blob: ef5626700e87ae15c550c7d7b48a8683fb684874 [file] [log] [blame]
//! A module for working with processes.
//!
//! This module is mostly concerned with spawning and interacting with child
//! processes, but it also provides [`abort`] and [`exit`] for terminating the
//! current process.
//!
//! # Spawning a process
//!
//! The [`Command`] struct is used to configure and spawn processes:
//!
//! ```no_run
//! use std::process::Command;
//!
//! let output = Command::new("echo")
//! .arg("Hello world")
//! .output()
//! .expect("Failed to execute command");
//!
//! assert_eq!(b"Hello world\n", output.stdout.as_slice());
//! ```
//!
//! Several methods on [`Command`], such as [`spawn`] or [`output`], can be used
//! to spawn a process. In particular, [`output`] spawns the child process and
//! waits until the process terminates, while [`spawn`] will return a [`Child`]
//! that represents the spawned child process.
//!
//! # Handling I/O
//!
//! The [`stdout`], [`stdin`], and [`stderr`] of a child process can be
//! configured by passing an [`Stdio`] to the corresponding method on
//! [`Command`]. Once spawned, they can be accessed from the [`Child`]. For
//! example, piping output from one command into another command can be done
//! like so:
//!
//! ```no_run
//! use std::process::{Command, Stdio};
//!
//! // stdout must be configured with `Stdio::piped` in order to use
//! // `echo_child.stdout`
//! let echo_child = Command::new("echo")
//! .arg("Oh no, a tpyo!")
//! .stdout(Stdio::piped())
//! .spawn()
//! .expect("Failed to start echo process");
//!
//! // Note that `echo_child` is moved here, but we won't be needing
//! // `echo_child` anymore
//! let echo_out = echo_child.stdout.expect("Failed to open echo stdout");
//!
//! let mut sed_child = Command::new("sed")
//! .arg("s/tpyo/typo/")
//! .stdin(Stdio::from(echo_out))
//! .stdout(Stdio::piped())
//! .spawn()
//! .expect("Failed to start sed process");
//!
//! let output = sed_child.wait_with_output().expect("Failed to wait on sed");
//! assert_eq!(b"Oh no, a typo!\n", output.stdout.as_slice());
//! ```
//!
//! Note that [`ChildStderr`] and [`ChildStdout`] implement [`Read`] and
//! [`ChildStdin`] implements [`Write`]:
//!
//! ```no_run
//! use std::process::{Command, Stdio};
//! use std::io::Write;
//!
//! let mut child = Command::new("/bin/cat")
//! .stdin(Stdio::piped())
//! .stdout(Stdio::piped())
//! .spawn()
//! .expect("failed to execute child");
//!
//! {
//! // limited borrow of stdin
//! let stdin = child.stdin.as_mut().expect("failed to get stdin");
//! stdin.write_all(b"test").expect("failed to write to stdin");
//! }
//!
//! let output = child
//! .wait_with_output()
//! .expect("failed to wait on child");
//!
//! assert_eq!(b"test", output.stdout.as_slice());
//! ```
//!
//! [`abort`]: fn.abort.html
//! [`exit`]: fn.exit.html
//!
//! [`Command`]: struct.Command.html
//! [`spawn`]: struct.Command.html#method.spawn
//! [`output`]: struct.Command.html#method.output
//!
//! [`Child`]: struct.Child.html
//! [`ChildStdin`]: struct.ChildStdin.html
//! [`ChildStdout`]: struct.ChildStdout.html
//! [`ChildStderr`]: struct.ChildStderr.html
//! [`Stdio`]: struct.Stdio.html
//!
//! [`stdout`]: struct.Command.html#method.stdout
//! [`stdin`]: struct.Command.html#method.stdin
//! [`stderr`]: struct.Command.html#method.stderr
//!
//! [`Write`]: ../io/trait.Write.html
//! [`Read`]: ../io/trait.Read.html
#![stable(feature = "process", since = "1.0.0")]
use crate::io::prelude::*;
use crate::ffi::OsStr;
use crate::fmt;
use crate::fs;
use crate::io::{self, Initializer, IoVec, IoVecMut};
use crate::path::Path;
use crate::str;
use crate::sys::pipe::{read2, AnonPipe};
use crate::sys::process as imp;
use crate::sys_common::{AsInner, AsInnerMut, FromInner, IntoInner};
/// Representation of a running or exited child process.
///
/// This structure is used to represent and manage child processes. A child
/// process is created via the [`Command`] struct, which configures the
/// spawning process and can itself be constructed using a builder-style
/// interface.
///
/// There is no implementation of [`Drop`] for child processes,
/// so if you do not ensure the `Child` has exited then it will continue to
/// run, even after the `Child` handle to the child process has gone out of
/// scope.
///
/// Calling [`wait`](#method.wait) (or other functions that wrap around it) will make
/// the parent process wait until the child has actually exited before
/// continuing.
///
/// # Examples
///
/// ```should_panic
/// use std::process::Command;
///
/// let mut child = Command::new("/bin/cat")
/// .arg("file.txt")
/// .spawn()
/// .expect("failed to execute child");
///
/// let ecode = child.wait()
/// .expect("failed to wait on child");
///
/// assert!(ecode.success());
/// ```
///
/// [`Command`]: struct.Command.html
/// [`Drop`]: ../../core/ops/trait.Drop.html
/// [`wait`]: #method.wait
#[stable(feature = "process", since = "1.0.0")]
pub struct Child {
handle: imp::Process,
/// The handle for writing to the child's standard input (stdin), if it has
/// been captured.
#[stable(feature = "process", since = "1.0.0")]
pub stdin: Option<ChildStdin>,
/// The handle for reading from the child's standard output (stdout), if it
/// has been captured.
#[stable(feature = "process", since = "1.0.0")]
pub stdout: Option<ChildStdout>,
/// The handle for reading from the child's standard error (stderr), if it
/// has been captured.
#[stable(feature = "process", since = "1.0.0")]
pub stderr: Option<ChildStderr>,
}
impl AsInner<imp::Process> for Child {
fn as_inner(&self) -> &imp::Process { &self.handle }
}
impl FromInner<(imp::Process, imp::StdioPipes)> for Child {
fn from_inner((handle, io): (imp::Process, imp::StdioPipes)) -> Child {
Child {
handle,
stdin: io.stdin.map(ChildStdin::from_inner),
stdout: io.stdout.map(ChildStdout::from_inner),
stderr: io.stderr.map(ChildStderr::from_inner),
}
}
}
impl IntoInner<imp::Process> for Child {
fn into_inner(self) -> imp::Process { self.handle }
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Child {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Child")
.field("stdin", &self.stdin)
.field("stdout", &self.stdout)
.field("stderr", &self.stderr)
.finish()
}
}
/// A handle to a child process's standard input (stdin).
///
/// This struct is used in the [`stdin`] field on [`Child`].
///
/// When an instance of `ChildStdin` is [dropped], the `ChildStdin`'s underlying
/// file handle will be closed. If the child process was blocked on input prior
/// to being dropped, it will become unblocked after dropping.
