blob: 8df639750c7010931366dec18638924bf10597b8 [file] [log] [blame]
//! This module contains implements of the `Lift` and `TypeFoldable`
//! traits for various types in the Rust compiler. Most are written by
//! hand, though we've recently added some macros and proc-macros to help with the tedium.
use crate::mir::interpret;
use crate::mir::{Field, ProjectionKind};
use crate::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeSuperFoldable};
use crate::ty::print::{with_no_trimmed_paths, FmtPrinter, Printer};
use crate::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
use crate::ty::{self, AliasTy, InferConst, Lift, Term, TermKind, Ty, TyCtxt};
use rustc_data_structures::functor::IdFunctor;
use rustc_hir::def::Namespace;
use rustc_index::vec::{Idx, IndexVec};
use rustc_target::abi::TyAndLayout;
use std::fmt;
use std::mem::ManuallyDrop;
use std::ops::ControlFlow;
use std::rc::Rc;
use std::sync::Arc;
impl fmt::Debug for ty::TraitDef {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
ty::tls::with(|tcx| {
with_no_trimmed_paths!({
f.write_str(
&FmtPrinter::new(tcx, Namespace::TypeNS)
.print_def_path(self.def_id, &[])?
.into_buffer(),
)
})
})
}
}
impl<'tcx> fmt::Debug for ty::AdtDef<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
ty::tls::with(|tcx| {
with_no_trimmed_paths!({
f.write_str(
&FmtPrinter::new(tcx, Namespace::TypeNS)
.print_def_path(self.did(), &[])?
.into_buffer(),
)
})
})
}
}
impl fmt::Debug for ty::UpvarId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let name = ty::tls::with(|tcx| tcx.hir().name(self.var_path.hir_id));
write!(f, "UpvarId({:?};`{}`;{:?})", self.var_path.hir_id, name, self.closure_expr_id)
}
}
impl<'tcx> fmt::Debug for ty::ExistentialTraitRef<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
with_no_trimmed_paths!(fmt::Display::fmt(self, f))
}
}
impl<'tcx> fmt::Debug for ty::adjustment::Adjustment<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?} -> {}", self.kind, self.target)
}
}
impl fmt::Debug for ty::BoundRegionKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
ty::BrAnon(n, span) => write!(f, "BrAnon({n:?}, {span:?})"),
ty::BrNamed(did, name) => {
if did.is_crate_root() {
write!(f, "BrNamed({})", name)
} else {
write!(f, "BrNamed({:?}, {})", did, name)
}
}
ty::BrEnv => write!(f, "BrEnv"),
}
}
}
impl fmt::Debug for ty::FreeRegion {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "ReFree({:?}, {:?})", self.scope, self.bound_region)
}
}
impl<'tcx> fmt::Debug for ty::FnSig<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "({:?}; c_variadic: {})->{:?}", self.inputs(), self.c_variadic, self.output())
}
}
impl<'tcx> fmt::Debug for ty::ConstVid<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "_#{}c", self.index)
}
}
impl<'tcx> fmt::Debug for ty::TraitRef<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
with_no_trimmed_paths!(fmt::Display::fmt(self, f))
}
}
impl<'tcx> fmt::Debug for Ty<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
with_no_trimmed_paths!(fmt::Display::fmt(self, f))
}
}
impl fmt::Debug for ty::ParamTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}/#{}", self.name, self.index)
}
}
impl fmt::Debug for ty::ParamConst {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}/#{}", self.name, self.index)
}
}
impl<'tcx> fmt::Debug for ty::TraitPredicate<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let ty::BoundConstness::ConstIfConst = self.constness {
write!(f, "~const ")?;
}
write!(f, "TraitPredicate({:?}, polarity:{:?})", self.trait_ref, self.polarity)
}
}
impl<'tcx> fmt::Debug for ty::ProjectionPredicate<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "ProjectionPredicate({:?}, {:?})", self.projection_ty, self.term)
}
}
impl<'tcx> fmt::Debug for ty::Predicate<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.kind())
}
}
impl<'tcx> fmt::Debug for ty::Clause<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
