blob: efd8acc933aa833fb4a2b58b8e21f56df958ea02 [file] [log] [blame]
use super::item::ParamCfg;
use super::{Parser, PathStyle, PrevTokenKind, TokenType};
use crate::{maybe_recover_from_interpolated_ty_qpath, maybe_whole};
use rustc_error_codes::*;
use rustc_errors::{pluralize, struct_span_err, Applicability, PResult};
use rustc_span::source_map::Span;
use rustc_span::symbol::{kw, sym};
use syntax::ast::{
self, BareFnTy, FunctionRetTy, GenericParam, Ident, Lifetime, MutTy, Ty, TyKind,
};
use syntax::ast::{
GenericBound, GenericBounds, PolyTraitRef, TraitBoundModifier, TraitObjectSyntax,
};
use syntax::ast::{Mac, Mutability};
use syntax::ptr::P;
use syntax::token::{self, Token};
/// Any `?` or `?const` modifiers that appear at the start of a bound.
struct BoundModifiers {
/// `?Trait`.
maybe: Option<Span>,
/// `?const Trait`.
maybe_const: Option<Span>,
}
impl BoundModifiers {
fn to_trait_bound_modifier(&self) -> TraitBoundModifier {
match (self.maybe, self.maybe_const) {
(None, None) => TraitBoundModifier::None,
(Some(_), None) => TraitBoundModifier::Maybe,
(None, Some(_)) => TraitBoundModifier::MaybeConst,
(Some(_), Some(_)) => TraitBoundModifier::MaybeConstMaybe,
}
}
}
/// Returns `true` if `IDENT t` can start a type -- `IDENT::a::b`, `IDENT<u8, u8>`,
/// `IDENT<<u8 as Trait>::AssocTy>`.
///
/// Types can also be of the form `IDENT(u8, u8) -> u8`, however this assumes
/// that `IDENT` is not the ident of a fn trait.
fn can_continue_type_after_non_fn_ident(t: &Token) -> bool {
t == &token::ModSep || t == &token::Lt || t == &token::BinOp(token::Shl)
}
impl<'a> Parser<'a> {
/// Parses a type.
pub fn parse_ty(&mut self) -> PResult<'a, P<Ty>> {
self.parse_ty_common(true, true, false)
}
/// Parse a type suitable for a function or function pointer parameter.
/// The difference from `parse_ty` is that this version allows `...`
/// (`CVarArgs`) at the top level of the the type.
pub(super) fn parse_ty_for_param(&mut self) -> PResult<'a, P<Ty>> {
self.parse_ty_common(true, true, true)
}
/// Parses a type in restricted contexts where `+` is not permitted.
///
/// Example 1: `&'a TYPE`
/// `+` is prohibited to maintain operator priority (P(+) < P(&)).
/// Example 2: `value1 as TYPE + value2`
/// `+` is prohibited to avoid interactions with expression grammar.
pub(super) fn parse_ty_no_plus(&mut self) -> PResult<'a, P<Ty>> {
self.parse_ty_common(false, true, false)
}
/// Parses an optional return type `[ -> TY ]` in a function declaration.
pub(super) fn parse_ret_ty(
&mut self,
allow_plus: bool,
allow_qpath_recovery: bool,
) -> PResult<'a, FunctionRetTy> {
Ok(if self.eat(&token::RArrow) {
// FIXME(Centril): Can we unconditionally `allow_plus`?
FunctionRetTy::Ty(self.parse_ty_common(allow_plus, allow_qpath_recovery, false)?)
} else {
FunctionRetTy::Default(self.token.span.shrink_to_lo())
})
}
fn parse_ty_common(
&mut self,
allow_plus: bool,
allow_qpath_recovery: bool,
// Is `...` (`CVarArgs`) legal in the immediate top level call?
allow_c_variadic: bool,
) -> PResult<'a, P<Ty>> {
maybe_recover_from_interpolated_ty_qpath!(self, allow_qpath_recovery);
maybe_whole!(self, NtTy, |x| x);
let lo = self.token.span;
let mut impl_dyn_multi = false;
let kind = if self.check(&token::OpenDelim(token::Paren)) {
self.parse_ty_tuple_or_parens(lo, allow_plus)?
} else if self.eat(&token::Not) {
// Never type `!`
TyKind::Never
} else if self.eat(&token::BinOp(token::Star)) {
self.parse_ty_ptr()?
} else if self.eat(&token::OpenDelim(token::Bracket)) {
self.parse_array_or_slice_ty()?
} else if self.check(&token::BinOp(token::And)) || self.check(&token::AndAnd) {
// Reference
self.expect_and()?;
self.parse_borrowed_pointee()?
} else if self.eat_keyword_noexpect(kw::Typeof) {
self.parse_typeof_ty()?
} else if self.eat_keyword(kw::Underscore) {
// A type to be inferred `_`
TyKind::Infer
} else if self.token_is_bare_fn_keyword() {
// Function pointer type
self.parse_ty_bare_fn(Vec::new())?
