!(w, "</code></h3>"));
try!(document(w, cx, m));
Ok(())
}
if !types.is_empty() {
try!(write!(w, "
<h2 id='associated-types'>Associated Types</h2>
<div class='methods'>
"));
for t in &types {
try!(trait_item(w, cx, *t));
}
try!(write!(w, "</div>"));
}
if !consts.is_empty() {
try!(write!(w, "
<h2 id='associated-const'>Associated Constants</h2>
<div class='methods'>
"));
for t in &consts {
try!(trait_item(w, cx, *t));
}
try!(write!(w, "</div>"));
}
// Output the documentation for each function individually
if !required.is_empty() {
try!(write!(w, "
<h2 id='required-methods'>Required Methods</h2>
<div class='methods'>
"));
for m in &required {
try!(trait_item(w, cx, *m));
}
try!(write!(w, "</div>"));
}
if !provided.is_empty() {
try!(write!(w, "
<h2 id='provided-methods'>Provided Methods</h2>
<div class='methods'>
"));
for m in &provided {
try!(trait_item(w, cx, *m));
}
try!(write!(w, "</div>"));
}
// If there are methods directly on this trait object, render them here.
try!(render_assoc_items(w, cx, it.def_id, AssocItemRender::All));
let cache = cache();
try!(write!(w, "
<h2 id='implementors'>Implementors</h2>
<ul class='item-list' id='implementors-list'>
"));
match cache.implementors.get(&it.def_id) {
Some(implementors) => {
for i in implementors {
try!(writeln!(w, "<li><code>{}</code></li>", i.impl_));
}
}
None => {}
}
try!(write!(w, "</ul>"));
try!(write!(w, r#"<script type="text/javascript" async
src="{root_path}/implementors/{path}/{ty}.{name}.js">
</script>"#,
root_path = vec![".."; cx.current.len()].join("/"),
path = if it.def_id.is_local() {
cx.current.join("/")
} else {
let path = &cache.external_paths[&it.def_id];
path[..path.len() - 1].join("/")
},
ty = shortty(it).to_static_str(),
name = *it.name.as_ref().unwrap()));
Ok(())
}
fn assoc_const(w: &mut fmt::Formatter, it: &clean::Item,
ty: &clean::Type, default: Option<&String>)
-> fmt::Result {
try!(write!(w, "const {}", it.name.as_ref().unwrap()));
try!(write!(w, ": {}", ty));
if let Some(default) = default {
try!(write!(w, " = {}", default));
}
Ok(())
}
fn assoc_type(w: &mut fmt::Formatter, it: &clean::Item,
bounds: &Vec<clean::TyParamBound>,
default: &Option<clean::Type>)
-> fmt::Result {
try!(write!(w, "type {}", it.name.as_ref().unwrap()));
if !bounds.is_empty() {
try!(write!(w, ": {}", TyParamBounds(bounds)))
}
if let Some(ref default) = *default {
try!(write!(w, " = {}", default));
}
Ok(())
}
fn render_assoc_item(w: &mut fmt::Formatter, meth: &clean::Item,
link: AssocItemLink) -> fmt::Result {
fn method(w: &mut fmt::Formatter,
it: &clean::Item,
unsafety: hir::Unsafety,
constness: hir::Constness,
abi: abi::Abi,
g: &clean::Generics,
selfty: &clean::SelfTy,
d: &clean::FnDecl,
link: AssocItemLink)
-> fmt::Result {
use syntax::abi::Abi;
let name = it.name.as_ref().unwrap();
let anchor = format!("#{}.{}", shortty(it), name);
let href = match link {
AssocItemLink::Anchor => anchor,
AssocItemLink::GotoSource(did) => {
href(did).map(|p| format!("{}{}", p.0, anchor)).unwrap_or(anchor)
}
};
write!(w, "{}{}{}fn <a href='{href}' class='fnname'>{name}</a>\
{generics}{decl}{where_clause}",
ConstnessSpace(constness),
UnsafetySpace(unsafety),
