blob: ec1383f1f7b2b19ac8b40dc4db49d3e801096b13 [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::archive::{ArchiveBuilder, ArchiveConfig};
use super::linker::{Linker, GnuLinker, MsvcLinker};
use super::rpath::RPathConfig;
use super::rpath;
use super::msvc;
use super::svh::Svh;
use session::config;
use session::config::NoDebugInfo;
use session::config::{OutputFilenames, Input, OutputType};
use session::filesearch;
use session::search_paths::PathKind;
use session::Session;
use middle::cstore::{self, CrateStore, LinkMeta};
use middle::cstore::{LinkagePreference, NativeLibraryKind};
use middle::dependency_format::Linkage;
use middle::ty::{self, Ty};
use rustc::front::map::DefPath;
use trans::{CrateContext, CrateTranslation, gensym_name};
use util::common::time;
use util::sha2::{Digest, Sha256};
use util::fs::fix_windows_verbatim_for_gcc;
use rustc_back::tempdir::TempDir;
use std::ascii;
use std::char;
use std::env;
use std::ffi::OsString;
use std::fs;
use std::io::{self, Read, Write};
use std::iter::once;
use std::mem;
use std::path::{Path, PathBuf};
use std::process::Command;
use std::str;
use flate;
use serialize::hex::ToHex;
use syntax::ast;
use syntax::codemap::Span;
use syntax::parse::token::{self, InternedString};
use syntax::attr::AttrMetaMethods;
use rustc_front::hir;
// RLIB LLVM-BYTECODE OBJECT LAYOUT
// Version 1
// Bytes Data
// 0..10 "RUST_OBJECT" encoded in ASCII
// 11..14 format version as little-endian u32
// 15..22 size in bytes of deflate compressed LLVM bitcode as
// little-endian u64
// 23.. compressed LLVM bitcode
// This is the "magic number" expected at the beginning of a LLVM bytecode
// object in an rlib.
pub const RLIB_BYTECODE_OBJECT_MAGIC: &'static [u8] = b"RUST_OBJECT";
// The version number this compiler will write to bytecode objects in rlibs
pub const RLIB_BYTECODE_OBJECT_VERSION: u32 = 1;
// The offset in bytes the bytecode object format version number can be found at
pub const RLIB_BYTECODE_OBJECT_VERSION_OFFSET: usize = 11;
// The offset in bytes the size of the compressed bytecode can be found at in
// format version 1
pub const RLIB_BYTECODE_OBJECT_V1_DATASIZE_OFFSET: usize =
RLIB_BYTECODE_OBJECT_VERSION_OFFSET + 4;
// The offset in bytes the compressed LLVM bytecode can be found at in format
// version 1
pub const RLIB_BYTECODE_OBJECT_V1_DATA_OFFSET: usize =
RLIB_BYTECODE_OBJECT_V1_DATASIZE_OFFSET + 8;
/*
* Name mangling and its relationship to metadata. This is complex. Read
* carefully.
*
* The semantic model of Rust linkage is, broadly, that "there's no global
* namespace" between crates. Our aim is to preserve the illusion of this
* model despite the fact that it's not *quite* possible to implement on
* modern linkers. We initially didn't use system linkers at all, but have
* been convinced of their utility.
*
* There are a few issues to handle:
*
* - Linkers operate on a flat namespace, so we have to flatten names.
* We do this using the C++ namespace-mangling technique. Foo::bar
* symbols and such.
*
* - Symbols with the same name but different types need to get different
* linkage-names. We do this by hashing a string-encoding of the type into
* a fixed-size (currently 16-byte hex) cryptographic hash function (CHF:
* we use SHA256) to "prevent collisions". This is not airtight but 16 hex
* digits on uniform probability means you're going to need 2**32 same-name
* symbols in the same process before you're even hitting birthday-paradox
* collision probability.
*
* - Symbols in different crates but with same names "within" the crate need
* to get different linkage-names.
*
* - The hash shown in the filename needs to be predictable and stable for
* build tooling integration. It also needs to be using a hash function
* which is easy to use from Python, make, etc.
*
* So here is what we do:
*
* - Consider the package id; every crate has one (specified with crate_id
* attribute). If a package id isn't provided explicitly, we infer a
* versionless one from the output name. The version will end up being 0.0
* in this case. CNAME and CVERS are taken from this package id. For
* example, github.com/mozilla/CNAME#CVERS.
*
* - Define CMH as SHA256(crateid).
*
* - Define CMH8 as the first 8 characters of CMH.
*
* - Compile our crate to lib CNAME-CMH8-CVERS.so
*
* - Define STH(sym) as SHA256(CMH, type_str(sym))
*
* - Suffix a mangled sym with ::STH@CVERS, so that it is unique in the
* name, non-name metadata, and type sense, and versioned in the way
* system linkers understand.
*/
pub fn find_crate_name(sess: Option<&Session>,
attrs: &[ast::Attribute],
input: &Input) -> String {
let validate = |s: String, span: Option<Span>| {
cstore::validate_crate_name(sess, &s[..], span);
s
};
// Look in attributes 100% of the time to make sure the attribute is marked
// as used. After doing this, however, we still prioritize a crate name from
// the command line over one found in the #[crate_name] attribute. If we
// find both we ensure that they're the same later on as well.