} else if self.check_keyword(kw::For) {
// Function pointer type or bound list (trait object type) starting with a poly-trait.
// `for<'lt> [unsafe] [extern "ABI"] fn (&'lt S) -> T`
// `for<'lt> Trait1<'lt> + Trait2 + 'a`
let lifetime_defs = self.parse_late_bound_lifetime_defs()?;
if self.token_is_bare_fn_keyword() {
self.parse_ty_bare_fn(lifetime_defs)?
} else {
let path = self.parse_path(PathStyle::Type)?;
let parse_plus = allow_plus && self.check_plus();
self.parse_remaining_bounds(lifetime_defs, path, lo, parse_plus)?
}
} else if self.eat_keyword(kw::Impl) {
self.parse_impl_ty(&mut impl_dyn_multi)?
} else if self.is_explicit_dyn_type() {
self.parse_dyn_ty(&mut impl_dyn_multi)?
} else if self.check(&token::Question)
|| self.check_lifetime() && self.look_ahead(1, |t| t.is_like_plus())
{
// Bound list (trait object type)
let bounds = self.parse_generic_bounds_common(allow_plus, None)?;
TyKind::TraitObject(bounds, TraitObjectSyntax::None)
} else if self.eat_lt() {
// Qualified path
let (qself, path) = self.parse_qpath(PathStyle::Type)?;
TyKind::Path(Some(qself), path)
} else if self.token.is_path_start() {
self.parse_path_start_ty(lo, allow_plus)?
} else if self.eat(&token::DotDotDot) {
if allow_c_variadic {
TyKind::CVarArgs
} else {
// FIXME(Centril): Should we just allow `...` syntactically
// anywhere in a type and use semantic restrictions instead?
self.error_illegal_c_varadic_ty(lo);
TyKind::Err
}
} else {
let msg = format!("expected type, found {}", super::token_descr(&self.token));
let mut err = self.struct_span_err(self.token.span, &msg);
err.span_label(self.token.span, "expected type");
self.maybe_annotate_with_ascription(&mut err, true);
return Err(err);
};
let span = lo.to(self.prev_span);
let ty = self.mk_ty(span, kind);
// Try to recover from use of `+` with incorrect priority.
self.maybe_report_ambiguous_plus(allow_plus, impl_dyn_multi, &ty);
self.maybe_recover_from_bad_type_plus(allow_plus, &ty)?;
self.maybe_recover_from_bad_qpath(ty, allow_qpath_recovery)
}
/// Parses either:
/// - `(TYPE)`, a parenthesized type.
/// - `(TYPE,)`, a tuple with a single field of type TYPE.
fn parse_ty_tuple_or_parens(&mut self, lo: Span, allow_plus: bool) -> PResult<'a, TyKind> {
let mut trailing_plus = false;
let (ts, trailing) = self.parse_paren_comma_seq(|p| {
let ty = p.parse_ty()?;
trailing_plus = p.prev_token_kind == PrevTokenKind::Plus;
Ok(ty)
})?;
if ts.len() == 1 && !trailing {
let ty = ts.into_iter().nth(0).unwrap().into_inner();
let maybe_bounds = allow_plus && self.token.is_like_plus();
match ty.kind {
// `(TY_BOUND_NOPAREN) + BOUND + ...`.
TyKind::Path(None, path) if maybe_bounds => {
self.parse_remaining_bounds(Vec::new(), path, lo, true)
}
TyKind::TraitObject(mut bounds, TraitObjectSyntax::None)
if maybe_bounds && bounds.len() == 1 && !trailing_plus =>
{
let path = match bounds.remove(0) {
GenericBound::Trait(pt, ..) => pt.trait_ref.path,
GenericBound::Outlives(..) => {
self.span_bug(ty.span, "unexpected lifetime bound")
}
};
self.parse_remaining_bounds(Vec::new(), path, lo, true)
}
// `(TYPE)`
_ => Ok(TyKind::Paren(P(ty))),
}
} else {
Ok(TyKind::Tup(ts))
}
}
fn parse_remaining_bounds(
&mut self,
generic_params: Vec<GenericParam>,
path: ast::Path,
lo: Span,
parse_plus: bool,
) -> PResult<'a, TyKind> {
assert_ne!(self.token, token::Question);
let poly_trait_ref = PolyTraitRef::new(generic_params, path, lo.to(self.prev_span));
let mut bounds = vec![GenericBound::Trait(poly_trait_ref, TraitBoundModifier::None)];
if parse_plus {
self.eat_plus(); // `+`, or `+=` gets split and `+` is discarded
bounds.append(&mut self.parse_generic_bounds(Some(self.prev_span))?);
}
Ok(TyKind::TraitObject(bounds, TraitObjectSyntax::None))
}
/// Parses a raw pointer type: `*[const | mut] $type`.
fn parse_ty_ptr(&mut self) -> PResult<'a, TyKind> {
let mutbl = self.parse_const_or_mut().unwrap_or_else(|| {
let span = self.prev_span;
let msg = "expected mut or const in raw pointer type";
self.struct_span_err(span, msg)
.span_label(span, msg)
.help("use `*mut T` or `*const T` as appropriate")
.emit();
Mutability::Not
});
let ty = self.parse_ty_no_plus()?;
Ok(TyKind::Ptr(MutTy { ty, mutbl }))
}
/// Parses an array (`[TYPE; EXPR]`) or slice (`[TYPE]`) type.