///
/// [`Child`]: struct.Child.html
/// [`stdin`]: struct.Child.html#structfield.stdin
/// [dropped]: ../ops/trait.Drop.html
#[stable(feature = "process", since = "1.0.0")]
pub struct ChildStdin {
inner: AnonPipe
}
#[stable(feature = "process", since = "1.0.0")]
impl Write for ChildStdin {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.inner.write(buf)
}
fn write_vectored(&mut self, bufs: &[IoVec<'_>]) -> io::Result<usize> {
self.inner.write_vectored(bufs)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl AsInner<AnonPipe> for ChildStdin {
fn as_inner(&self) -> &AnonPipe { &self.inner }
}
impl IntoInner<AnonPipe> for ChildStdin {
fn into_inner(self) -> AnonPipe { self.inner }
}
impl FromInner<AnonPipe> for ChildStdin {
fn from_inner(pipe: AnonPipe) -> ChildStdin {
ChildStdin { inner: pipe }
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for ChildStdin {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("ChildStdin { .. }")
}
}
/// A handle to a child process's standard output (stdout).
///
/// This struct is used in the [`stdout`] field on [`Child`].
///
/// When an instance of `ChildStdout` is [dropped], the `ChildStdout`'s
/// underlying file handle will be closed.
///
/// [`Child`]: struct.Child.html
/// [`stdout`]: struct.Child.html#structfield.stdout
/// [dropped]: ../ops/trait.Drop.html
#[stable(feature = "process", since = "1.0.0")]
pub struct ChildStdout {
inner: AnonPipe
}
#[stable(feature = "process", since = "1.0.0")]
impl Read for ChildStdout {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
fn read_vectored(&mut self, bufs: &mut [IoVecMut<'_>]) -> io::Result<usize> {
self.inner.read_vectored(bufs)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
impl AsInner<AnonPipe> for ChildStdout {
fn as_inner(&self) -> &AnonPipe { &self.inner }
}
impl IntoInner<AnonPipe> for ChildStdout {
fn into_inner(self) -> AnonPipe { self.inner }
}
impl FromInner<AnonPipe> for ChildStdout {
fn from_inner(pipe: AnonPipe) -> ChildStdout {
ChildStdout { inner: pipe }
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for ChildStdout {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("ChildStdout { .. }")
}
}
/// A handle to a child process's stderr.
///
/// This struct is used in the [`stderr`] field on [`Child`].
///
/// When an instance of `ChildStderr` is [dropped], the `ChildStderr`'s
/// underlying file handle will be closed.
///
/// [`Child`]: struct.Child.html
/// [`stderr`]: struct.Child.html#structfield.stderr
/// [dropped]: ../ops/trait.Drop.html
#[stable(feature = "process", since = "1.0.0")]
pub struct ChildStderr {
inner: AnonPipe
}
#[stable(feature = "process", since = "1.0.0")]
impl Read for ChildStderr {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
fn read_vectored(&mut self, bufs: &mut [IoVecMut<'_>]) -> io::Result<usize> {
self.inner.read_vectored(bufs)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
impl AsInner<AnonPipe> for ChildStderr {
fn as_inner(&self) -> &AnonPipe { &self.inner }
}
impl IntoInner<AnonPipe> for ChildStderr {
fn into_inner(self) -> AnonPipe { self.inner }
}
impl FromInner<AnonPipe> for ChildStderr {
fn from_inner(pipe: AnonPipe) -> ChildStderr {
ChildStderr { inner: pipe }
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for ChildStderr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("ChildStderr { .. }")
}
}
/// A process builder, providing fine-grained control
/// over how a new process should be spawned.
///
/// A default configuration can be
/// generated using `Command::new(program)`, where `program` gives a path to the
/// program to be executed. Additional builder methods allow the configuration
/// to be changed (for example, by adding arguments) prior to spawning:
///
/// ```
/// use std::process::Command;
///
/// let output = if cfg!(target_os = "windows") {
/// Command::new("cmd")
/// .args(&["/C", "echo hello"])
/// .output()
/// .expect("failed to execute process")
/// } else {
/// Command::new("sh")
/// .arg("-c")
/// .arg("echo hello")
/// .output()
/// .expect("failed to execute process")
/// };
///
/// let hello = output.stdout;
/// ```
///
/// `Command` can be reused to spawn multiple processes. The builder methods
/// change the command without needing to immediately spawn the process.
///
/// ```no_run
/// use std::process::Command;
///
/// let mut echo_hello = Command::new("sh");
/// echo_hello.arg("-c")
/// .arg("echo hello");
/// let hello_1 = echo_hello.output().expect("failed to execute process");
/// let hello_2 = echo_hello.output().expect("failed to execute process");
/// ```
///
/// Similarly, you can call builder methods after spawning a process and then
/// spawn a new process with the modified settings.
///
/// ```no_run
/// use std::process::Command;
///
/// let mut list_dir = Command::new("ls");
///
/// // Execute `ls` in the current directory of the program.
/// list_dir.status().expect("process failed to execute");
///
/// println!("");
///
/// // Change `ls` to execute in the root directory.
/// list_dir.current_dir("/");
///
/// // And then execute `ls` again but in the root directory.
/// list_dir.status().expect("process failed to execute");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub struct Command {
inner: imp::Command,
}
impl Command {
/// Constructs a new `Command` for launching the program at
/// path `program`, with the following default configuration:
///
/// * No arguments to the program
/// * Inherit the current process's environment
/// * Inherit the current process's working directory
/// * Inherit stdin/stdout/stderr for `spawn` or `status`, but create pipes for `output`
///
/// Builder methods are provided to change these defaults and
/// otherwise configure the process.
///
/// If `program` is not an absolute path, the `PATH` will be searched in
/// an OS-defined way.
///
/// The search path to be used may be controlled by setting the
/// `PATH` environment variable on the Command,
/// but this has some implementation limitations on Windows
/// (see issue #37519).
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// Command::new("sh")
/// .spawn()
/// .expect("sh command failed to start");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
Command { inner: imp::Command::new(program.as_ref()) }
}
/// Adds an argument to pass to the program.
///
/// Only one argument can be passed per use. So instead of:
///
/// ```no_run
/// # std::process::Command::new("sh")
/// .arg("-C /path/to/repo")
/// # ;
/// ```
///
/// usage would be:
///
/// ```no_run
/// # std::process::Command::new("sh")
/// .arg("-C")
/// .arg("/path/to/repo")
/// # ;
/// ```
///
/// To pass multiple arguments see [`args`].
///
/// [`args`]: #method.args
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// Command::new("ls")
/// .arg("-l")
/// .arg("-a")
/// .spawn()
/// .expect("ls command failed to start");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
self.inner.arg(arg.as_ref());
self
}
/// Adds multiple arguments to pass to the program.
///
/// To pass a single argument see [`arg`].