match abi {
Abi::Rust => String::new(),
a => format!("extern {} ", a.to_string())
},
href = href,
name = name,
generics = *g,
decl = Method(selfty, d),
where_clause = WhereClause(g))
}
match meth.inner {
clean::TyMethodItem(ref m) => {
method(w, meth, m.unsafety, hir::Constness::NotConst,
m.abi, &m.generics, &m.self_, &m.decl, link)
}
clean::MethodItem(ref m) => {
method(w, meth, m.unsafety, m.constness,
m.abi, &m.generics, &m.self_, &m.decl,
link)
}
clean::AssociatedConstItem(ref ty, ref default) => {
assoc_const(w, meth, ty, default.as_ref())
}
clean::AssociatedTypeItem(ref bounds, ref default) => {
assoc_type(w, meth, bounds, default)
}
_ => panic!("render_assoc_item called on non-associated-item")
}
}
fn item_struct(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
s: &clean::Struct) -> fmt::Result {
try!(write!(w, "<pre class='rust struct'>"));
try!(render_attributes(w, it));
try!(render_struct(w,
it,
Some(&s.generics),
s.struct_type,
&s.fields,
"",
true));
try!(write!(w, "</pre>"));
try!(document(w, cx, it));
let mut fields = s.fields.iter().filter(|f| {
match f.inner {
clean::StructFieldItem(clean::HiddenStructField) => false,
clean::StructFieldItem(clean::TypedStructField(..)) => true,
_ => false,
}
}).peekable();
if let doctree::Plain = s.struct_type {
if fields.peek().is_some() {
try!(write!(w, "<h2 class='fields'>Fields</h2>\n<table>"));
for field in fields {
try!(write!(w, "<tr class='stab {stab}'>
<td id='structfield.{name}'>\
<code>{name}</code></td><td>",
stab = field.stability_class(),
name = field.name.as_ref().unwrap()));
try!(document(w, cx, field));
try!(write!(w, "</td></tr>"));
}
try!(write!(w, "</table>"));
}
}
render_assoc_items(w, cx, it.def_id, AssocItemRender::All)
}
fn item_enum(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
e: &clean::Enum) -> fmt::Result {
try!(write!(w, "<pre class='rust enum'>"));
try!(render_attributes(w, it));
try!(write!(w, "{}enum {}{}{}",
VisSpace(it.visibility),
it.name.as_ref().unwrap(),
e.generics,
WhereClause(&e.generics)));
if e.variants.is_empty() && !e.variants_stripped {
try!(write!(w, " {{}}"));
} else {
try!(write!(w, " {{\n"));
for v in &e.variants {
try!(write!(w, " "));
let name = v.name.as_ref().unwrap();
match v.inner {
clean::VariantItem(ref var) => {
match var.kind {
clean::CLikeVariant => try!(write!(w, "{}", name)),
clean::TupleVariant(ref tys) => {
try!(write!(w, "{}(", name));
for (i, ty) in tys.iter().enumerate() {
if i > 0 {
try!(write!(w, ", "))
}
try!(write!(w, "{}", *ty));
}
try!(write!(w, ")"));
}
clean::StructVariant(ref s) => {
try!(render_struct(w,
v,
None,
s.struct_type,
&s.fields,
" ",
false));
}
}
}
_ => unreachable!()
}
try!(write!(w, ",\n"));
}
if e.variants_stripped {
try!(write!(w, " // some variants omitted\n"));
}
try!(write!(w, "}}"));
}
try!(write!(w, "</pre>"));
try!(document(w, cx, it));
if !e.variants.is_empty() {
try!(write!(w, "<h2 class='variants'>Variants</h2>\n<table>"));
for variant in &e.variants {
try!(write!(w, "<tr><td id='variant.{name}'><code>{name}</code></td><td>",
name = variant.name.as_ref().unwrap()));
try!(document(w, cx, variant));
match variant.inner {
