blob: 1ea09490aed2f4d05d99f64d555e68db2e45de2f [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A graph module for use in dataflow, region resolution, and elsewhere.
//!
//! # Interface details
//!
//! You customize the graph by specifying a "node data" type `N` and an
//! "edge data" type `E`. You can then later gain access (mutable or
//! immutable) to these "user-data" bits. Currently, you can only add
//! nodes or edges to the graph. You cannot remove or modify them once
//! added. This could be changed if we have a need.
//!
//! # Implementation details
//!
//! The main tricky thing about this code is the way that edges are
//! stored. The edges are stored in a central array, but they are also
//! threaded onto two linked lists for each node, one for incoming edges
//! and one for outgoing edges. Note that every edge is a member of some
//! incoming list and some outgoing list. Basically you can load the
//! first index of the linked list from the node data structures (the
//! field `first_edge`) and then, for each edge, load the next index from
//! the field `next_edge`). Each of those fields is an array that should
//! be indexed by the direction (see the type `Direction`).
use bitvec::BitVector;
use std::fmt::{Formatter, Error, Debug};
use std::usize;
use snapshot_vec::{SnapshotVec, SnapshotVecDelegate};
#[cfg(test)]
mod tests;
pub struct Graph<N,E> {
nodes: SnapshotVec<Node<N>> ,
edges: SnapshotVec<Edge<E>> ,
}
pub struct Node<N> {
first_edge: [EdgeIndex; 2], // see module comment
pub data: N,
}
pub struct Edge<E> {
next_edge: [EdgeIndex; 2], // see module comment
source: NodeIndex,
target: NodeIndex,
pub data: E,
}
impl<N> SnapshotVecDelegate for Node<N> {
type Value = Node<N>;
type Undo = ();
fn reverse(_: &mut Vec<Node<N>>, _: ()) {}
}
impl<N> SnapshotVecDelegate for Edge<N> {
type Value = Edge<N>;
type Undo = ();
fn reverse(_: &mut Vec<Edge<N>>, _: ()) {}
}
impl<E: Debug> Debug for Edge<E> {
fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
write!(f, "Edge {{ next_edge: [{:?}, {:?}], source: {:?}, target: {:?}, data: {:?} }}",
self.next_edge[0], self.next_edge[1], self.source,
self.target, self.data)
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub struct NodeIndex(pub usize);
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub struct EdgeIndex(pub usize);
pub const INVALID_EDGE_INDEX: EdgeIndex = EdgeIndex(usize::MAX);
// Use a private field here to guarantee no more instances are created:
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Direction { repr: usize }
pub const OUTGOING: Direction = Direction { repr: 0 };
pub const INCOMING: Direction = Direction { repr: 1 };
impl NodeIndex {
/// Returns unique id (unique with respect to the graph holding associated node).
pub fn node_id(&self) -> usize { self.0 }
}
impl EdgeIndex {
/// Returns unique id (unique with respect to the graph holding associated edge).