///
/// [`arg`]: #method.arg
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// Command::new("ls")
/// .args(&["-l", "-a"])
/// .spawn()
/// .expect("ls command failed to start");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn args<I, S>(&mut self, args: I) -> &mut Command
where I: IntoIterator<Item=S>, S: AsRef<OsStr>
{
for arg in args {
self.arg(arg.as_ref());
}
self
}
/// Inserts or updates an environment variable mapping.
///
/// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
/// and case-sensitive on all other platforms.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// Command::new("ls")
/// .env("PATH", "/bin")
/// .spawn()
/// .expect("ls command failed to start");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
where K: AsRef<OsStr>, V: AsRef<OsStr>
{
self.inner.env_mut().set(key.as_ref(), val.as_ref());
self
}
/// Adds or updates multiple environment variable mappings.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::{Command, Stdio};
/// use std::env;
/// use std::collections::HashMap;
///
/// let filtered_env : HashMap<String, String> =
/// env::vars().filter(|&(ref k, _)|
/// k == "TERM" || k == "TZ" || k == "LANG" || k == "PATH"
/// ).collect();
///
/// Command::new("printenv")
/// .stdin(Stdio::null())
/// .stdout(Stdio::inherit())
/// .env_clear()
/// .envs(&filtered_env)
/// .spawn()
/// .expect("printenv failed to start");
/// ```
#[stable(feature = "command_envs", since = "1.19.0")]
pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command
where I: IntoIterator<Item=(K, V)>, K: AsRef<OsStr>, V: AsRef<OsStr>
{
for (ref key, ref val) in vars {
self.inner.env_mut().set(key.as_ref(), val.as_ref());
}
self
}
/// Removes an environment variable mapping.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// Command::new("ls")
/// .env_remove("PATH")
/// .spawn()
/// .expect("ls command failed to start");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
self.inner.env_mut().remove(key.as_ref());
self
}
/// Clears the entire environment map for the child process.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// Command::new("ls")
/// .env_clear()
/// .spawn()
/// .expect("ls command failed to start");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn env_clear(&mut self) -> &mut Command {
self.inner.env_mut().clear();
self
}
/// Sets the working directory for the child process.
///
/// # Platform-specific behavior
///
/// If the program path is relative (e.g., `"./script.sh"`), it's ambiguous
/// whether it should be interpreted relative to the parent's working
/// directory or relative to `current_dir`. The behavior in this case is
/// platform specific and unstable, and it's recommended to use
/// [`canonicalize`] to get an absolute program path instead.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// Command::new("ls")
/// .current_dir("/bin")
/// .spawn()
/// .expect("ls command failed to start");
/// ```
///
/// [`canonicalize`]: ../fs/fn.canonicalize.html
#[stable(feature = "process", since = "1.0.0")]
pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command {
self.inner.cwd(dir.as_ref().as_ref());
self
}
/// Configuration for the child process's standard input (stdin) handle.
///
/// Defaults to [`inherit`] when used with `spawn` or `status`, and
/// defaults to [`piped`] when used with `output`.
///
/// [`inherit`]: struct.Stdio.html#method.inherit
/// [`piped`]: struct.Stdio.html#method.piped
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::{Command, Stdio};
///
/// Command::new("ls")
/// .stdin(Stdio::null())
/// .spawn()
/// .expect("ls command failed to start");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
self.inner.stdin(cfg.into().0);
self
}
/// Configuration for the child process's standard output (stdout) handle.
///
/// Defaults to [`inherit`] when used with `spawn` or `status`, and
/// defaults to [`piped`] when used with `output`.
///
/// [`inherit`]: struct.Stdio.html#method.inherit
/// [`piped`]: struct.Stdio.html#method.piped
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::{Command, Stdio};
///
/// Command::new("ls")
/// .stdout(Stdio::null())
/// .spawn()
/// .expect("ls command failed to start");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
self.inner.stdout(cfg.into().0);
self
}
/// Configuration for the child process's standard error (stderr) handle.
///
/// Defaults to [`inherit`] when used with `spawn` or `status`, and
/// defaults to [`piped`] when used with `output`.
///
/// [`inherit`]: struct.Stdio.html#method.inherit
/// [`piped`]: struct.Stdio.html#method.piped
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::{Command, Stdio};
///
/// Command::new("ls")
/// .stderr(Stdio::null())
/// .spawn()
/// .expect("ls command failed to start");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
self.inner.stderr(cfg.into().0);
self
}
/// Executes the command as a child process, returning a handle to it.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// Command::new("ls")
/// .spawn()
/// .expect("ls command failed to start");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn spawn(&mut self) -> io::Result<Child> {
self.inner.spawn(imp::Stdio::Inherit, true).map(Child::from_inner)
}
/// Executes the command as a child process, waiting for it to finish and
/// collecting all of its output.
///
/// By default, stdout and stderr are captured (and used to provide the
/// resulting output). Stdin is not inherited from the parent and any
/// attempt by the child process to read from the stdin stream will result
/// in the stream immediately closing.
///
/// # Examples
///
/// ```should_panic
/// use std::process::Command;
/// use std::io::{self, Write};
/// let output = Command::new("/bin/cat")
/// .arg("file.txt")
/// .output()
/// .expect("failed to execute process");
///
/// println!("status: {}", output.status);
/// io::stdout().write_all(&output.stdout).unwrap();
/// io::stderr().write_all(&output.stderr).unwrap();
///
/// assert!(output.status.success());
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn output(&mut self) -> io::Result<Output> {
self.inner.spawn(imp::Stdio::MakePipe, false).map(Child::from_inner)
.and_then(|p| p.wait_with_output())
}
/// Executes a command as a child process, waiting for it to finish and
/// collecting its exit status.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
///
/// # Examples
///
/// ```should_panic
/// use std::process::Command;
///
/// let status = Command::new("/bin/cat")
/// .arg("file.txt")
/// .status()
/// .expect("failed to execute process");
///
/// println!("process exited with: {}", status);
///
/// assert!(status.success());
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn status(&mut self) -> io::Result<ExitStatus> {
self.inner.spawn(imp::Stdio::Inherit, true).map(Child::from_inner)
.and_then(|mut p| p.wait())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Command {
/// Format the program and arguments of a Command for display. Any
/// non-utf8 data is lossily converted using the utf8 replacement
/// character.
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.inner.fmt(f)
}
}
impl AsInner<imp::Command> for Command {
fn as_inner(&self) -> &imp::Command { &self.inner }
}
impl AsInnerMut<imp::Command> for Command {
fn as_inner_mut(&mut self) -> &mut imp::Command { &mut self.inner }
}
/// The output of a finished process.
///
/// This is returned in a Result by either the [`output`] method of a
/// [`Command`], or the [`wait_with_output`] method of a [`Child`]
/// process.
///
/// [`Command`]: struct.Command.html
/// [`Child`]: struct.Child.html
/// [`output`]: struct.Command.html#method.output
/// [`wait_with_output`]: struct.Child.html#method.wait_with_output
#[derive(PartialEq, Eq, Clone)]
#[stable(feature = "process", since = "1.0.0")]
pub struct Output {
/// The status (exit code) of the process.