ty::Clause::Trait(ref a) => a.fmt(f),
ty::Clause::RegionOutlives(ref pair) => pair.fmt(f),
ty::Clause::TypeOutlives(ref pair) => pair.fmt(f),
ty::Clause::Projection(ref pair) => pair.fmt(f),
}
}
}
impl<'tcx> fmt::Debug for ty::PredicateKind<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
ty::PredicateKind::Clause(ref a) => a.fmt(f),
ty::PredicateKind::Subtype(ref pair) => pair.fmt(f),
ty::PredicateKind::Coerce(ref pair) => pair.fmt(f),
ty::PredicateKind::WellFormed(data) => write!(f, "WellFormed({:?})", data),
ty::PredicateKind::ObjectSafe(trait_def_id) => {
write!(f, "ObjectSafe({:?})", trait_def_id)
}
ty::PredicateKind::ClosureKind(closure_def_id, closure_substs, kind) => {
write!(f, "ClosureKind({:?}, {:?}, {:?})", closure_def_id, closure_substs, kind)
}
ty::PredicateKind::ConstEvaluatable(ct) => {
write!(f, "ConstEvaluatable({ct:?})")
}
ty::PredicateKind::ConstEquate(c1, c2) => write!(f, "ConstEquate({:?}, {:?})", c1, c2),
ty::PredicateKind::TypeWellFormedFromEnv(ty) => {
write!(f, "TypeWellFormedFromEnv({:?})", ty)
}
ty::PredicateKind::Ambiguous => write!(f, "Ambiguous"),
}
}
}
impl<'tcx> fmt::Debug for AliasTy<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("AliasTy")
.field("substs", &self.substs)
.field("def_id", &self.def_id)
.finish()
}
}
///////////////////////////////////////////////////////////////////////////
// Atomic structs
//
// For things that don't carry any arena-allocated data (and are
// copy...), just add them to this list.
TrivialTypeTraversalAndLiftImpls! {
(),
bool,
usize,
::rustc_target::abi::VariantIdx,
u16,
u32,
u64,
String,
crate::middle::region::Scope,
crate::ty::FloatTy,
::rustc_ast::InlineAsmOptions,
::rustc_ast::InlineAsmTemplatePiece,
::rustc_ast::NodeId,
::rustc_span::symbol::Symbol,
::rustc_hir::def::Res,
::rustc_hir::def_id::DefId,
::rustc_hir::def_id::LocalDefId,
::rustc_hir::HirId,
::rustc_hir::MatchSource,
::rustc_hir::Mutability,
::rustc_hir::Unsafety,
::rustc_target::asm::InlineAsmRegOrRegClass,
::rustc_target::spec::abi::Abi,
crate::mir::coverage::ExpressionOperandId,
crate::mir::coverage::CounterValueReference,
crate::mir::coverage::InjectedExpressionId,
crate::mir::coverage::InjectedExpressionIndex,
crate::mir::coverage::MappedExpressionIndex,
crate::mir::Local,
crate::mir::Promoted,
crate::traits::Reveal,
crate::ty::adjustment::AutoBorrowMutability,
crate::ty::AdtKind,
crate::ty::BoundConstness,
// Including `BoundRegionKind` is a *bit* dubious, but direct
// references to bound region appear in `ty::Error`, and aren't
// really meant to be folded. In general, we can only fold a fully
// general `Region`.
crate::ty::BoundRegionKind,
crate::ty::AssocItem,
crate::ty::AssocKind,
crate::ty::AliasKind,
crate::ty::Placeholder<crate::ty::BoundRegionKind>,
crate::ty::Placeholder<crate::ty::BoundTyKind>,
crate::ty::ClosureKind,
crate::ty::FreeRegion,
crate::ty::InferTy,
crate::ty::IntVarValue,
crate::ty::ParamConst,
crate::ty::ParamTy,
crate::ty::adjustment::PointerCast,
crate::ty::RegionVid,
crate::ty::UniverseIndex,
crate::ty::Variance,
::rustc_span::Span,
::rustc_errors::ErrorGuaranteed,
Field,
interpret::Scalar,
rustc_target::abi::Size,
rustc_type_ir::DebruijnIndex,
ty::BoundVar,
ty::Placeholder<ty::BoundVar>,
}
TrivialTypeTraversalAndLiftImpls! {
for<'tcx> {
ty::ValTree<'tcx>,
}
}
///////////////////////////////////////////////////////////////////////////
// Lift implementations
impl<'tcx, A: Lift<'tcx>, B: Lift<'tcx>> Lift<'tcx> for (A, B) {
type Lifted = (A::Lifted, B::Lifted);
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
Some((tcx.lift(self.0)?, tcx.lift(self.1)?))
}
}
impl<'tcx, A: Lift<'tcx>, B: Lift<'tcx>, C: Lift<'tcx>> Lift<'tcx> for (A, B, C) {
type Lifted = (A::Lifted, B::Lifted, C::Lifted);
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
Some((tcx.lift(self.0)?, tcx.lift(self.1)?, tcx.lift(self.2)?))