clean::VariantItem(ref var) => {
match var.kind {
clean::StructVariant(ref s) => {
let fields = s.fields.iter().filter(|f| {
match f.inner {
clean::StructFieldItem(ref t) => match *t {
clean::HiddenStructField => false,
clean::TypedStructField(..) => true,
},
_ => false,
}
});
try!(write!(w, "<h3 class='fields'>Fields</h3>\n
<table>"));
for field in fields {
try!(write!(w, "<tr><td \
id='variant.{v}.field.{f}'>\
<code>{f}</code></td><td>",
v = variant.name.as_ref().unwrap(),
f = field.name.as_ref().unwrap()));
try!(document(w, cx, field));
try!(write!(w, "</td></tr>"));
}
try!(write!(w, "</table>"));
}
_ => ()
}
}
_ => ()
}
try!(write!(w, "</td></tr>"));
}
try!(write!(w, "</table>"));
}
try!(render_assoc_items(w, cx, it.def_id, AssocItemRender::All));
Ok(())
}
fn render_attributes(w: &mut fmt::Formatter, it: &clean::Item) -> fmt::Result {
for attr in &it.attrs {
match *attr {
clean::Word(ref s) if *s == "must_use" => {
try!(write!(w, "#[{}]\n", s));
}
clean::NameValue(ref k, ref v) if *k == "must_use" => {
try!(write!(w, "#[{} = \"{}\"]\n", k, v));
}
_ => ()
}
}
Ok(())
}
fn render_struct(w: &mut fmt::Formatter, it: &clean::Item,
g: Option<&clean::Generics>,
ty: doctree::StructType,
fields: &[clean::Item],
tab: &str,
structhead: bool) -> fmt::Result {
try!(write!(w, "{}{}{}",
VisSpace(it.visibility),
if structhead {"struct "} else {""},
it.name.as_ref().unwrap()));
match g {
Some(g) => try!(write!(w, "{}{}", *g, WhereClause(g))),
None => {}
}
match ty {
doctree::Plain => {
try!(write!(w, " {{\n{}", tab));
let mut fields_stripped = false;
for field in fields {
match field.inner {
clean::StructFieldItem(clean::HiddenStructField) => {
fields_stripped = true;
}
clean::StructFieldItem(clean::TypedStructField(ref ty)) => {
try!(write!(w, " {}{}: {},\n{}",
VisSpace(field.visibility),
field.name.as_ref().unwrap(),
*ty,
tab));
}
_ => unreachable!(),
};
}
if fields_stripped {
try!(write!(w, " // some fields omitted\n{}", tab));
}
try!(write!(w, "}}"));
}
doctree::Tuple | doctree::Newtype => {
try!(write!(w, "("));
for (i, field) in fields.iter().enumerate() {
if i > 0 {
try!(write!(w, ", "));
}
match field.inner {
clean::StructFieldItem(clean::HiddenStructField) => {
try!(write!(w, "_"))
}
clean::StructFieldItem(clean::TypedStructField(ref ty)) => {
try!(write!(w, "{}{}", VisSpace(field.visibility), *ty))
}
_ => unreachable!()
}
}
try!(write!(w, ");"));
}
doctree::Unit => {
try!(write!(w, ";"));
}
}
Ok(())
}
#[derive(Copy, Clone)]
enum AssocItemLink {
Anchor,
GotoSource(DefId),
}
enum AssocItemRender<'a> {
All,
DerefFor { trait_: &'a clean::Type, type_: &'a clean::Type },
}
fn render_assoc_items(w: &mut fmt::Formatter,
cx: &Context,
it: DefId,
what: AssocItemRender) -> fmt::Result {
let c = cache();
let v = match c.impls.get(&it) {
Some(v) => v,
None => return Ok(()),
};
let (non_trait, traits): (Vec<_>, _) = v.iter().partition(|i| {
i.impl_.trait_.is_none()
});
if !non_trait.is_empty() {
let render_header = match what {
AssocItemRender::All => {
try!(write!(w, "<h2 id='methods'>Methods</h2>"));
true
}
AssocItemRender::DerefFor { trait_, type_ } => {
try!(write!(w, "<h2 id='deref-methods'>Methods from \