#[stable(feature = "process", since = "1.0.0")]
pub status: ExitStatus,
/// The data that the process wrote to stdout.
#[stable(feature = "process", since = "1.0.0")]
pub stdout: Vec<u8>,
/// The data that the process wrote to stderr.
#[stable(feature = "process", since = "1.0.0")]
pub stderr: Vec<u8>,
}
// If either stderr or stdout are valid utf8 strings it prints the valid
// strings, otherwise it prints the byte sequence instead
#[stable(feature = "process_output_debug", since = "1.7.0")]
impl fmt::Debug for Output {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let stdout_utf8 = str::from_utf8(&self.stdout);
let stdout_debug: &dyn fmt::Debug = match stdout_utf8 {
Ok(ref str) => str,
Err(_) => &self.stdout
};
let stderr_utf8 = str::from_utf8(&self.stderr);
let stderr_debug: &dyn fmt::Debug = match stderr_utf8 {
Ok(ref str) => str,
Err(_) => &self.stderr
};
fmt.debug_struct("Output")
.field("status", &self.status)
.field("stdout", stdout_debug)
.field("stderr", stderr_debug)
.finish()
}
}
/// Describes what to do with a standard I/O stream for a child process when
/// passed to the [`stdin`], [`stdout`], and [`stderr`] methods of [`Command`].
///
/// [`stdin`]: struct.Command.html#method.stdin
/// [`stdout`]: struct.Command.html#method.stdout
/// [`stderr`]: struct.Command.html#method.stderr
/// [`Command`]: struct.Command.html
#[stable(feature = "process", since = "1.0.0")]
pub struct Stdio(imp::Stdio);
impl Stdio {
/// A new pipe should be arranged to connect the parent and child processes.
///
/// # Examples
///
/// With stdout:
///
/// ```no_run
/// use std::process::{Command, Stdio};
///
/// let output = Command::new("echo")
/// .arg("Hello, world!")
/// .stdout(Stdio::piped())
/// .output()
/// .expect("Failed to execute command");
///
/// assert_eq!(String::from_utf8_lossy(&output.stdout), "Hello, world!\n");
/// // Nothing echoed to console
/// ```
///
/// With stdin:
///
/// ```no_run
/// use std::io::Write;
/// use std::process::{Command, Stdio};
///
/// let mut child = Command::new("rev")
/// .stdin(Stdio::piped())
/// .stdout(Stdio::piped())
/// .spawn()
/// .expect("Failed to spawn child process");
///
/// {
/// let mut stdin = child.stdin.as_mut().expect("Failed to open stdin");
/// stdin.write_all("Hello, world!".as_bytes()).expect("Failed to write to stdin");
/// }
///
/// let output = child.wait_with_output().expect("Failed to read stdout");
/// assert_eq!(String::from_utf8_lossy(&output.stdout), "!dlrow ,olleH\n");
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn piped() -> Stdio { Stdio(imp::Stdio::MakePipe) }
/// The child inherits from the corresponding parent descriptor.
///
/// # Examples
///
/// With stdout:
///
/// ```no_run
/// use std::process::{Command, Stdio};
///
/// let output = Command::new("echo")
/// .arg("Hello, world!")
/// .stdout(Stdio::inherit())
/// .output()
/// .expect("Failed to execute command");
///
/// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
/// // "Hello, world!" echoed to console
/// ```
///
/// With stdin:
///
/// ```no_run
/// use std::process::{Command, Stdio};
/// use std::io::{self, Write};
///
/// let output = Command::new("rev")
/// .stdin(Stdio::inherit())
/// .stdout(Stdio::piped())
/// .output()
/// .expect("Failed to execute command");
///
/// print!("You piped in the reverse of: ");
/// io::stdout().write_all(&output.stdout).unwrap();
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn inherit() -> Stdio { Stdio(imp::Stdio::Inherit) }
/// This stream will be ignored. This is the equivalent of attaching the
/// stream to `/dev/null`
///
/// # Examples
///
/// With stdout:
///
/// ```no_run
/// use std::process::{Command, Stdio};
///
/// let output = Command::new("echo")
/// .arg("Hello, world!")
/// .stdout(Stdio::null())
/// .output()
/// .expect("Failed to execute command");
///
/// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
/// // Nothing echoed to console
/// ```
///
/// With stdin:
///
/// ```no_run
/// use std::process::{Command, Stdio};
///
/// let output = Command::new("rev")
/// .stdin(Stdio::null())
/// .stdout(Stdio::piped())
/// .output()
/// .expect("Failed to execute command");
///
/// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
/// // Ignores any piped-in input
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn null() -> Stdio { Stdio(imp::Stdio::Null) }
}
impl FromInner<imp::Stdio> for Stdio {
fn from_inner(inner: imp::Stdio) -> Stdio {
Stdio(inner)
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Stdio {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Stdio { .. }")
}
}
#[stable(feature = "stdio_from", since = "1.20.0")]
impl From<ChildStdin> for Stdio {
/// Converts a `ChildStdin` into a `Stdio`
///
/// # Examples
///
/// `ChildStdin` will be converted to `Stdio` using `Stdio::from` under the hood.
///
/// ```rust,no_run
/// use std::process::{Command, Stdio};
///
/// let reverse = Command::new("rev")
/// .stdin(Stdio::piped())
/// .spawn()
/// .expect("failed reverse command");
///
/// let _echo = Command::new("echo")
/// .arg("Hello, world!")
/// .stdout(reverse.stdin.unwrap()) // Converted into a Stdio here
/// .output()
/// .expect("failed echo command");
///
/// // "!dlrow ,olleH" echoed to console
/// ```
fn from(child: ChildStdin) -> Stdio {
Stdio::from_inner(child.into_inner().into())
}
}
#[stable(feature = "stdio_from", since = "1.20.0")]
impl From<ChildStdout> for Stdio {
/// Converts a `ChildStdout` into a `Stdio`
///
/// # Examples
///
/// `ChildStdout` will be converted to `Stdio` using `Stdio::from` under the hood.
///
/// ```rust,no_run
/// use std::process::{Command, Stdio};
///
/// let hello = Command::new("echo")
/// .arg("Hello, world!")
/// .stdout(Stdio::piped())
/// .spawn()
/// .expect("failed echo command");
///
/// let reverse = Command::new("rev")
/// .stdin(hello.stdout.unwrap()) // Converted into a Stdio here
/// .output()
/// .expect("failed reverse command");
///
/// assert_eq!(reverse.stdout, b"!dlrow ,olleH\n");
/// ```
fn from(child: ChildStdout) -> Stdio {
Stdio::from_inner(child.into_inner().into())
}
}
#[stable(feature = "stdio_from", since = "1.20.0")]
impl From<ChildStderr> for Stdio {
/// Converts a `ChildStderr` into a `Stdio`
///
/// # Examples
///
/// ```rust,no_run
/// use std::process::{Command, Stdio};
///
/// let reverse = Command::new("rev")
/// .arg("non_existing_file.txt")
/// .stderr(Stdio::piped())
/// .spawn()
/// .expect("failed reverse command");
///
/// let cat = Command::new("cat")
/// .arg("-")
/// .stdin(reverse.stderr.unwrap()) // Converted into a Stdio here
/// .output()
/// .expect("failed echo command");
///
/// assert_eq!(
/// String::from_utf8_lossy(&cat.stdout),
/// "rev: cannot open non_existing_file.txt: No such file or directory\n"
/// );
/// ```
fn from(child: ChildStderr) -> Stdio {
Stdio::from_inner(child.into_inner().into())
}
}
#[stable(feature = "stdio_from", since = "1.20.0")]
impl From<fs::File> for Stdio {
/// Converts a `File` into a `Stdio`
///
/// # Examples
///
/// `File` will be converted to `Stdio` using `Stdio::from` under the hood.