pub fn edge_id(&self) -> usize { self.0 }
}
impl<N:Debug,E:Debug> Graph<N,E> {
pub fn new() -> Graph<N,E> {
Graph {
nodes: SnapshotVec::new(),
edges: SnapshotVec::new(),
}
}
///////////////////////////////////////////////////////////////////////////
// Simple accessors
#[inline]
pub fn all_nodes<'a>(&'a self) -> &'a [Node<N>] {
&self.nodes
}
#[inline]
pub fn len_nodes(&self) -> usize {
self.nodes.len()
}
#[inline]
pub fn all_edges<'a>(&'a self) -> &'a [Edge<E>] {
&self.edges
}
#[inline]
pub fn len_edges(&self) -> usize {
self.edges.len()
}
///////////////////////////////////////////////////////////////////////////
// Node construction
pub fn next_node_index(&self) -> NodeIndex {
NodeIndex(self.nodes.len())
}
pub fn add_node(&mut self, data: N) -> NodeIndex {
let idx = self.next_node_index();
self.nodes.push(Node {
first_edge: [INVALID_EDGE_INDEX, INVALID_EDGE_INDEX],
data: data
});
idx
}
pub fn mut_node_data<'a>(&'a mut self, idx: NodeIndex) -> &'a mut N {
&mut self.nodes[idx.0].data
}
pub fn node_data<'a>(&'a self, idx: NodeIndex) -> &'a N {
&self.nodes[idx.0].data
}
pub fn node<'a>(&'a self, idx: NodeIndex) -> &'a Node<N> {
&self.nodes[idx.0]
}
///////////////////////////////////////////////////////////////////////////
// Edge construction and queries
pub fn next_edge_index(&self) -> EdgeIndex {
EdgeIndex(self.edges.len())
}
pub fn add_edge(&mut self,
source: NodeIndex,
target: NodeIndex,
data: E) -> EdgeIndex {
debug!("graph: add_edge({:?}, {:?}, {:?})", source, target, data);
let idx = self.next_edge_index();
// read current first of the list of edges from each node
let source_first = self.nodes[source.0]
.first_edge[OUTGOING.repr];
let target_first = self.nodes[target.0]
.first_edge[INCOMING.repr];
// create the new edge, with the previous firsts from each node
// as the next pointers
self.edges.push(Edge {
next_edge: [source_first, target_first],
source: source,
target: target,
data: data
});
// adjust the firsts for each node target be the next object.
self.nodes[source.0].first_edge[OUTGOING.repr] = idx;
self.nodes[target.0].first_edge[INCOMING.repr] = idx;
return idx;
}
pub fn mut_edge_data<'a>(&'a mut self, idx: EdgeIndex) -> &'a mut E {
&mut self.edges[idx.0].data
}
pub fn edge_data<'a>(&'a self, idx: EdgeIndex) -> &'a E {
&self.edges[idx.0].data
}
pub fn edge<'a>(&'a self, idx: EdgeIndex) -> &'a Edge<E> {
&self.edges[idx.0]
}
pub fn first_adjacent(&self, node: NodeIndex, dir: Direction) -> EdgeIndex {
//! Accesses the index of the first edge adjacent to `node`.
//! This is useful if you wish to modify the graph while walking
//! the linked list of edges.
self.nodes[node.0].first_edge[dir.repr]
}
pub fn next_adjacent(&self, edge: EdgeIndex, dir: Direction) -> EdgeIndex {
//! Accesses the next edge in a given direction.
//! This is useful if you wish to modify the graph while walking
//! the linked list of edges.
self.edges[edge.0].next_edge[dir.repr]
}
///////////////////////////////////////////////////////////////////////////
// Iterating over nodes, edges
pub fn each_node<'a, F>(&'a self, mut f: F) -> bool where
F: FnMut(NodeIndex, &'a Node<N>) -> bool,
{
//! Iterates over all edges defined in the graph.
self.nodes.iter().enumerate().all(|(i, node)| f(NodeIndex(i), node))
}
pub fn each_edge<'a, F>(&'a self, mut f: F) -> bool where
F: FnMut(EdgeIndex, &'a Edge<E>) -> bool,
{
//! Iterates over all edges defined in the graph
self.edges.iter().enumerate().all(|(i, edge)| f(EdgeIndex(i), edge))
}
pub fn outgoing_edges(&self, source: NodeIndex) -> AdjacentEdges<N,E> {
self.adjacent_edges(source, OUTGOING)
}
pub fn incoming_edges(&self, source: NodeIndex) -> AdjacentEdges<N,E> {
self.adjacent_edges(source, INCOMING)
}
pub fn adjacent_edges(&self, source: NodeIndex, direction: Direction) -> AdjacentEdges<N,E> {
let first_edge = self.node(source).first_edge[direction.repr];
AdjacentEdges { graph: self, direction: direction, next: first_edge }
}
pub fn successor_nodes<'a>(&'a self, source: NodeIndex) -> AdjacentTargets<N,E> {
self.outgoing_edges(source).targets()
}
pub fn predecessor_nodes<'a>(&'a self, target: NodeIndex) -> AdjacentSources<N,E> {
self.incoming_edges(target).sources()
}
///////////////////////////////////////////////////////////////////////////
// Fixed-point iteration
//
// A common use for graphs in our compiler is to perform
// fixed-point iteration. In this case, each edge represents a
// constraint, and the nodes themselves are associated with
// variables or other bitsets. This method facilitates such a
// computation.