let attr_crate_name = attrs.iter().find(|at| at.check_name("crate_name"))
.and_then(|at| at.value_str().map(|s| (at, s)));
if let Some(sess) = sess {
if let Some(ref s) = sess.opts.crate_name {
if let Some((attr, ref name)) = attr_crate_name {
if *s != &name[..] {
let msg = format!("--crate-name and #[crate_name] are \
required to match, but `{}` != `{}`",
s, name);
sess.span_err(attr.span, &msg[..]);
}
}
return validate(s.clone(), None);
}
}
if let Some((attr, s)) = attr_crate_name {
return validate(s.to_string(), Some(attr.span));
}
if let Input::File(ref path) = *input {
if let Some(s) = path.file_stem().and_then(|s| s.to_str()) {
if s.starts_with("-") {
let msg = format!("crate names cannot start with a `-`, but \
`{}` has a leading hyphen", s);
if let Some(sess) = sess {
sess.err(&msg);
}
} else {
return validate(s.replace("-", "_"), None);
}
}
}
"rust_out".to_string()
}
pub fn build_link_meta(sess: &Session,
krate: &hir::Crate,
name: &str)
-> LinkMeta {
let r = LinkMeta {
crate_name: name.to_owned(),
crate_hash: Svh::calculate(&sess.opts.cg.metadata, krate),
};
info!("{:?}", r);
return r;
}
fn truncated_hash_result(symbol_hasher: &mut Sha256) -> String {
let output = symbol_hasher.result_bytes();
// 64 bits should be enough to avoid collisions.
output[.. 8].to_hex().to_string()
}
// This calculates STH for a symbol, as defined above
fn symbol_hash<'tcx>(tcx: &ty::ctxt<'tcx>,
symbol_hasher: &mut Sha256,
t: Ty<'tcx>,
link_meta: &LinkMeta)
-> String {
// NB: do *not* use abbrevs here as we want the symbol names
// to be independent of one another in the crate.
symbol_hasher.reset();
symbol_hasher.input_str(&link_meta.crate_name);
symbol_hasher.input_str("-");
symbol_hasher.input_str(link_meta.crate_hash.as_str());
for meta in tcx.sess.crate_metadata.borrow().iter() {
symbol_hasher.input_str(&meta[..]);
}
symbol_hasher.input_str("-");
symbol_hasher.input(&tcx.sess.cstore.encode_type(tcx, t));
// Prefix with 'h' so that it never blends into adjacent digits
let mut hash = String::from("h");
hash.push_str(&truncated_hash_result(symbol_hasher));
hash
}
fn get_symbol_hash<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>) -> String {
match ccx.type_hashcodes().borrow().get(&t) {
Some(h) => return h.to_string(),
None => {}
}
let mut symbol_hasher = ccx.symbol_hasher().borrow_mut();
let hash = symbol_hash(ccx.tcx(), &mut *symbol_hasher, t, ccx.link_meta());
ccx.type_hashcodes().borrow_mut().insert(t, hash.clone());
hash
}
// Name sanitation. LLVM will happily accept identifiers with weird names, but
// gas doesn't!
// gas accepts the following characters in symbols: a-z, A-Z, 0-9, ., _, $
pub fn sanitize(s: &str) -> String {
let mut result = String::new();
for c in s.chars() {
match c {
// Escape these with $ sequences
'@' => result.push_str("$SP$"),
'*' => result.push_str("$BP$"),
'&' => result.push_str("$RF$"),
'<' => result.push_str("$LT$"),
'>' => result.push_str("$GT$"),
'(' => result.push_str("$LP$"),
')' => result.push_str("$RP$"),
',' => result.push_str("$C$"),
// '.' doesn't occur in types and functions, so reuse it
// for ':' and '-'
'-' | ':' => result.push('.'),
// These are legal symbols
'a' ... 'z'
| 'A' ... 'Z'
| '0' ... '9'
| '_' | '.' | '$' => result.push(c),
_ => {
result.push('$');
for c in c.escape_unicode().skip(1) {
match c {
'{' => {},
'}' => result.push('$'),
c => result.push(c),
}
}
}
}
}
// Underscore-qualify anything that didn't start as an ident.
if !result.is_empty() &&
result.as_bytes()[0] != '_' as u8 &&
! (result.as_bytes()[0] as char).is_xid_start() {
return format!("_{}", &result[..]);
}
return result;
}
pub fn mangle<PI: Iterator<Item=InternedString>>(path: PI, hash: Option<&str>) -> String {
// Follow C++ namespace-mangling style, see
// http://en.wikipedia.org/wiki/Name_mangling for more info.
//
// It turns out that on OSX you can actually have arbitrary symbols in
// function names (at least when given to LLVM), but this is not possible
// when using unix's linker. Perhaps one day when we just use a linker from LLVM
// we won't need to do this name mangling. The problem with name mangling is
// that it seriously limits the available characters. For example we can't
// have things like &T in symbol names when one would theoretically
// want them for things like impls of traits on that type.
//
// To be able to work on all platforms and get *some* reasonable output, we
// use C++ name-mangling.
let mut n = String::from("_ZN"); // _Z == Begin name-sequence, N == nested
fn push(n: &mut String, s: &str) {
let sani = sanitize(s);
n.push_str(&format!("{}{}", sani.len(), sani));
}
// First, connect each component with <len, name> pairs.
for data in path {
push(&mut n, &data);
}
match hash {
Some(s) => push(&mut n, s),
None => {}
}
n.push('E'); // End name-sequence.
n
}
pub fn exported_name(path: DefPath, hash: &str) -> String {
let path = path.into_iter()
.map(|e| e.data.as_interned_str());
mangle(path, Some(hash))
}
pub fn mangle_exported_name<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, path: DefPath,
t: Ty<'tcx>, id: ast::NodeId) -> String {
let mut hash = get_symbol_hash(ccx, t);
// Paths can be completely identical for different nodes,
// e.g. `fn foo() { { fn a() {} } { fn a() {} } }`, so we
// generate unique characters from the node id. For now
// hopefully 3 characters is enough to avoid collisions.
const EXTRA_CHARS: &'static str =
"abcdefghijklmnopqrstuvwxyz\
ABCDEFGHIJKLMNOPQRSTUVWXYZ\
0123456789";
let id = id as usize;
let extra1 = id % EXTRA_CHARS.len();
let id = id / EXTRA_CHARS.len();
let extra2 = id % EXTRA_CHARS.len();
let id = id / EXTRA_CHARS.len();
let extra3 = id % EXTRA_CHARS.len();
hash.push(EXTRA_CHARS.as_bytes()[extra1] as char);
hash.push(EXTRA_CHARS.as_bytes()[extra2] as char);
hash.push(EXTRA_CHARS.as_bytes()[extra3] as char);
exported_name(path, &hash[..])