///
/// ```rust,no_run
/// use std::fs::File;
/// use std::process::Command;
///
/// // With the `foo.txt` file containing `Hello, world!"
/// let file = File::open("foo.txt").unwrap();
///
/// let reverse = Command::new("rev")
/// .stdin(file) // Implicit File conversion into a Stdio
/// .output()
/// .expect("failed reverse command");
///
/// assert_eq!(reverse.stdout, b"!dlrow ,olleH");
/// ```
fn from(file: fs::File) -> Stdio {
Stdio::from_inner(file.into_inner().into())
}
}
/// Describes the result of a process after it has terminated.
///
/// This `struct` is used to represent the exit status of a child process.
/// Child processes are created via the [`Command`] struct and their exit
/// status is exposed through the [`status`] method.
///
/// [`Command`]: struct.Command.html
/// [`status`]: struct.Command.html#method.status
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "process", since = "1.0.0")]
pub struct ExitStatus(imp::ExitStatus);
impl ExitStatus {
/// Was termination successful? Signal termination is not considered a
/// success, and success is defined as a zero exit status.
///
/// # Examples
///
/// ```rust,no_run
/// use std::process::Command;
///
/// let status = Command::new("mkdir")
/// .arg("projects")
/// .status()
/// .expect("failed to execute mkdir");
///
/// if status.success() {
/// println!("'projects/' directory created");
/// } else {
/// println!("failed to create 'projects/' directory");
/// }
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn success(&self) -> bool {
self.0.success()
}
/// Returns the exit code of the process, if any.
///
/// On Unix, this will return `None` if the process was terminated
/// by a signal; `std::os::unix` provides an extension trait for
/// extracting the signal and other details from the `ExitStatus`.
///
/// # Examples
///
/// ```no_run
/// use std::process::Command;
///
/// let status = Command::new("mkdir")
/// .arg("projects")
/// .status()
/// .expect("failed to execute mkdir");
///
/// match status.code() {
/// Some(code) => println!("Exited with status code: {}", code),
/// None => println!("Process terminated by signal")
/// }
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn code(&self) -> Option<i32> {
self.0.code()
}
}
impl AsInner<imp::ExitStatus> for ExitStatus {
fn as_inner(&self) -> &imp::ExitStatus { &self.0 }
}
impl FromInner<imp::ExitStatus> for ExitStatus {
fn from_inner(s: imp::ExitStatus) -> ExitStatus {
ExitStatus(s)
}
}
#[stable(feature = "process", since = "1.0.0")]
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
/// This type represents the status code a process can return to its
/// parent under normal termination.
///
/// Numeric values used in this type don't have portable meanings, and
/// different platforms may mask different amounts of them.
///
/// For the platform's canonical successful and unsuccessful codes, see
/// the [`SUCCESS`] and [`FAILURE`] associated items.
///
/// [`SUCCESS`]: #associatedconstant.SUCCESS
/// [`FAILURE`]: #associatedconstant.FAILURE
///
/// **Warning**: While various forms of this were discussed in [RFC #1937],
/// it was ultimately cut from that RFC, and thus this type is more subject
/// to change even than the usual unstable item churn.
///
/// [RFC #1937]: https://github.com/rust-lang/rfcs/pull/1937
#[derive(Clone, Copy, Debug)]
#[unstable(feature = "process_exitcode_placeholder", issue = "48711")]
pub struct ExitCode(imp::ExitCode);
#[unstable(feature = "process_exitcode_placeholder", issue = "48711")]
impl ExitCode {
/// The canonical ExitCode for successful termination on this platform.
///
/// Note that a `()`-returning `main` implicitly results in a successful
/// termination, so there's no need to return this from `main` unless
/// you're also returning other possible codes.
#[unstable(feature = "process_exitcode_placeholder", issue = "48711")]
pub const SUCCESS: ExitCode = ExitCode(imp::ExitCode::SUCCESS);
/// The canonical ExitCode for unsuccessful termination on this platform.
///
/// If you're only returning this and `SUCCESS` from `main`, consider
/// instead returning `Err(_)` and `Ok(())` respectively, which will
/// return the same codes (but will also `eprintln!` the error).
#[unstable(feature = "process_exitcode_placeholder", issue = "48711")]
pub const FAILURE: ExitCode = ExitCode(imp::ExitCode::FAILURE);
}
impl Child {
/// Forces the child process to exit. If the child has already exited, an [`InvalidInput`]
/// error is returned.
///
/// The mapping to [`ErrorKind`]s is not part of the compatibility contract of the function,
/// especially the [`Other`] kind might change to more specific kinds in the future.
///
/// This is equivalent to sending a SIGKILL on Unix platforms.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// let mut command = Command::new("yes");
/// if let Ok(mut child) = command.spawn() {
/// child.kill().expect("command wasn't running");
/// } else {
/// println!("yes command didn't start");
/// }
/// ```
///
/// [`ErrorKind`]: ../io/enum.ErrorKind.html
/// [`InvalidInput`]: ../io/enum.ErrorKind.html#variant.InvalidInput
/// [`Other`]: ../io/enum.ErrorKind.html#variant.Other
#[stable(feature = "process", since = "1.0.0")]
pub fn kill(&mut self) -> io::Result<()> {
self.handle.kill()
}
/// Returns the OS-assigned process identifier associated with this child.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// let mut command = Command::new("ls");
/// if let Ok(child) = command.spawn() {
/// println!("Child's ID is {}", child.id());
/// } else {
/// println!("ls command didn't start");
/// }
/// ```
#[stable(feature = "process_id", since = "1.3.0")]
pub fn id(&self) -> u32 {
self.handle.id()
}
/// Waits for the child to exit completely, returning the status that it
/// exited with. This function will continue to have the same return value
/// after it has been called at least once.
///
/// The stdin handle to the child process, if any, will be closed
/// before waiting. This helps avoid deadlock: it ensures that the
/// child does not block waiting for input from the parent, while
/// the parent waits for the child to exit.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// let mut command = Command::new("ls");
/// if let Ok(mut child) = command.spawn() {
/// child.wait().expect("command wasn't running");
/// println!("Child has finished its execution!");
/// } else {
/// println!("ls command didn't start");
/// }
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn wait(&mut self) -> io::Result<ExitStatus> {
drop(self.stdin.take());
self.handle.wait().map(ExitStatus)
}
/// Attempts to collect the exit status of the child if it has already
/// exited.