}
}
impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Option<T> {
type Lifted = Option<T::Lifted>;
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
Some(match self {
Some(x) => Some(tcx.lift(x)?),
None => None,
})
}
}
impl<'tcx, T: Lift<'tcx>, E: Lift<'tcx>> Lift<'tcx> for Result<T, E> {
type Lifted = Result<T::Lifted, E::Lifted>;
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
match self {
Ok(x) => tcx.lift(x).map(Ok),
Err(e) => tcx.lift(e).map(Err),
}
}
}
impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Box<T> {
type Lifted = Box<T::Lifted>;
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
Some(Box::new(tcx.lift(*self)?))
}
}
impl<'tcx, T: Lift<'tcx> + Clone> Lift<'tcx> for Rc<T> {
type Lifted = Rc<T::Lifted>;
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
Some(Rc::new(tcx.lift(self.as_ref().clone())?))
}
}
impl<'tcx, T: Lift<'tcx> + Clone> Lift<'tcx> for Arc<T> {
type Lifted = Arc<T::Lifted>;
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
Some(Arc::new(tcx.lift(self.as_ref().clone())?))
}
}
impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Vec<T> {
type Lifted = Vec<T::Lifted>;
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
self.into_iter().map(|v| tcx.lift(v)).collect()
}
}
impl<'tcx, I: Idx, T: Lift<'tcx>> Lift<'tcx> for IndexVec<I, T> {
type Lifted = IndexVec<I, T::Lifted>;
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
self.into_iter().map(|e| tcx.lift(e)).collect()
}
}
impl<'a, 'tcx> Lift<'tcx> for Term<'a> {
type Lifted = ty::Term<'tcx>;
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
Some(
match self.unpack() {
TermKind::Ty(ty) => TermKind::Ty(tcx.lift(ty)?),
TermKind::Const(c) => TermKind::Const(tcx.lift(c)?),
}
.pack(),
)
}
}
impl<'a, 'tcx> Lift<'tcx> for ty::ParamEnv<'a> {
type Lifted = ty::ParamEnv<'tcx>;
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
tcx.lift(self.caller_bounds())
.map(|caller_bounds| ty::ParamEnv::new(caller_bounds, self.reveal(), self.constness()))
}
}
///////////////////////////////////////////////////////////////////////////
// TypeFoldable implementations.
/// AdtDefs are basically the same as a DefId.
impl<'tcx> TypeFoldable<'tcx> for ty::AdtDef<'tcx> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, _folder: &mut F) -> Result<Self, F::Error> {
Ok(self)
}
}
impl<'tcx> TypeVisitable<'tcx> for ty::AdtDef<'tcx> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, _visitor: &mut V) -> ControlFlow<V::BreakTy> {
ControlFlow::Continue(())
}
}
impl<'tcx, T: TypeFoldable<'tcx>, U: TypeFoldable<'tcx>> TypeFoldable<'tcx> for (T, U) {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(
self,
folder: &mut F,
) -> Result<(T, U), F::Error> {
Ok((self.0.try_fold_with(folder)?, self.1.try_fold_with(folder)?))
}
}
impl<'tcx, T: TypeVisitable<'tcx>, U: TypeVisitable<'tcx>> TypeVisitable<'tcx> for (T, U) {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.0.visit_with(visitor)?;
self.1.visit_with(visitor)
}
}
impl<'tcx, A: TypeFoldable<'tcx>, B: TypeFoldable<'tcx>, C: TypeFoldable<'tcx>> TypeFoldable<'tcx>
for (A, B, C)
{
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(
self,
folder: &mut F,
) -> Result<(A, B, C), F::Error> {
Ok((
self.0.try_fold_with(folder)?,
self.1.try_fold_with(folder)?,
self.2.try_fold_with(folder)?,
))
}
}
impl<'tcx, A: TypeVisitable<'tcx>, B: TypeVisitable<'tcx>, C: TypeVisitable<'tcx>>
TypeVisitable<'tcx> for (A, B, C)
{
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.0.visit_with(visitor)?;
self.1.visit_with(visitor)?;
self.2.visit_with(visitor)
}
}
EnumTypeTraversalImpl! {
impl<'tcx, T> TypeFoldable<'tcx> for Option<T> {
(Some)(a),
(None),
} where T: TypeFoldable<'tcx>
}
EnumTypeTraversalImpl! {
impl<'tcx, T> TypeVisitable<'tcx> for Option<T> {
(Some)(a),
(None),
} where T: TypeVisitable<'tcx>
}
EnumTypeTraversalImpl! {
impl<'tcx, T, E> TypeFoldable<'tcx> for Result<T, E> {
(Ok)(a),
(Err)(a),
} where T: TypeFoldable<'tcx>, E: TypeFoldable<'tcx>,
}
EnumTypeTraversalImpl! {
impl<'tcx, T, E> TypeVisitable<'tcx> for Result<T, E> {
(Ok)(a),
(Err)(a),
} where T: TypeVisitable<'tcx>, E: TypeVisitable<'tcx>,
}
impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Rc<T> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(
mut self,
folder: &mut F,
) -> Result<Self, F::Error> {
// We merely want to replace the contained `T`, if at all possible,
// so that we don't needlessly allocate a new `Rc` or indeed clone
// the contained type.