{}&lt;Target={}&gt;</h2>", trait_, type_));
false
}
};
for i in &non_trait {
try!(render_impl(w, cx, i, AssocItemLink::Anchor, render_header));
}
}
if let AssocItemRender::DerefFor { .. } = what {
return Ok(())
}
if !traits.is_empty() {
let deref_impl = traits.iter().find(|t| {
match *t.impl_.trait_.as_ref().unwrap() {
clean::ResolvedPath { did, .. } => {
Some(did) == c.deref_trait_did
}
_ => false
}
});
if let Some(impl_) = deref_impl {
try!(render_deref_methods(w, cx, impl_));
}
try!(write!(w, "<h2 id='implementations'>Trait \
Implementations</h2>"));
let (derived, manual): (Vec<_>, Vec<&Impl>) = traits.iter().partition(|i| {
i.impl_.derived
});
for i in &manual {
let did = i.trait_did().unwrap();
try!(render_impl(w, cx, i, AssocItemLink::GotoSource(did), true));
}
if !derived.is_empty() {
try!(write!(w, "<h3 id='derived_implementations'>\
Derived Implementations \
</h3>"));
for i in &derived {
let did = i.trait_did().unwrap();
try!(render_impl(w, cx, i, AssocItemLink::GotoSource(did), true));
}
}
}
Ok(())
}
fn render_deref_methods(w: &mut fmt::Formatter, cx: &Context, impl_: &Impl) -> fmt::Result {
let deref_type = impl_.impl_.trait_.as_ref().unwrap();
let target = impl_.impl_.items.iter().filter_map(|item| {
match item.inner {
clean::TypedefItem(ref t, true) => Some(&t.type_),
_ => None,
}
}).next().expect("Expected associated type binding");
let what = AssocItemRender::DerefFor { trait_: deref_type, type_: target };
match *target {
clean::ResolvedPath { did, .. } => render_assoc_items(w, cx, did, what),
_ => {
if let Some(prim) = target.primitive_type() {
if let Some(c) = cache().primitive_locations.get(&prim) {
let did = DefId { krate: *c, index: prim.to_def_index() };
try!(render_assoc_items(w, cx, did, what));
}
}
Ok(())
}
}
}
// Render_header is false when we are rendering a `Deref` impl and true
// otherwise. If render_header is false, we will avoid rendering static
// methods, since they are not accessible for the type implementing `Deref`
fn render_impl(w: &mut fmt::Formatter, cx: &Context, i: &Impl, link: AssocItemLink,
render_header: bool) -> fmt::Result {
if render_header {
try!(write!(w, "<h3 class='impl'><code>{}</code></h3>", i.impl_));
if let Some(ref dox) = i.dox {
try!(write!(w, "<div class='docblock'>{}</div>", Markdown(dox)));
}
}
fn doctraititem(w: &mut fmt::Formatter, cx: &Context, item: &clean::Item,
link: AssocItemLink, render_static: bool) -> fmt::Result {
let name = item.name.as_ref().unwrap();
match item.inner {
clean::MethodItem(..) | clean::TyMethodItem(..) => {
// Only render when the method is not static or we allow static methods
if !is_static_method(item) || render_static {
let id = derive_id(format!("method.{}", name));
try!(write!(w, "<h4 id='{}' class='{}'><code>", id, shortty(item)));
try!(render_assoc_item(w, item, link));
try!(write!(w, "</code></h4>\n"));
}
}
clean::TypedefItem(ref tydef, _) => {
let id = derive_id(format!("assoc_type.{}", name));
try!(write!(w, "<h4 id='{}' class='{}'><code>", id, shortty(item)));
try!(write!(w, "type {} = {}", name, tydef.type_));
try!(write!(w, "</code></h4>\n"));
}
clean::AssociatedConstItem(ref ty, ref default) => {