///
/// This function will not block the calling thread and will only
/// check to see if the child process has exited or not. If the child has
/// exited then on Unix the process ID is reaped. This function is
/// guaranteed to repeatedly return a successful exit status so long as the
/// child has already exited.
///
/// If the child has exited, then `Ok(Some(status))` is returned. If the
/// exit status is not available at this time then `Ok(None)` is returned.
/// If an error occurs, then that error is returned.
///
/// Note that unlike `wait`, this function will not attempt to drop stdin.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process::Command;
///
/// let mut child = Command::new("ls").spawn().unwrap();
///
/// match child.try_wait() {
/// Ok(Some(status)) => println!("exited with: {}", status),
/// Ok(None) => {
/// println!("status not ready yet, let's really wait");
/// let res = child.wait();
/// println!("result: {:?}", res);
/// }
/// Err(e) => println!("error attempting to wait: {}", e),
/// }
/// ```
#[stable(feature = "process_try_wait", since = "1.18.0")]
pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
Ok(self.handle.try_wait()?.map(ExitStatus))
}
/// Simultaneously waits for the child to exit and collect all remaining
/// output on the stdout/stderr handles, returning an `Output`
/// instance.
///
/// The stdin handle to the child process, if any, will be closed
/// before waiting. This helps avoid deadlock: it ensures that the
/// child does not block waiting for input from the parent, while
/// the parent waits for the child to exit.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
/// In order to capture the output into this `Result<Output>` it is
/// necessary to create new pipes between parent and child. Use
/// `stdout(Stdio::piped())` or `stderr(Stdio::piped())`, respectively.
///
/// # Examples
///
/// ```should_panic
/// use std::process::{Command, Stdio};
///
/// let child = Command::new("/bin/cat")
/// .arg("file.txt")
/// .stdout(Stdio::piped())
/// .spawn()
/// .expect("failed to execute child");
///
/// let output = child
/// .wait_with_output()
/// .expect("failed to wait on child");
///
/// assert!(output.status.success());
/// ```
///
#[stable(feature = "process", since = "1.0.0")]
pub fn wait_with_output(mut self) -> io::Result<Output> {
drop(self.stdin.take());
let (mut stdout, mut stderr) = (Vec::new(), Vec::new());
match (self.stdout.take(), self.stderr.take()) {
(None, None) => {}
(Some(mut out), None) => {
let res = out.read_to_end(&mut stdout);
res.unwrap();
}
(None, Some(mut err)) => {
let res = err.read_to_end(&mut stderr);
res.unwrap();
}
(Some(out), Some(err)) => {
let res = read2(out.inner, &mut stdout, err.inner, &mut stderr);
res.unwrap();
}
}
let status = self.wait()?;
Ok(Output {
status,
stdout,
stderr,
})
}
}
/// Terminates the current process with the specified exit code.
///
/// This function will never return and will immediately terminate the current
/// process. The exit code is passed through to the underlying OS and will be
/// available for consumption by another process.
///
/// Note that because this function never returns, and that it terminates the
/// process, no destructors on the current stack or any other thread's stack
/// will be run. If a clean shutdown is needed it is recommended to only call
/// this function at a known point where there are no more destructors left
/// to run.
///
/// ## Platform-specific behavior
///
/// **Unix**: On Unix-like platforms, it is unlikely that all 32 bits of `exit`
/// will be visible to a parent process inspecting the exit code. On most
/// Unix-like platforms, only the eight least-significant bits are considered.
///
/// # Examples
///
/// Due to this function’s behavior regarding destructors, a conventional way
/// to use the function is to extract the actual computation to another
/// function and compute the exit code from its return value:
///
/// ```
/// fn run_app() -> Result<(), ()> {
/// // Application logic here
/// Ok(())
/// }
///
/// fn main() {
/// ::std::process::exit(match run_app() {
/// Ok(_) => 0,
/// Err(err) => {
/// eprintln!("error: {:?}", err);
/// 1
/// }
/// });
/// }
/// ```
///
/// Due to [platform-specific behavior], the exit code for this example will be
/// `0` on Linux, but `256` on Windows:
///
/// ```no_run
/// use std::process;
///
/// process::exit(0x0100);
/// ```
///
/// [platform-specific behavior]: #platform-specific-behavior
#[stable(feature = "rust1", since = "1.0.0")]
pub fn exit(code: i32) -> ! {
crate::sys_common::cleanup();
crate::sys::os::exit(code)
}
/// Terminates the process in an abnormal fashion.
///
/// The function will never return and will immediately terminate the current
/// process in a platform specific "abnormal" manner.
///
/// Note that because this function never returns, and that it terminates the
/// process, no destructors on the current stack or any other thread's stack
/// will be run.
///
/// This is in contrast to the default behaviour of [`panic!`] which unwinds
/// the current thread's stack and calls all destructors.
/// When `panic="abort"` is set, either as an argument to `rustc` or in a
/// crate's Cargo.toml, [`panic!`] and `abort` are similar. However,
/// [`panic!`] will still call the [panic hook] while `abort` will not.
///
/// If a clean shutdown is needed it is recommended to only call
/// this function at a known point where there are no more destructors left
/// to run.
///
/// # Examples
///
/// ```no_run
/// use std::process;
///
/// fn main() {
/// println!("aborting");
///
/// process::abort();
///
/// // execution never gets here
/// }
/// ```
///
/// The `abort` function terminates the process, so the destructor will not
/// get run on the example below:
///
/// ```no_run
/// use std::process;
///
/// struct HasDrop;
///
/// impl Drop for HasDrop {
/// fn drop(&mut self) {
/// println!("This will never be printed!");
/// }
/// }
///
/// fn main() {
/// let _x = HasDrop;
/// process::abort();
/// // the destructor implemented for HasDrop will never get run
/// }
/// ```
///
/// [`panic!`]: ../../std/macro.panic.html
/// [panic hook]: ../../std/panic/fn.set_hook.html
#[stable(feature = "process_abort", since = "1.17.0")]
pub fn abort() -> ! {
unsafe { crate::sys::abort_internal() };
}
/// Returns the OS-assigned process identifier associated with this process.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use std::process;
///
/// println!("My pid is {}", process::id());
/// ```
///
///
#[stable(feature = "getpid", since = "1.26.0")]
pub fn id() -> u32 {
crate::sys::os::getpid()
}
/// A trait for implementing arbitrary return types in the `main` function.
///
/// The c-main function only supports to return integers as return type.
/// So, every type implementing the `Termination` trait has to be converted
/// to an integer.
///
/// The default implementations are returning `libc::EXIT_SUCCESS` to indicate
/// a successful execution. In case of a failure, `libc::EXIT_FAILURE` is returned.