}
pub fn mangle_internal_name_by_type_and_seq<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>,
name: &str) -> String {
let path = [token::intern(&t.to_string()).as_str(), gensym_name(name).as_str()];
let hash = get_symbol_hash(ccx, t);
mangle(path.iter().cloned(), Some(&hash[..]))
}
pub fn mangle_internal_name_by_path_and_seq(path: DefPath, flav: &str) -> String {
let names =
path.into_iter()
.map(|e| e.data.as_interned_str())
.chain(once(gensym_name(flav).as_str())); // append unique version of "flav"
mangle(names, None)
}
pub fn get_linker(sess: &Session) -> (String, Command) {
if let Some(ref linker) = sess.opts.cg.linker {
(linker.clone(), Command::new(linker))
} else if sess.target.target.options.is_like_msvc {
("link.exe".to_string(), msvc::link_exe_cmd(sess))
} else {
(sess.target.target.options.linker.clone(),
Command::new(&sess.target.target.options.linker))
}
}
pub fn get_ar_prog(sess: &Session) -> String {
sess.opts.cg.ar.clone().unwrap_or_else(|| {
sess.target.target.options.ar.clone()
})
}
fn command_path(sess: &Session) -> OsString {
// The compiler's sysroot often has some bundled tools, so add it to the
// PATH for the child.
let mut new_path = sess.host_filesearch(PathKind::All)
.get_tools_search_paths();
if let Some(path) = env::var_os("PATH") {
new_path.extend(env::split_paths(&path));
}
env::join_paths(new_path).unwrap()
}
pub fn remove(sess: &Session, path: &Path) {
match fs::remove_file(path) {
Ok(..) => {}
Err(e) => {
sess.err(&format!("failed to remove {}: {}",
path.display(),
e));
}
}
}
/// Perform the linkage portion of the compilation phase. This will generate all
/// of the requested outputs for this compilation session.
pub fn link_binary(sess: &Session,
trans: &CrateTranslation,
outputs: &OutputFilenames,
crate_name: &str) -> Vec<PathBuf> {
let mut out_filenames = Vec::new();
for &crate_type in sess.crate_types.borrow().iter() {
if invalid_output_for_target(sess, crate_type) {
sess.bug(&format!("invalid output type `{:?}` for target os `{}`",
crate_type, sess.opts.target_triple));
}
let out_file = link_binary_output(sess, trans, crate_type, outputs,
crate_name);
out_filenames.push(out_file);
}
// Remove the temporary object file and metadata if we aren't saving temps
if !sess.opts.cg.save_temps {
for obj in object_filenames(sess, outputs) {
remove(sess, &obj);
}
remove(sess, &outputs.with_extension("metadata.o"));
}
out_filenames
}
/// Returns default crate type for target
///
/// Default crate type is used when crate type isn't provided neither
/// through cmd line arguments nor through crate attributes
///
/// It is CrateTypeExecutable for all platforms but iOS as there is no
/// way to run iOS binaries anyway without jailbreaking and
/// interaction with Rust code through static library is the only
/// option for now
pub fn default_output_for_target(sess: &Session) -> config::CrateType {
if !sess.target.target.options.executables {
config::CrateTypeStaticlib
} else {
config::CrateTypeExecutable
}
}
/// Checks if target supports crate_type as output
pub fn invalid_output_for_target(sess: &Session,
crate_type: config::CrateType) -> bool {
match (sess.target.target.options.dynamic_linking,
sess.target.target.options.executables, crate_type) {
(false, _, config::CrateTypeDylib) => true,
(_, false, config::CrateTypeExecutable) => true,
_ => false
}
}
fn is_writeable(p: &Path) -> bool {
match p.metadata() {
Err(..) => true,
Ok(m) => !m.permissions().readonly()
}
}
pub fn filename_for_input(sess: &Session,
crate_type: config::CrateType,
crate_name: &str,
outputs: &OutputFilenames) -> PathBuf {
let libname = format!("{}{}", crate_name, sess.opts.cg.extra_filename);
match crate_type {
config::CrateTypeRlib => {
outputs.out_directory.join(&format!("lib{}.rlib", libname))
}
config::CrateTypeDylib => {
let (prefix, suffix) = (&sess.target.target.options.dll_prefix,
&sess.target.target.options.dll_suffix);
outputs.out_directory.join(&format!("{}{}{}", prefix, libname,
suffix))
}
config::CrateTypeStaticlib => {
outputs.out_directory.join(&format!("lib{}.a", libname))
}
config::CrateTypeExecutable => {
let suffix = &sess.target.target.options.exe_suffix;
let out_filename = outputs.path(OutputType::Exe);
if suffix.is_empty() {
out_filename.to_path_buf()
} else {
out_filename.with_extension(&suffix[1..])