let id = derive_id(format!("assoc_const.{}", name));
try!(write!(w, "<h4 id='{}' class='{}'><code>", id, shortty(item)));
try!(assoc_const(w, item, ty, default.as_ref()));
try!(write!(w, "</code></h4>\n"));
}
clean::ConstantItem(ref c) => {
let id = derive_id(format!("assoc_const.{}", name));
try!(write!(w, "<h4 id='{}' class='{}'><code>", id, shortty(item)));
try!(assoc_const(w, item, &c.type_, Some(&c.expr)));
try!(write!(w, "</code></h4>\n"));
}
clean::AssociatedTypeItem(ref bounds, ref default) => {
let id = derive_id(format!("assoc_type.{}", name));
try!(write!(w, "<h4 id='{}' class='{}'><code>", id, shortty(item)));
try!(assoc_type(w, item, bounds, default));
try!(write!(w, "</code></h4>\n"));
}
_ => panic!("can't make docs for trait item with name {:?}", item.name)
}
return if let AssocItemLink::Anchor = link {
if is_static_method(item) && !render_static {
Ok(())
} else {
document(w, cx, item)
}
} else {
Ok(())
};
fn is_static_method(item: &clean::Item) -> bool {
match item.inner {
clean::MethodItem(ref method) => method.self_ == SelfTy::SelfStatic,
clean::TyMethodItem(ref method) => method.self_ == SelfTy::SelfStatic,
_ => false
}
}
}
try!(write!(w, "<div class='impl-items'>"));
for trait_item in &i.impl_.items {
try!(doctraititem(w, cx, trait_item, link, render_header));
}
fn render_default_items(w: &mut fmt::Formatter,
cx: &Context,
did: DefId,
t: &clean::Trait,
i: &clean::Impl,
render_static: bool) -> fmt::Result {
for trait_item in &t.items {
let n = trait_item.name.clone();
match i.items.iter().find(|m| { m.name == n }) {
Some(..) => continue,
None => {}
}
try!(doctraititem(w, cx, trait_item, AssocItemLink::GotoSource(did), render_static));
}
Ok(())
}
// If we've implemented a trait, then also emit documentation for all
// default methods which weren't overridden in the implementation block.
// FIXME: this also needs to be done for associated types, whenever defaults
// for them work.
if let Some(clean::ResolvedPath { did, .. }) = i.impl_.trait_ {
if let Some(t) = cache().traits.get(&did) {
try!(render_default_items(w, cx, did, t, &i.impl_, render_header));
}
}
try!(write!(w, "</div>"));
Ok(())
}
fn item_typedef(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
t: &clean::Typedef) -> fmt::Result {
try!(write!(w, "<pre class='rust typedef'>type {}{}{where_clause} = {type_};</pre>",
it.name.as_ref().unwrap(),
t.generics,
where_clause = WhereClause(&t.generics),
type_ = t.type_));
document(w, cx, it)
}
impl<'a> fmt::Display for Sidebar<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let cx = self.cx;
let it = self.item;
let parentlen = cx.current.len() - if it.is_mod() {1} else {0};
// the sidebar is designed to display sibling functions, modules and
// other miscellaneous informations. since there are lots of sibling
// items (and that causes quadratic growth in large modules),
// we refactor common parts into a shared JavaScript file per module.
// still, we don't move everything into JS because we want to preserve
// as much HTML as possible in order to allow non-JS-enabled browsers
// to navigate the documentation (though slightly inefficiently).