unsafe {
// First step is to ensure that we have a unique reference to
// the contained type, which `Rc::make_mut` will accomplish (by
// allocating a new `Rc` and cloning the `T` only if required).
// This is done *before* casting to `Rc<ManuallyDrop<T>>` so that
// panicking during `make_mut` does not leak the `T`.
Rc::make_mut(&mut self);
// Casting to `Rc<ManuallyDrop<T>>` is safe because `ManuallyDrop`
// is `repr(transparent)`.
let ptr = Rc::into_raw(self).cast::<ManuallyDrop<T>>();
let mut unique = Rc::from_raw(ptr);
// Call to `Rc::make_mut` above guarantees that `unique` is the
// sole reference to the contained value, so we can avoid doing
// a checked `get_mut` here.
let slot = Rc::get_mut_unchecked(&mut unique);
// Semantically move the contained type out from `unique`, fold
// it, then move the folded value back into `unique`. Should
// folding fail, `ManuallyDrop` ensures that the "moved-out"
// value is not re-dropped.
let owned = ManuallyDrop::take(slot);
let folded = owned.try_fold_with(folder)?;
*slot = ManuallyDrop::new(folded);
// Cast back to `Rc<T>`.
Ok(Rc::from_raw(Rc::into_raw(unique).cast()))
}
}
}
impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Rc<T> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
(**self).visit_with(visitor)
}
}
impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Arc<T> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(
mut self,
folder: &mut F,
) -> Result<Self, F::Error> {
// We merely want to replace the contained `T`, if at all possible,
// so that we don't needlessly allocate a new `Arc` or indeed clone
// the contained type.
unsafe {
// First step is to ensure that we have a unique reference to
// the contained type, which `Arc::make_mut` will accomplish (by
// allocating a new `Arc` and cloning the `T` only if required).
// This is done *before* casting to `Arc<ManuallyDrop<T>>` so that
// panicking during `make_mut` does not leak the `T`.
Arc::make_mut(&mut self);
// Casting to `Arc<ManuallyDrop<T>>` is safe because `ManuallyDrop`
// is `repr(transparent)`.
let ptr = Arc::into_raw(self).cast::<ManuallyDrop<T>>();
let mut unique = Arc::from_raw(ptr);
// Call to `Arc::make_mut` above guarantees that `unique` is the
// sole reference to the contained value, so we can avoid doing
// a checked `get_mut` here.
let slot = Arc::get_mut_unchecked(&mut unique);
// Semantically move the contained type out from `unique`, fold
// it, then move the folded value back into `unique`. Should
// folding fail, `ManuallyDrop` ensures that the "moved-out"
// value is not re-dropped.
let owned = ManuallyDrop::take(slot);
let folded = owned.try_fold_with(folder)?;
*slot = ManuallyDrop::new(folded);
// Cast back to `Arc<T>`.