}
}
}
}
pub fn each_linked_rlib(sess: &Session,
f: &mut FnMut(ast::CrateNum, &Path)) {
let crates = sess.cstore.used_crates(LinkagePreference::RequireStatic).into_iter();
let fmts = sess.dependency_formats.borrow();
let fmts = fmts.get(&config::CrateTypeExecutable).or_else(|| {
fmts.get(&config::CrateTypeStaticlib)
}).unwrap_or_else(|| {
sess.bug("could not find formats for rlibs")
});
for (cnum, path) in crates {
match fmts[cnum as usize - 1] {
Linkage::NotLinked | Linkage::IncludedFromDylib => continue,
_ => {}
}
let name = sess.cstore.crate_name(cnum).clone();
let path = match path {
Some(p) => p,
None => {
sess.fatal(&format!("could not find rlib for: `{}`", name));
}
};
f(cnum, &path);
}
}
fn link_binary_output(sess: &Session,
trans: &CrateTranslation,
crate_type: config::CrateType,
outputs: &OutputFilenames,
crate_name: &str) -> PathBuf {
let objects = object_filenames(sess, outputs);
let default_filename = filename_for_input(sess, crate_type, crate_name,
outputs);
let out_filename = outputs.outputs.get(&OutputType::Exe)
.and_then(|s| s.to_owned())
.or_else(|| outputs.single_output_file.clone())
.unwrap_or(default_filename);
// Make sure files are writeable. Mac, FreeBSD, and Windows system linkers
// check this already -- however, the Linux linker will happily overwrite a
// read-only file. We should be consistent.
for file in objects.iter().chain(Some(&out_filename)) {
if !is_writeable(file) {
sess.fatal(&format!("output file {} is not writeable -- check its \
permissions", file.display()));
}
}
let tmpdir = match TempDir::new("rustc") {
Ok(tmpdir) => tmpdir,
Err(err) => sess.fatal(&format!("couldn't create a temp dir: {}", err)),
};
match crate_type {
config::CrateTypeRlib => {
link_rlib(sess, Some(trans), &objects, &out_filename,
tmpdir.path()).build();
}
config::CrateTypeStaticlib => {
link_staticlib(sess, &objects, &out_filename, tmpdir.path());
}
config::CrateTypeExecutable => {
link_natively(sess, false, &objects, &out_filename, trans, outputs,
tmpdir.path());
}
config::CrateTypeDylib => {
link_natively(sess, true, &objects, &out_filename, trans, outputs,
tmpdir.path());
}
}
out_filename
}
fn object_filenames(sess: &Session, outputs: &OutputFilenames) -> Vec<PathBuf> {
(0..sess.opts.cg.codegen_units).map(|i| {
let ext = format!("{}.o", i);
outputs.temp_path(OutputType::Object).with_extension(&ext)
}).collect()
}
fn archive_search_paths(sess: &Session) -> Vec<PathBuf> {
let mut search = Vec::new();
sess.target_filesearch(PathKind::Native).for_each_lib_search_path(|path, _| {
search.push(path.to_path_buf());
});
return search;
}
fn archive_config<'a>(sess: &'a Session,
output: &Path,
input: Option<&Path>) -> ArchiveConfig<'a> {
ArchiveConfig {
sess: sess,
dst: output.to_path_buf(),
src: input.map(|p| p.to_path_buf()),
lib_search_paths: archive_search_paths(sess),
ar_prog: get_ar_prog(sess),
command_path: command_path(sess),
}
}
// Create an 'rlib'
//
// An rlib in its current incarnation is essentially a renamed .a file. The
// rlib primarily contains the object file of the crate, but it also contains
// all of the object files from native libraries. This is done by unzipping
// native libraries and inserting all of the contents into this archive.
fn link_rlib<'a>(sess: &'a Session,
trans: Option<&CrateTranslation>, // None == no metadata/bytecode
objects: &[PathBuf],
out_filename: &Path,
tmpdir: &Path) -> ArchiveBuilder<'a> {
info!("preparing rlib from {:?} to {:?}", objects, out_filename);
let mut ab = ArchiveBuilder::new(archive_config(sess, out_filename, None));
for obj in objects {
ab.add_file(obj);
}
for (l, kind) in sess.cstore.used_libraries() {
match kind {
NativeLibraryKind::NativeStatic => ab.add_native_library(&l),
NativeLibraryKind::NativeFramework |
NativeLibraryKind::NativeUnknown => {}
}
}
// After adding all files to the archive, we need to update the
// symbol table of the archive.
ab.update_symbols();
// For OSX/iOS, we must be careful to update symbols only when adding
// object files. We're about to start adding non-object files, so run
// `ar` now to process the object files.
if sess.target.target.options.is_like_osx && !ab.using_llvm() {
ab.build();
}
// Note that it is important that we add all of our non-object "magical
// files" *after* all of the object files in the archive. The reason for
// this is as follows:
//
// * When performing LTO, this archive will be modified to remove
// objects from above. The reason for this is described below.
//
// * When the system linker looks at an archive, it will attempt to
// determine the architecture of the archive in order to see whether its
// linkable.
//
// The algorithm for this detection is: iterate over the files in the
// archive. Skip magical SYMDEF names. Interpret the first file as an
// object file. Read architecture from the object file.
//
// * As one can probably see, if "metadata" and "foo.bc" were placed
// before all of the objects, then the architecture of this archive would
// not be correctly inferred once 'foo.o' is removed.