#[cfg_attr(not(test), lang = "termination")]
#[unstable(feature = "termination_trait_lib", issue = "43301")]
#[rustc_on_unimplemented(
message="`main` has invalid return type `{Self}`",
label="`main` can only return types that implement `{Termination}`")]
pub trait Termination {
/// Is called to get the representation of the value as status code.
/// This status code is returned to the operating system.
fn report(self) -> i32;
}
#[unstable(feature = "termination_trait_lib", issue = "43301")]
impl Termination for () {
#[inline]
fn report(self) -> i32 { ExitCode::SUCCESS.report() }
}
#[unstable(feature = "termination_trait_lib", issue = "43301")]
impl<E: fmt::Debug> Termination for Result<(), E> {
fn report(self) -> i32 {
match self {
Ok(()) => ().report(),
Err(err) => Err::<!, _>(err).report(),
}
}
}
#[unstable(feature = "termination_trait_lib", issue = "43301")]
impl Termination for ! {
fn report(self) -> i32 { self }
}
#[unstable(feature = "termination_trait_lib", issue = "43301")]
impl<E: fmt::Debug> Termination for Result<!, E> {
fn report(self) -> i32 {
let Err(err) = self;
eprintln!("Error: {:?}", err);
ExitCode::FAILURE.report()
}
}
#[unstable(feature = "termination_trait_lib", issue = "43301")]
impl Termination for ExitCode {
#[inline]
fn report(self) -> i32 {
self.0.as_i32()
}
}
#[cfg(all(test, not(any(target_os = "cloudabi", target_os = "emscripten", target_env = "sgx"))))]
mod tests {
use crate::io::prelude::*;
use crate::io::ErrorKind;
use crate::str;
use super::{Command, Output, Stdio};
// FIXME(#10380) these tests should not all be ignored on android.
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn smoke() {
let p = if cfg!(target_os = "windows") {
Command::new("cmd").args(&["/C", "exit 0"]).spawn()
} else {
Command::new("true").spawn()
};
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.wait().unwrap().success());
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn smoke_failure() {
match Command::new("if-this-is-a-binary-then-the-world-has-ended").spawn() {
Ok(..) => panic!(),
Err(..) => {}
}
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn exit_reported_right() {
let p = if cfg!(target_os = "windows") {
Command::new("cmd").args(&["/C", "exit 1"]).spawn()
} else {
Command::new("false").spawn()
};
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.wait().unwrap().code() == Some(1));
drop(p.wait());
}
#[test]
#[cfg(unix)]
#[cfg_attr(target_os = "android", ignore)]
fn signal_reported_right() {
use crate::os::unix::process::ExitStatusExt;
let mut p = Command::new("/bin/sh")
.arg("-c").arg("read a")
.stdin(Stdio::piped())
.spawn().unwrap();
p.kill().unwrap();
match p.wait().unwrap().signal() {
Some(9) => {},
result => panic!("not terminated by signal 9 (instead, {:?})",
result),
}
}
pub fn run_output(mut cmd: Command) -> String {
let p = cmd.spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.stdout.is_some());
let mut ret = String::new();
p.stdout.as_mut().unwrap().read_to_string(&mut ret).unwrap();
assert!(p.wait().unwrap().success());
return ret;
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn stdout_works() {
if cfg!(target_os = "windows") {
let mut cmd = Command::new("cmd");
cmd.args(&["/C", "echo foobar"]).stdout(Stdio::piped());
assert_eq!(run_output(cmd), "foobar\r\n");
} else {
let mut cmd = Command::new("echo");
cmd.arg("foobar").stdout(Stdio::piped());
assert_eq!(run_output(cmd), "foobar\n");
}
}
#[test]
#[cfg_attr(any(windows, target_os = "android"), ignore)]
fn set_current_dir_works() {
let mut cmd = Command::new("/bin/sh");
cmd.arg("-c").arg("pwd")
.current_dir("/")
.stdout(Stdio::piped());
assert_eq!(run_output(cmd), "/\n");
}
#[test]
#[cfg_attr(any(windows, target_os = "android"), ignore)]
fn stdin_works() {
let mut p = Command::new("/bin/sh")
.arg("-c").arg("read line; echo $line")
.stdin(Stdio::piped())
.stdout(Stdio::piped())
.spawn().unwrap();
p.stdin.as_mut().unwrap().write("foobar".as_bytes()).unwrap();
drop(p.stdin.take());
let mut out = String::new();
p.stdout.as_mut().unwrap().read_to_string(&mut out).unwrap();
assert!(p.wait().unwrap().success());
assert_eq!(out, "foobar\n");
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
#[cfg(unix)]
fn uid_works() {
use crate::os::unix::prelude::*;
let mut p = Command::new("/bin/sh")
.arg("-c").arg("true")
.uid(unsafe { libc::getuid() })
.gid(unsafe { libc::getgid() })
.spawn().unwrap();
assert!(p.wait().unwrap().success());
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
#[cfg(unix)]
fn uid_to_root_fails() {
use crate::os::unix::prelude::*;
// if we're already root, this isn't a valid test. Most of the bots run
// as non-root though (android is an exception).
if unsafe { libc::getuid() == 0 } { return }
assert!(Command::new("/bin/ls").uid(0).gid(0).spawn().is_err());
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_process_status() {
let mut status = if cfg!(target_os = "windows") {
Command::new("cmd").args(&["/C", "exit 1"]).status().unwrap()
} else {
Command::new("false").status().unwrap()
};
assert!(status.code() == Some(1));
status = if cfg!(target_os = "windows") {
Command::new("cmd").args(&["/C", "exit 0"]).status().unwrap()
} else {
Command::new("true").status().unwrap()
};
assert!(status.success());
}
#[test]
fn test_process_output_fail_to_start() {
match Command::new("/no-binary-by-this-name-should-exist").output() {
Err(e) => assert_eq!(e.kind(), ErrorKind::NotFound),
Ok(..) => panic!()
}
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_process_output_output() {
let Output {status, stdout, stderr}
= if cfg!(target_os = "windows") {
Command::new("cmd").args(&["/C", "echo hello"]).output().unwrap()
} else {
Command::new("echo").arg("hello").output().unwrap()
};
let output_str = str::from_utf8(&stdout).unwrap();
assert!(status.success());
assert_eq!(output_str.trim().to_string(), "hello");
assert_eq!(stderr, Vec::new());
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_process_output_error() {
let Output {status, stdout, stderr}
= if cfg!(target_os = "windows") {
Command::new("cmd").args(&["/C", "mkdir ."]).output().unwrap()
} else {
Command::new("mkdir").arg("./").output().unwrap()
};
assert!(status.code() == Some(1));
assert_eq!(stdout, Vec::new());
assert!(!stderr.is_empty());
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_finish_once() {
let mut prog = if cfg!(target_os = "windows") {
Command::new("cmd").args(&["/C", "exit 1"]).spawn().unwrap()
} else {
Command::new("false").spawn().unwrap()
};
assert!(prog.wait().unwrap().code() == Some(1));
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_finish_twice() {
let mut prog = if cfg!(target_os = "windows") {
Command::new("cmd").args(&["/C", "exit 1"]).spawn().unwrap()
} else {
Command::new("false").spawn().unwrap()
};
assert!(prog.wait().unwrap().code() == Some(1));
assert!(prog.wait().unwrap().code() == Some(1));
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_wait_with_output_once() {
let prog = if cfg!(target_os = "windows") {
Command::new("cmd").args(&["/C", "echo hello"]).stdout(Stdio::piped()).spawn().unwrap()
} else {
Command::new("echo").arg("hello").stdout(Stdio::piped()).spawn().unwrap()
};
let Output {status, stdout, stderr} = prog.wait_with_output().unwrap();
let output_str = str::from_utf8(&stdout).unwrap();
assert!(status.success());
assert_eq!(output_str.trim().to_string(), "hello");
assert_eq!(stderr, Vec::new());
}
#[cfg(all(unix, not(target_os="android")))]
pub fn env_cmd() -> Command {
Command::new("env")
}
#[cfg(target_os="android")]
pub fn env_cmd() -> Command {
let mut cmd = Command::new("/system/bin/sh");
cmd.arg("-c").arg("set");
cmd
}
#[cfg(windows)]
pub fn env_cmd() -> Command {
let mut cmd = Command::new("cmd");
cmd.arg("/c").arg("set");
cmd
}
#[test]
fn test_override_env() {
use crate::env;
// In some build environments (such as chrooted Nix builds), `env` can
// only be found in the explicitly-provided PATH env variable, not in
// default places such as /bin or /usr/bin. So we need to pass through
// PATH to our sub-process.