Ok(Arc::from_raw(Arc::into_raw(unique).cast()))
}
}
}
impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Arc<T> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
(**self).visit_with(visitor)
}
}
impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Box<T> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|value| value.try_fold_with(folder))
}
}
impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Box<T> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
(**self).visit_with(visitor)
}
}
impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Vec<T> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|t| t.try_fold_with(folder))
}
}
impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Vec<T> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for &[T] {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Box<[T]> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|t| t.try_fold_with(folder))
}
}
impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Box<[T]> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for ty::Binder<'tcx, T> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
folder.try_fold_binder(self)
}
}
impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for ty::Binder<'tcx, T> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
visitor.visit_binder(self)
}
}
impl<'tcx, T: TypeFoldable<'tcx>> TypeSuperFoldable<'tcx> for ty::Binder<'tcx, T> {
fn try_super_fold_with<F: FallibleTypeFolder<'tcx>>(
self,
folder: &mut F,
) -> Result<Self, F::Error> {
self.try_map_bound(|ty| ty.try_fold_with(folder))
}
}
impl<'tcx, T: TypeVisitable<'tcx>> TypeSuperVisitable<'tcx> for ty::Binder<'tcx, T> {
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.as_ref().skip_binder().visit_with(visitor)
}
}
impl<'tcx> TypeFoldable<'tcx> for &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
ty::util::fold_list(self, folder, |tcx, v| tcx.intern_poly_existential_predicates(v))
}
}
impl<'tcx> TypeFoldable<'tcx> for &'tcx ty::List<ty::Const<'tcx>> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
ty::util::fold_list(self, folder, |tcx, v| tcx.mk_const_list(v.iter()))
}
}
impl<'tcx> TypeFoldable<'tcx> for &'tcx ty::List<ProjectionKind> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
ty::util::fold_list(self, folder, |tcx, v| tcx.intern_projs(v))
}
}
impl<'tcx> TypeFoldable<'tcx> for Ty<'tcx> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
folder.try_fold_ty(self)
}
}
impl<'tcx> TypeVisitable<'tcx> for Ty<'tcx> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
visitor.visit_ty(*self)
}
}
impl<'tcx> TypeSuperFoldable<'tcx> for Ty<'tcx> {
fn try_super_fold_with<F: FallibleTypeFolder<'tcx>>(
self,
folder: &mut F,
) -> Result<Self, F::Error> {
let kind = match *self.kind() {
ty::RawPtr(tm) => ty::RawPtr(tm.try_fold_with(folder)?),
ty::Array(typ, sz) => ty::Array(typ.try_fold_with(folder)?, sz.try_fold_with(folder)?),
ty::Slice(typ) => ty::Slice(typ.try_fold_with(folder)?),
ty::Adt(tid, substs) => ty::Adt(tid, substs.try_fold_with(folder)?),
ty::Dynamic(trait_ty, region, representation) => ty::Dynamic(
trait_ty.try_fold_with(folder)?,
region.try_fold_with(folder)?,
representation,
),
ty::Tuple(ts) => ty::Tuple(ts.try_fold_with(folder)?),
ty::FnDef(def_id, substs) => ty::FnDef(def_id, substs.try_fold_with(folder)?),
ty::FnPtr(f) => ty::FnPtr(f.try_fold_with(folder)?),
ty::Ref(r, ty, mutbl) => {
ty::Ref(r.try_fold_with(folder)?, ty.try_fold_with(folder)?, mutbl)
}
ty::Generator(did, substs, movability) => {
ty::Generator(did, substs.try_fold_with(folder)?, movability)
}
ty::GeneratorWitness(types) => ty::GeneratorWitness(types.try_fold_with(folder)?),
ty::GeneratorWitnessMIR(did, substs) => {
ty::GeneratorWitnessMIR(did, substs.try_fold_with(folder)?)
}
ty::Closure(did, substs) => ty::Closure(did, substs.try_fold_with(folder)?),
ty::Alias(kind, data) => ty::Alias(kind, data.try_fold_with(folder)?),
ty::Bool
| ty::Char
| ty::Str
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Error(_)
| ty::Infer(_)
| ty::Param(..)
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Never
| ty::Foreign(..) => return Ok(self),
};
Ok(if *self.kind() == kind { self } else { folder.tcx().mk_ty(kind) })
}
}
impl<'tcx> TypeSuperVisitable<'tcx> for Ty<'tcx> {
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
match self.kind() {
ty::RawPtr(ref tm) => tm.visit_with(visitor),
ty::Array(typ, sz) => {
typ.visit_with(visitor)?;
sz.visit_with(visitor)
}
ty::Slice(typ) => typ.visit_with(visitor),
ty::Adt(_, substs) => substs.visit_with(visitor),
ty::Dynamic(ref trait_ty, ref reg, _) => {
trait_ty.visit_with(visitor)?;
reg.visit_with(visitor)
}
ty::Tuple(ts) => ts.visit_with(visitor),
ty::FnDef(_, substs) => substs.visit_with(visitor),
ty::FnPtr(ref f) => f.visit_with(visitor),
ty::Ref(r, ty, _) => {
r.visit_with(visitor)?;
ty.visit_with(visitor)
}
ty::Generator(_did, ref substs, _) => substs.visit_with(visitor),
ty::GeneratorWitness(ref types) => types.visit_with(visitor),
ty::GeneratorWitnessMIR(_did, ref substs) => substs.visit_with(visitor),
ty::Closure(_did, ref substs) => substs.visit_with(visitor),
ty::Alias(_, ref data) => data.visit_with(visitor),
ty::Bool
| ty::Char
| ty::Str
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Error(_)
| ty::Infer(_)
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Param(..)