//
// Basically, all this means is that this code should not move above the
// code above.
match trans {
Some(trans) => {
// Instead of putting the metadata in an object file section, rlibs
// contain the metadata in a separate file. We use a temp directory
// here so concurrent builds in the same directory don't try to use
// the same filename for metadata (stomping over one another)
let metadata = tmpdir.join(sess.cstore.metadata_filename());
match fs::File::create(&metadata).and_then(|mut f| {
f.write_all(&trans.metadata)
}) {
Ok(..) => {}
Err(e) => {
sess.fatal(&format!("failed to write {}: {}",
metadata.display(), e));
}
}
ab.add_file(&metadata);
// For LTO purposes, the bytecode of this library is also inserted
// into the archive. If codegen_units > 1, we insert each of the
// bitcode files.
for obj in objects {
// Note that we make sure that the bytecode filename in the
// archive is never exactly 16 bytes long by adding a 16 byte
// extension to it. This is to work around a bug in LLDB that
// would cause it to crash if the name of a file in an archive
// was exactly 16 bytes.
let bc_filename = obj.with_extension("bc");
let bc_deflated_filename = tmpdir.join({
obj.with_extension("bytecode.deflate").file_name().unwrap()
});
let mut bc_data = Vec::new();
match fs::File::open(&bc_filename).and_then(|mut f| {
f.read_to_end(&mut bc_data)
}) {
Ok(..) => {}
Err(e) => sess.fatal(&format!("failed to read bytecode: {}",
e))
}
let bc_data_deflated = flate::deflate_bytes(&bc_data[..]);
let mut bc_file_deflated = match fs::File::create(&bc_deflated_filename) {
Ok(file) => file,
Err(e) => {
sess.fatal(&format!("failed to create compressed \
bytecode file: {}", e))
}
};
match write_rlib_bytecode_object_v1(&mut bc_file_deflated,
&bc_data_deflated) {
Ok(()) => {}
Err(e) => {
sess.fatal(&format!("failed to write compressed \
bytecode: {}", e));
}
};
ab.add_file(&bc_deflated_filename);
// See the bottom of back::write::run_passes for an explanation
// of when we do and don't keep .0.bc files around.
let user_wants_numbered_bitcode =
sess.opts.output_types.contains_key(&OutputType::Bitcode) &&
sess.opts.cg.codegen_units > 1;
if !sess.opts.cg.save_temps && !user_wants_numbered_bitcode {
remove(sess, &bc_filename);
}
}
// After adding all files to the archive, we need to update the
// symbol table of the archive. This currently dies on OSX (see
// #11162), and isn't necessary there anyway
if !sess.target.target.options.is_like_osx || ab.using_llvm() {
ab.update_symbols();
}
}
None => {}
}
ab
}
fn write_rlib_bytecode_object_v1(writer: &mut Write,
bc_data_deflated: &[u8]) -> io::Result<()> {
let bc_data_deflated_size: u64 = bc_data_deflated.len() as u64;
try!(writer.write_all(RLIB_BYTECODE_OBJECT_MAGIC));
try!(writer.write_all(&[1, 0, 0, 0]));
try!(writer.write_all(&[
(bc_data_deflated_size >> 0) as u8,
(bc_data_deflated_size >> 8) as u8,
(bc_data_deflated_size >> 16) as u8,
(bc_data_deflated_size >> 24) as u8,
(bc_data_deflated_size >> 32) as u8,
(bc_data_deflated_size >> 40) as u8,
(bc_data_deflated_size >> 48) as u8,
(bc_data_deflated_size >> 56) as u8,
]));
try!(writer.write_all(&bc_data_deflated));
let number_of_bytes_written_so_far =
RLIB_BYTECODE_OBJECT_MAGIC.len() + // magic id
mem::size_of_val(&RLIB_BYTECODE_OBJECT_VERSION) + // version
mem::size_of_val(&bc_data_deflated_size) + // data size field
bc_data_deflated_size as usize; // actual data
// If the number of bytes written to the object so far is odd, add a
// padding byte to make it even. This works around a crash bug in LLDB
// (see issue #15950)
if number_of_bytes_written_so_far % 2 == 1 {
try!(writer.write_all(&[0]));
}
return Ok(());
}
// Create a static archive
//
// This is essentially the same thing as an rlib, but it also involves adding
// all of the upstream crates' objects into the archive. This will slurp in
// all of the native libraries of upstream dependencies as well.
//
// Additionally, there's no way for us to link dynamic libraries, so we warn
// about all dynamic library dependencies that they're not linked in.
//
// There's no need to include metadata in a static archive, so ensure to not
// link in the metadata object file (and also don't prepare the archive with a
// metadata file).
fn link_staticlib(sess: &Session, objects: &[PathBuf], out_filename: &Path,
tempdir: &Path) {
let mut ab = link_rlib(sess, None, objects, out_filename, tempdir);
if sess.target.target.options.is_like_osx && !ab.using_llvm() {
ab.build();
}
if !sess.target.target.options.no_compiler_rt {
ab.add_native_library("compiler-rt");
}
let mut all_native_libs = vec![];
each_linked_rlib(sess, &mut |cnum, path| {
let name = sess.cstore.crate_name(cnum);
ab.add_rlib(path, &name, sess.lto()).unwrap();
let native_libs = sess.cstore.native_libraries(cnum);
all_native_libs.extend(native_libs);
});
ab.update_symbols();
ab.build();
if !all_native_libs.is_empty() {
sess.note_without_error("link against the following native artifacts when linking against \
this static library");
sess.note_without_error("the order and any duplication can be significant on some \
platforms, and so may need to be preserved");
}
for &(kind, ref lib) in &all_native_libs {
let name = match kind {
NativeLibraryKind::NativeStatic => "static library",
NativeLibraryKind::NativeUnknown => "library",
NativeLibraryKind::NativeFramework => "framework",
};
sess.note_without_error(&format!("{}: {}", name, *lib));
}
}
// Create a dynamic library or executable
//
// This will invoke the system linker/cc to create the resulting file. This
// links to all upstream files as well.