try!(write!(fmt, "<p class='location'>"));
for (i, name) in cx.current.iter().take(parentlen).enumerate() {
if i > 0 {
try!(write!(fmt, "::<wbr>"));
}
try!(write!(fmt, "<a href='{}index.html'>{}</a>",
&cx.root_path[..(cx.current.len() - i - 1) * 3],
*name));
}
try!(write!(fmt, "</p>"));
// sidebar refers to the enclosing module, not this module
let relpath = if shortty(it) == ItemType::Module { "../" } else { "" };
try!(write!(fmt,
"<script>window.sidebarCurrent = {{\
name: '{name}', \
ty: '{ty}', \
relpath: '{path}'\
}};</script>",
name = it.name.as_ref().map(|x| &x[..]).unwrap_or(""),
ty = shortty(it).to_static_str(),
path = relpath));
if parentlen == 0 {
// there is no sidebar-items.js beyond the crate root path
// FIXME maybe dynamic crate loading can be merged here
} else {
try!(write!(fmt, "<script defer src=\"{path}sidebar-items.js\"></script>",
path = relpath));
}
Ok(())
}
}
impl<'a> fmt::Display for Source<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let Source(s) = *self;
let lines = s.lines().count();
let mut cols = 0;
let mut tmp = lines;
while tmp > 0 {
cols += 1;
tmp /= 10;
}
try!(write!(fmt, "<pre class=\"line-numbers\">"));
for i in 1..lines + 1 {
try!(write!(fmt, "<span id=\"{0}\">{0:1$}</span>\n", i, cols));
}
try!(write!(fmt, "</pre>"));
try!(write!(fmt, "{}", highlight::highlight(s, None, None)));
Ok(())
}
}
fn item_macro(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
t: &clean::Macro) -> fmt::Result {
try!(w.write_str(&highlight::highlight(&t.source,
Some("macro"),
None)));
document(w, cx, it)
}
fn item_primitive(w: &mut fmt::Formatter, cx: &Context,
it: &clean::Item,
_p: &clean::PrimitiveType) -> fmt::Result {
try!(document(w, cx, it));
render_assoc_items(w, cx, it.def_id, AssocItemRender::All)
}
fn get_basic_keywords() -> &'static str {
"rust, rustlang, rust-lang"
}
fn make_item_keywords(it: &clean::Item) -> String {
format!("{}, {}", get_basic_keywords(), it.name.as_ref().unwrap())
}
fn get_index_search_type(item: &clean::Item,
parent: Option<String>) -> Option<IndexItemFunctionType> {
let decl = match item.inner {
clean::FunctionItem(ref f) => &f.decl,
clean::MethodItem(ref m) => &m.decl,
clean::TyMethodItem(ref m) => &m.decl,
_ => return None
};
let mut inputs = Vec::new();
// Consider `self` an argument as well.
if let Some(name) = parent {
inputs.push(Type { name: Some(name.to_ascii_lowercase()) });
}
inputs.extend(&mut decl.inputs.values.iter().map(|arg| {
get_index_type(&arg.type_)
}));
let output = match decl.output {
clean::FunctionRetTy::Return(ref return_type) => Some(get_index_type(return_type)),
_ => None
};
Some(IndexItemFunctionType { inputs: inputs, output: output })
}
fn get_index_type(clean_type: &clean::Type) -> Type {
Type { name: get_index_type_name(clean_type).map(|s| s.to_ascii_lowercase()) }
}
fn get_index_type_name(clean_type: &clean::Type) -> Option<String> {
match *clean_type {
clean::ResolvedPath { ref path, .. } => {
let segments = &path.segments;
Some(segments[segments.len() - 1].name.clone())
},
clean::Generic(ref s) => Some(s.clone()),
clean::Primitive(ref p) => Some(format!("{:?}", p)),
clean::BorrowedRef { ref type_, .. } => get_index_type_name(type_),
// FIXME: add all from clean::Type.
_ => None
}
}
pub fn cache() -> Arc<Cache> {
CACHE_KEY.with(|c| c.borrow().clone())
}
#[cfg(test)]
#[test]
fn test_unique_id() {
let input = ["foo", "examples", "examples", "method.into_iter","examples",
"method.into_iter", "foo", "main", "search", "methods",
"examples", "method.into_iter", "assoc_type.Item", "assoc_type.Item"];
let expected = ["foo", "examples", "examples-1", "method.into_iter", "examples-2",
"method.into_iter-1", "foo-1", "main-1", "search-1", "methods-1",
"examples-3", "method.into_iter-2", "assoc_type.Item", "assoc_type.Item-1"];
let test = || {
let actual: Vec<String> = input.iter().map(|s| derive_id(s.to_string())).collect();
assert_eq!(&actual[..], expected);
};
test();
reset_ids();
test();
}