| ty::Never
| ty::Foreign(..) => ControlFlow::Continue(()),
}
}
}
impl<'tcx> TypeFoldable<'tcx> for ty::Region<'tcx> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
folder.try_fold_region(self)
}
}
impl<'tcx> TypeVisitable<'tcx> for ty::Region<'tcx> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
visitor.visit_region(*self)
}
}
impl<'tcx> TypeSuperFoldable<'tcx> for ty::Region<'tcx> {
fn try_super_fold_with<F: FallibleTypeFolder<'tcx>>(
self,
_folder: &mut F,
) -> Result<Self, F::Error> {
Ok(self)
}
}
impl<'tcx> TypeSuperVisitable<'tcx> for ty::Region<'tcx> {
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, _visitor: &mut V) -> ControlFlow<V::BreakTy> {
ControlFlow::Continue(())
}
}
impl<'tcx> TypeFoldable<'tcx> for ty::Predicate<'tcx> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
folder.try_fold_predicate(self)
}
}
impl<'tcx> TypeVisitable<'tcx> for ty::Predicate<'tcx> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
visitor.visit_predicate(*self)
}
#[inline]
fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
self.outer_exclusive_binder() > binder
}
#[inline]
fn has_type_flags(&self, flags: ty::TypeFlags) -> bool {
self.flags().intersects(flags)
}
}
impl<'tcx> TypeSuperFoldable<'tcx> for ty::Predicate<'tcx> {
fn try_super_fold_with<F: FallibleTypeFolder<'tcx>>(
self,
folder: &mut F,
) -> Result<Self, F::Error> {
let new = self.kind().try_fold_with(folder)?;
Ok(folder.tcx().reuse_or_mk_predicate(self, new))
}
}
impl<'tcx> TypeSuperVisitable<'tcx> for ty::Predicate<'tcx> {
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.kind().visit_with(visitor)
}
}
impl<'tcx> TypeFoldable<'tcx> for &'tcx ty::List<ty::Predicate<'tcx>> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
ty::util::fold_list(self, folder, |tcx, v| tcx.intern_predicates(v))
}
}
impl<'tcx, T: TypeFoldable<'tcx>, I: Idx> TypeFoldable<'tcx> for IndexVec<I, T> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|x| x.try_fold_with(folder))
}
}
impl<'tcx, T: TypeVisitable<'tcx>, I: Idx> TypeVisitable<'tcx> for IndexVec<I, T> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
impl<'tcx> TypeFoldable<'tcx> for ty::Const<'tcx> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
folder.try_fold_const(self)
}
}
impl<'tcx> TypeVisitable<'tcx> for ty::Const<'tcx> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
visitor.visit_const(*self)
}
}
impl<'tcx> TypeSuperFoldable<'tcx> for ty::Const<'tcx> {
fn try_super_fold_with<F: FallibleTypeFolder<'tcx>>(
self,
folder: &mut F,
) -> Result<Self, F::Error> {
let ty = self.ty().try_fold_with(folder)?;
let kind = self.kind().try_fold_with(folder)?;
if ty != self.ty() || kind != self.kind() {
Ok(folder.tcx().mk_const(kind, ty))
} else {
Ok(self)
}
}
}
impl<'tcx> TypeSuperVisitable<'tcx> for ty::Const<'tcx> {
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.ty().visit_with(visitor)?;
self.kind().visit_with(visitor)
}
}
impl<'tcx> TypeFoldable<'tcx> for InferConst<'tcx> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, _folder: &mut F) -> Result<Self, F::Error> {
Ok(self)
}
}
impl<'tcx> TypeVisitable<'tcx> for InferConst<'tcx> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, _visitor: &mut V) -> ControlFlow<V::BreakTy> {
ControlFlow::Continue(())
}
}
impl<'tcx> TypeSuperVisitable<'tcx> for ty::UnevaluatedConst<'tcx> {
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.substs.visit_with(visitor)
}
}
impl<'tcx> TypeVisitable<'tcx> for TyAndLayout<'tcx, Ty<'tcx>> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
visitor.visit_ty(self.ty)
}
}