fn link_natively(sess: &Session, dylib: bool,
objects: &[PathBuf], out_filename: &Path,
trans: &CrateTranslation,
outputs: &OutputFilenames,
tmpdir: &Path) {
info!("preparing dylib? ({}) from {:?} to {:?}", dylib, objects,
out_filename);
// The invocations of cc share some flags across platforms
let (pname, mut cmd) = get_linker(sess);
cmd.env("PATH", command_path(sess));
let root = sess.target_filesearch(PathKind::Native).get_lib_path();
cmd.args(&sess.target.target.options.pre_link_args);
let pre_link_objects = if dylib {
&sess.target.target.options.pre_link_objects_dll
} else {
&sess.target.target.options.pre_link_objects_exe
};
for obj in pre_link_objects {
cmd.arg(root.join(obj));
}
{
let mut linker = if sess.target.target.options.is_like_msvc {
Box::new(MsvcLinker { cmd: &mut cmd, sess: &sess }) as Box<Linker>
} else {
Box::new(GnuLinker { cmd: &mut cmd, sess: &sess }) as Box<Linker>
};
link_args(&mut *linker, sess, dylib, tmpdir,
objects, out_filename, trans, outputs);
if !sess.target.target.options.no_compiler_rt {
linker.link_staticlib("compiler-rt");
}
}
cmd.args(&sess.target.target.options.late_link_args);
for obj in &sess.target.target.options.post_link_objects {
cmd.arg(root.join(obj));
}
cmd.args(&sess.target.target.options.post_link_args);
if sess.opts.debugging_opts.print_link_args {
println!("{:?}", &cmd);
}
// May have not found libraries in the right formats.
sess.abort_if_errors();
// Invoke the system linker
info!("{:?}", &cmd);
let prog = time(sess.time_passes(), "running linker", || cmd.output());
match prog {
Ok(prog) => {
fn escape_string(s: &[u8]) -> String {
str::from_utf8(s).map(|s| s.to_owned())
.unwrap_or_else(|_| {
let mut x = "Non-UTF-8 output: ".to_string();
x.extend(s.iter()
.flat_map(|&b| ascii::escape_default(b))
.map(|b| char::from_u32(b as u32).unwrap()));
x
})
}
if !prog.status.success() {
let mut output = prog.stderr.clone();
output.extend_from_slice(&prog.stdout);
sess.struct_err(&format!("linking with `{}` failed: {}",
pname,
prog.status))
.note(&format!("{:?}", &cmd))
.note(&*escape_string(&output[..]))
.emit();
sess.abort_if_errors();
}
info!("linker stderr:\n{}", escape_string(&prog.stderr[..]));
info!("linker stdout:\n{}", escape_string(&prog.stdout[..]));
},
Err(e) => {
sess.fatal(&format!("could not exec the linker `{}`: {}", pname, e));
}
}
// On OSX, debuggers need this utility to get run to do some munging of
// the symbols
if sess.target.target.options.is_like_osx && sess.opts.debuginfo != NoDebugInfo {
match Command::new("dsymutil").arg(out_filename).output() {
Ok(..) => {}
Err(e) => sess.fatal(&format!("failed to run dsymutil: {}", e)),
}
}
}
fn link_args(cmd: &mut Linker,
sess: &Session,
dylib: bool,
tmpdir: &Path,
objects: &[PathBuf],
out_filename: &Path,
trans: &CrateTranslation,
outputs: &OutputFilenames) {
// The default library location, we need this to find the runtime.
// The location of crates will be determined as needed.
let lib_path = sess.target_filesearch(PathKind::All).get_lib_path();
// target descriptor
let t = &sess.target.target;
cmd.include_path(&fix_windows_verbatim_for_gcc(&lib_path));
for obj in objects {
cmd.add_object(obj);
}
cmd.output_filename(out_filename);
// If we're building a dynamic library then some platforms need to make sure
// that all symbols are exported correctly from the dynamic library.
if dylib {
cmd.export_symbols(sess, trans, tmpdir);
}
// When linking a dynamic library, we put the metadata into a section of the
// executable. This metadata is in a separate object file from the main
// object file, so we link that in here.
if dylib {
cmd.add_object(&outputs.with_extension("metadata.o"));
}
// Try to strip as much out of the generated object by removing unused
// sections if possible. See more comments in linker.rs
cmd.gc_sections(dylib);
let used_link_args = sess.cstore.used_link_args();
if !dylib && t.options.position_independent_executables {
let empty_vec = Vec::new();
let empty_str = String::new();
let args = sess.opts.cg.link_args.as_ref().unwrap_or(&empty_vec);
let mut args = args.iter().chain(used_link_args.iter());
let relocation_model = sess.opts.cg.relocation_model.as_ref()
.unwrap_or(&empty_str);
if (t.options.relocation_model == "pic" || *relocation_model == "pic")
&& !args.any(|x| *x == "-static") {
cmd.position_independent_executable();
}
}
// Pass optimization flags down to the linker.
cmd.optimize();
// Pass debuginfo flags down to the linker.
cmd.debuginfo();
// We want to prevent the compiler from accidentally leaking in any system
// libraries, so we explicitly ask gcc to not link to any libraries by
// default. Note that this does not happen for windows because windows pulls
// in some large number of libraries and I couldn't quite figure out which
// subset we wanted.
if t.options.no_default_libraries {
cmd.no_default_libraries();
}
// Take careful note of the ordering of the arguments we pass to the linker
// here. Linkers will assume that things on the left depend on things to the
// right. Things on the right cannot depend on things on the left. This is
// all formally implemented in terms of resolving symbols (libs on the right
// resolve unknown symbols of libs on the left, but not vice versa).