let mut cmd = env_cmd();
cmd.env_clear().env("RUN_TEST_NEW_ENV", "123");
if let Some(p) = env::var_os("PATH") {
cmd.env("PATH", &p);
}
let result = cmd.output().unwrap();
let output = String::from_utf8_lossy(&result.stdout).to_string();
assert!(output.contains("RUN_TEST_NEW_ENV=123"),
"didn't find RUN_TEST_NEW_ENV inside of:\n\n{}", output);
}
#[test]
fn test_add_to_env() {
let result = env_cmd().env("RUN_TEST_NEW_ENV", "123").output().unwrap();
let output = String::from_utf8_lossy(&result.stdout).to_string();
assert!(output.contains("RUN_TEST_NEW_ENV=123"),
"didn't find RUN_TEST_NEW_ENV inside of:\n\n{}", output);
}
#[test]
fn test_capture_env_at_spawn() {
use crate::env;
let mut cmd = env_cmd();
cmd.env("RUN_TEST_NEW_ENV1", "123");
// This variable will not be present if the environment has already
// been captured above.
env::set_var("RUN_TEST_NEW_ENV2", "456");
let result = cmd.output().unwrap();
env::remove_var("RUN_TEST_NEW_ENV2");
let output = String::from_utf8_lossy(&result.stdout).to_string();
assert!(output.contains("RUN_TEST_NEW_ENV1=123"),
"didn't find RUN_TEST_NEW_ENV1 inside of:\n\n{}", output);
assert!(output.contains("RUN_TEST_NEW_ENV2=456"),
"didn't find RUN_TEST_NEW_ENV2 inside of:\n\n{}", output);
}
// Regression tests for #30858.
#[test]
fn test_interior_nul_in_progname_is_error() {
match Command::new("has-some-\0\0s-inside").spawn() {
Err(e) => assert_eq!(e.kind(), ErrorKind::InvalidInput),
Ok(_) => panic!(),
}
}
#[test]
fn test_interior_nul_in_arg_is_error() {
match Command::new("echo").arg("has-some-\0\0s-inside").spawn() {
Err(e) => assert_eq!(e.kind(), ErrorKind::InvalidInput),
Ok(_) => panic!(),
}
}
#[test]
fn test_interior_nul_in_args_is_error() {
match Command::new("echo").args(&["has-some-\0\0s-inside"]).spawn() {
Err(e) => assert_eq!(e.kind(), ErrorKind::InvalidInput),
Ok(_) => panic!(),
}
}
#[test]
fn test_interior_nul_in_current_dir_is_error() {
match Command::new("echo").current_dir("has-some-\0\0s-inside").spawn() {
Err(e) => assert_eq!(e.kind(), ErrorKind::InvalidInput),
Ok(_) => panic!(),
}
}
// Regression tests for #30862.
#[test]
fn test_interior_nul_in_env_key_is_error() {
match env_cmd().env("has-some-\0\0s-inside", "value").spawn() {
Err(e) => assert_eq!(e.kind(), ErrorKind::InvalidInput),
Ok(_) => panic!(),
}
}
#[test]
fn test_interior_nul_in_env_value_is_error() {
match env_cmd().env("key", "has-some-\0\0s-inside").spawn() {
Err(e) => assert_eq!(e.kind(), ErrorKind::InvalidInput),
Ok(_) => panic!(),
}
}
/// Tests that process creation flags work by debugging a process.
/// Other creation flags make it hard or impossible to detect
/// behavioral changes in the process.
#[test]
#[cfg(windows)]
fn test_creation_flags() {
use crate::os::windows::process::CommandExt;
use crate::sys::c::{BOOL, DWORD, INFINITE};
#[repr(C, packed)]
struct DEBUG_EVENT {
pub event_code: DWORD,
pub process_id: DWORD,
pub thread_id: DWORD,
// This is a union in the real struct, but we don't
// need this data for the purposes of this test.
pub _junk: [u8; 164],
}
extern "system" {
fn WaitForDebugEvent(lpDebugEvent: *mut DEBUG_EVENT, dwMilliseconds: DWORD) -> BOOL;
fn ContinueDebugEvent(dwProcessId: DWORD, dwThreadId: DWORD,
dwContinueStatus: DWORD) -> BOOL;
}
const DEBUG_PROCESS: DWORD = 1;
const EXIT_PROCESS_DEBUG_EVENT: DWORD = 5;
const DBG_EXCEPTION_NOT_HANDLED: DWORD = 0x80010001;
let mut child = Command::new("cmd")
.creation_flags(DEBUG_PROCESS)
.stdin(Stdio::piped()).spawn().unwrap();
child.stdin.take().unwrap().write_all(b"exit\r\n").unwrap();
let mut events = 0;
let mut event = DEBUG_EVENT {
event_code: 0,
process_id: 0,
thread_id: 0,
_junk: [0; 164],
};
loop {
if unsafe { WaitForDebugEvent(&mut event as *mut DEBUG_EVENT, INFINITE) } == 0 {
panic!("WaitForDebugEvent failed!");
}
events += 1;
if event.event_code == EXIT_PROCESS_DEBUG_EVENT {
break;
}
if unsafe { ContinueDebugEvent(event.process_id,
event.thread_id,
DBG_EXCEPTION_NOT_HANDLED) } == 0 {
panic!("ContinueDebugEvent failed!");
}
}
assert!(events > 0);
}
#[test]
fn test_command_implements_send() {
fn take_send_type<T: Send>(_: T) {}
take_send_type(Command::new(""))
}
}