pub fn iterate_until_fixed_point<'a, F>(&'a self, mut op: F) where
F: FnMut(usize, EdgeIndex, &'a Edge<E>) -> bool,
{
let mut iteration = 0;
let mut changed = true;
while changed {
changed = false;
iteration += 1;
for (i, edge) in self.edges.iter().enumerate() {
changed |= op(iteration, EdgeIndex(i), edge);
}
}
}
pub fn depth_traverse<'a>(&'a self, start: NodeIndex) -> DepthFirstTraversal<'a, N, E> {
DepthFirstTraversal {
graph: self,
stack: vec![start],
visited: BitVector::new(self.nodes.len()),
}
}
}
///////////////////////////////////////////////////////////////////////////
// Iterators
pub struct AdjacentEdges<'g,N,E>
where N:'g, E:'g
{
graph: &'g Graph<N, E>,
direction: Direction,
next: EdgeIndex,
}
impl<'g,N,E> AdjacentEdges<'g,N,E> {
fn targets(self) -> AdjacentTargets<'g,N,E> {
AdjacentTargets { edges: self }
}
fn sources(self) -> AdjacentSources<'g,N,E> {
AdjacentSources { edges: self }
}
}
impl<'g, N:Debug, E:Debug> Iterator for AdjacentEdges<'g, N, E> {
type Item = (EdgeIndex, &'g Edge<E>);
fn next(&mut self) -> Option<(EdgeIndex, &'g Edge<E>)> {
let edge_index = self.next;
if edge_index == INVALID_EDGE_INDEX {
return None;
}
let edge = self.graph.edge(edge_index);
self.next = edge.next_edge[self.direction.repr];
Some((edge_index, edge))
}
}
pub struct AdjacentTargets<'g,N:'g,E:'g>
where N:'g, E:'g
{
edges: AdjacentEdges<'g,N,E>,
}
impl<'g, N:Debug, E:Debug> Iterator for AdjacentTargets<'g, N, E> {
type Item = NodeIndex;
fn next(&mut self) -> Option<NodeIndex> {
self.edges.next().map(|(_, edge)| edge.target)
}
}
pub struct AdjacentSources<'g,N:'g,E:'g>
where N:'g, E:'g
{
edges: AdjacentEdges<'g,N,E>,
}
impl<'g, N:Debug, E:Debug> Iterator for AdjacentSources<'g, N, E> {
type Item = NodeIndex;
fn next(&mut self) -> Option<NodeIndex> {
self.edges.next().map(|(_, edge)| edge.source)
}
}
pub struct DepthFirstTraversal<'g, N:'g, E:'g> {
graph: &'g Graph<N, E>,
stack: Vec<NodeIndex>,
visited: BitVector
}
impl<'g, N:Debug, E:Debug> Iterator for DepthFirstTraversal<'g, N, E> {
type Item = NodeIndex;
fn next(&mut self) -> Option<NodeIndex> {
while let Some(idx) = self.stack.pop() {
if !self.visited.insert(idx.node_id()) {
continue;
}
for (_, edge) in self.graph.outgoing_edges(idx) {
if !self.visited.contains(edge.target().node_id()) {
self.stack.push(edge.target());
}
}
return Some(idx);
}
return None;
}
}
pub fn each_edge_index<F>(max_edge_index: EdgeIndex, mut f: F) where
F: FnMut(EdgeIndex) -> bool,
{
let mut i = 0;
let n = max_edge_index.0;
while i < n {
if !f(EdgeIndex(i)) {
return;
}
i += 1;
}
}
impl<E> Edge<E> {
pub fn source(&self) -> NodeIndex {
self.source
}
pub fn target(&self) -> NodeIndex {
self.target
}
pub fn source_or_target(&self, direction: Direction) -> NodeIndex {
if direction == OUTGOING {
self.target
} else {
self.source
}
}
}