//
// For this reason, we have organized the arguments we pass to the linker as
// such:
//
// 1. The local object that LLVM just generated
// 2. Local native libraries
// 3. Upstream rust libraries
// 4. Upstream native libraries
//
// The rationale behind this ordering is that those items lower down in the
// list can't depend on items higher up in the list. For example nothing can
// depend on what we just generated (e.g. that'd be a circular dependency).
// Upstream rust libraries are not allowed to depend on our local native
// libraries as that would violate the structure of the DAG, in that
// scenario they are required to link to them as well in a shared fashion.
//
// Note that upstream rust libraries may contain native dependencies as
// well, but they also can't depend on what we just started to add to the
// link line. And finally upstream native libraries can't depend on anything
// in this DAG so far because they're only dylibs and dylibs can only depend
// on other dylibs (e.g. other native deps).
add_local_native_libraries(cmd, sess);
add_upstream_rust_crates(cmd, sess, dylib, tmpdir);
add_upstream_native_libraries(cmd, sess);
// # Telling the linker what we're doing
if dylib {
cmd.build_dylib(out_filename);
}
// FIXME (#2397): At some point we want to rpath our guesses as to
// where extern libraries might live, based on the
// addl_lib_search_paths
if sess.opts.cg.rpath {
let sysroot = sess.sysroot();
let target_triple = &sess.opts.target_triple;
let mut get_install_prefix_lib_path = || {
let install_prefix = option_env!("CFG_PREFIX").expect("CFG_PREFIX");
let tlib = filesearch::relative_target_lib_path(sysroot, target_triple);
let mut path = PathBuf::from(install_prefix);
path.push(&tlib);
path
};
let mut rpath_config = RPathConfig {
used_crates: sess.cstore.used_crates(LinkagePreference::RequireDynamic),
out_filename: out_filename.to_path_buf(),
has_rpath: sess.target.target.options.has_rpath,
is_like_osx: sess.target.target.options.is_like_osx,
linker_is_gnu: sess.target.target.options.linker_is_gnu,
get_install_prefix_lib_path: &mut get_install_prefix_lib_path,
};
cmd.args(&rpath::get_rpath_flags(&mut rpath_config));
}
// Finally add all the linker arguments provided on the command line along
// with any #[link_args] attributes found inside the crate
if let Some(ref args) = sess.opts.cg.link_args {
cmd.args(args);
}
cmd.args(&used_link_args);
}
// # Native library linking
//
// User-supplied library search paths (-L on the command line). These are
// the same paths used to find Rust crates, so some of them may have been
// added already by the previous crate linking code. This only allows them
// to be found at compile time so it is still entirely up to outside
// forces to make sure that library can be found at runtime.
//
// Also note that the native libraries linked here are only the ones located
// in the current crate. Upstream crates with native library dependencies
// may have their native library pulled in above.
fn add_local_native_libraries(cmd: &mut Linker, sess: &Session) {
sess.target_filesearch(PathKind::All).for_each_lib_search_path(|path, k| {
match k {
PathKind::Framework => { cmd.framework_path(path); }
_ => { cmd.include_path(&fix_windows_verbatim_for_gcc(path)); }
}
});
let libs = sess.cstore.used_libraries();
let staticlibs = libs.iter().filter_map(|&(ref l, kind)| {
if kind == NativeLibraryKind::NativeStatic {Some(l)} else {None}
});
let others = libs.iter().filter(|&&(_, kind)| {
kind != NativeLibraryKind::NativeStatic
});
// Some platforms take hints about whether a library is static or dynamic.
// For those that support this, we ensure we pass the option if the library
// was flagged "static" (most defaults are dynamic) to ensure that if
// libfoo.a and libfoo.so both exist that the right one is chosen.
cmd.hint_static();
let search_path = archive_search_paths(sess);
for l in staticlibs {
// Here we explicitly ask that the entire archive is included into the
// result artifact. For more details see #15460, but the gist is that
// the linker will strip away any unused objects in the archive if we
// don't otherwise explicitly reference them. This can occur for
// libraries which are just providing bindings, libraries with generic
// functions, etc.
cmd.link_whole_staticlib(l, &search_path);
}
cmd.hint_dynamic();
for &(ref l, kind) in others {
match kind {
NativeLibraryKind::NativeUnknown => cmd.link_dylib(l),
NativeLibraryKind::NativeFramework => cmd.link_framework(l),
NativeLibraryKind::NativeStatic => unreachable!(),
}
}
}
// # Rust Crate linking
//
// Rust crates are not considered at all when creating an rlib output. All
// dependencies will be linked when producing the final output (instead of
// the intermediate rlib version)
fn add_upstream_rust_crates(cmd: &mut Linker, sess: &Session,
dylib: bool, tmpdir: &Path) {
// All of the heavy lifting has previously been accomplished by the
// dependency_format module of the compiler. This is just crawling the
// output of that module, adding crates as necessary.
//
// Linking to a rlib involves just passing it to the linker (the linker
// will slurp up the object files inside), and linking to a dynamic library
// involves just passing the right -l flag.
let formats = sess.dependency_formats.borrow();
let data = if dylib {
formats.get(&config::CrateTypeDylib).unwrap()
} else {
formats.get(&config::CrateTypeExecutable).unwrap()
};
// Invoke get_used_crates to ensure that we get a topological sorting of
// crates.
let deps = sess.cstore.used_crates(LinkagePreference::RequireDynamic);
for &(cnum, _) in &deps {
// We may not pass all crates through to the linker. Some crates may
// appear statically in an existing dylib, meaning we'll pick up all the
// symbols from the dylib.
let src = sess.cstore.used_crate_source(cnum);
match data[cnum as usize - 1] {
Linkage::NotLinked |
Linkage::IncludedFromDylib => {}
Linkage::Static => {
add_static_crate(cmd, sess, tmpdir, dylib, &src.rlib.unwrap().0)
}
Linkage::Dynamic => {
add_dynamic_crate(cmd, sess, &src.dylib.unwrap().0)
}
}
}
// Converts a library file-stem into a cc -l argument
fn unlib<'a>(config: &config::Config, stem: &'a str) -> &'a str {
if stem.starts_with("lib") && !config.target.options.is_like_windows {
&stem[3..]
} else {
stem
}
}
// Adds the static "rlib" versions of all crates to the command line.
// There's a bit of magic which happens here specifically related to LTO and
// dynamic libraries. Specifically:
//
// * For LTO, we remove upstream object files.
// * For dylibs we remove metadata and bytecode from upstream rlibs
//
// When performing LTO, all of the bytecode from the upstream libraries has
// already been included in our object file output. As a result we need to
// remove the object files in the upstream libraries so the linker doesn't
// try to include them twice (or whine about duplicate symbols). We must
// continue to include the rest of the rlib, however, as it may contain
// static native libraries which must be linked in.
//
// When making a dynamic library, linkers by default don't include any
// object files in an archive if they're not necessary to resolve the link.
// We basically want to convert the archive (rlib) to a dylib, though, so we
// *do* want everything included in the output, regardless of whether the
// linker thinks it's needed or not. As a result we must use the
// --whole-archive option (or the platform equivalent). When using this
// option the linker will fail if there are non-objects in the archive (such
// as our own metadata and/or bytecode). All in all, for rlibs to be
// entirely included in dylibs, we need to remove all non-object files.
//
// Note, however, that if we're not doing LTO or we're not producing a dylib
// (aka we're making an executable), we can just pass the rlib blindly to
// the linker (fast) because it's fine if it's not actually included as
// we're at the end of the dependency chain.
fn add_static_crate(cmd: &mut Linker, sess: &Session, tmpdir: &Path,
dylib: bool, cratepath: &Path) {
if !sess.lto() && !dylib {
cmd.link_rlib(&fix_windows_verbatim_for_gcc(cratepath));
return
}
let dst = tmpdir.join(cratepath.file_name().unwrap());
let name = cratepath.file_name().unwrap().to_str().unwrap();
let name = &name[3..name.len() - 5]; // chop off lib/.rlib
time(sess.time_passes(), &format!("altering {}.rlib", name), || {
let cfg = archive_config(sess, &dst, Some(cratepath));
let mut archive = ArchiveBuilder::new(cfg);
archive.remove_file(sess.cstore.metadata_filename());
archive.update_symbols();
let mut any_objects = false;
for f in archive.src_files() {
if f.ends_with("bytecode.deflate") {
archive.remove_file(&f);
continue
}
let canonical = f.replace("-", "_");
let canonical_name = name.replace("-", "_");
if sess.lto() && canonical.starts_with(&canonical_name) &&
canonical.ends_with(".o") {
let num = &f[name.len()..f.len() - 2];
if num.len() > 0 && num[1..].parse::<u32>().is_ok() {
archive.remove_file(&f);
continue
}
}
any_objects = true;
}
if any_objects {
archive.build();
cmd.link_whole_rlib(&fix_windows_verbatim_for_gcc(&dst));
}
});
}
// Same thing as above, but for dynamic crates instead of static crates.
fn add_dynamic_crate(cmd: &mut Linker, sess: &Session, cratepath: &Path) {
// If we're performing LTO, then it should have been previously required
// that all upstream rust dependencies were available in an rlib format.
assert!(!sess.lto());
// Just need to tell the linker about where the library lives and
// what its name is
let parent = cratepath.parent();
if let Some(dir) = parent {
cmd.include_path(&fix_windows_verbatim_for_gcc(dir));
}
let filestem = cratepath.file_stem().unwrap().to_str().unwrap();
cmd.link_rust_dylib(&unlib(&sess.target, filestem),
parent.unwrap_or(Path::new("")));
}
}
// Link in all of our upstream crates' native dependencies. Remember that
// all of these upstream native dependencies are all non-static
// dependencies. We've got two cases then:
//
// 1. The upstream crate is an rlib. In this case we *must* link in the
// native dependency because the rlib is just an archive.
//
// 2. The upstream crate is a dylib. In order to use the dylib, we have to
// have the dependency present on the system somewhere. Thus, we don't
// gain a whole lot from not linking in the dynamic dependency to this
// crate as well.
//
// The use case for this is a little subtle. In theory the native
// dependencies of a crate are purely an implementation detail of the crate
// itself, but the problem arises with generic and inlined functions. If a
// generic function calls a native function, then the generic function must
// be instantiated in the target crate, meaning that the native symbol must
// also be resolved in the target crate.
fn add_upstream_native_libraries(cmd: &mut Linker, sess: &Session) {
// Be sure to use a topological sorting of crates because there may be
// interdependencies between native libraries. When passing -nodefaultlibs,
// for example, almost all native libraries depend on libc, so we have to
// make sure that's all the way at the right (liblibc is near the base of
// the dependency chain).
//
// This passes RequireStatic, but the actual requirement doesn't matter,
// we're just getting an ordering of crate numbers, we're not worried about
// the paths.
let crates = sess.cstore.used_crates(LinkagePreference::RequireStatic);
for (cnum, _) in crates {
let libs = sess.cstore.native_libraries(cnum);
for &(kind, ref lib) in &libs {
match kind {
NativeLibraryKind::NativeUnknown => cmd.link_dylib(lib),
NativeLibraryKind::NativeFramework => cmd.link_framework(lib),
NativeLibraryKind::NativeStatic => {
sess.bug("statics shouldn't be propagated");
}
}
}
}
}