/// The opening `[` bracket is already eaten.
fn parse_array_or_slice_ty(&mut self) -> PResult<'a, TyKind> {
let elt_ty = self.parse_ty()?;
let ty = if self.eat(&token::Semi) {
TyKind::Array(elt_ty, self.parse_anon_const_expr()?)
} else {
TyKind::Slice(elt_ty)
};
self.expect(&token::CloseDelim(token::Bracket))?;
Ok(ty)
}
fn parse_borrowed_pointee(&mut self) -> PResult<'a, TyKind> {
let opt_lifetime = if self.check_lifetime() { Some(self.expect_lifetime()) } else { None };
let mutbl = self.parse_mutability();
let ty = self.parse_ty_no_plus()?;
Ok(TyKind::Rptr(opt_lifetime, MutTy { ty, mutbl }))
}
// Parses the `typeof(EXPR)`.
// To avoid ambiguity, the type is surrounded by parenthesis.
fn parse_typeof_ty(&mut self) -> PResult<'a, TyKind> {
self.expect(&token::OpenDelim(token::Paren))?;
let expr = self.parse_anon_const_expr()?;
self.expect(&token::CloseDelim(token::Paren))?;
Ok(TyKind::Typeof(expr))
}
/// Is the current token one of the keywords that signals a bare function type?
fn token_is_bare_fn_keyword(&mut self) -> bool {
self.check_keyword(kw::Fn)
|| self.check_keyword(kw::Unsafe)
|| self.check_keyword(kw::Extern)
}
/// Parses a function pointer type (`TyKind::BareFn`).
/// ```
/// [unsafe] [extern "ABI"] fn (S) -> T
/// ^~~~~^ ^~~~^ ^~^ ^
/// | | | |
/// | | | Return type
/// Function Style ABI Parameter types
/// ```
fn parse_ty_bare_fn(&mut self, generic_params: Vec<GenericParam>) -> PResult<'a, TyKind> {
let unsafety = self.parse_unsafety();
let ext = self.parse_extern()?;
self.expect_keyword(kw::Fn)?;
let cfg = ParamCfg { is_self_allowed: false, is_name_required: |_| false };
let decl = self.parse_fn_decl(cfg, false)?;
Ok(TyKind::BareFn(P(BareFnTy { ext, unsafety, generic_params, decl })))
}
/// Parses an `impl B0 + ... + Bn` type.
fn parse_impl_ty(&mut self, impl_dyn_multi: &mut bool) -> PResult<'a, TyKind> {
// Always parse bounds greedily for better error recovery.
let bounds = self.parse_generic_bounds(None)?;
*impl_dyn_multi = bounds.len() > 1 || self.prev_token_kind == PrevTokenKind::Plus;
Ok(TyKind::ImplTrait(ast::DUMMY_NODE_ID, bounds))
}
/// Is a `dyn B0 + ... + Bn` type allowed here?
fn is_explicit_dyn_type(&mut self) -> bool {
self.check_keyword(kw::Dyn)
&& (self.token.span.rust_2018()
|| self.look_ahead(1, |t| {
t.can_begin_bound() && !can_continue_type_after_non_fn_ident(t)
}))
}
/// Parses a `dyn B0 + ... + Bn` type.
///
/// Note that this does *not* parse bare trait objects.
fn parse_dyn_ty(&mut self, impl_dyn_multi: &mut bool) -> PResult<'a, TyKind> {
self.bump(); // `dyn`
// Always parse bounds greedily for better error recovery.
let bounds = self.parse_generic_bounds(None)?;
*impl_dyn_multi = bounds.len() > 1 || self.prev_token_kind == PrevTokenKind::Plus;
Ok(TyKind::TraitObject(bounds, TraitObjectSyntax::Dyn))
}
/// Parses a type starting with a path.
///
/// This can be:
/// 1. a type macro, `mac!(...)`,
/// 2. a bare trait object, `B0 + ... + Bn`,
/// 3. or a path, `path::to::MyType`.
fn parse_path_start_ty(&mut self, lo: Span, allow_plus: bool) -> PResult<'a, TyKind> {
// Simple path
let path = self.parse_path(PathStyle::Type)?;
if self.eat(&token::Not) {
// Macro invocation in type position
Ok(TyKind::Mac(Mac {
path,
args: self.parse_mac_args()?,
prior_type_ascription: self.last_type_ascription,
}))
} else if allow_plus && self.check_plus() {
// `Trait1 + Trait2 + 'a`
self.parse_remaining_bounds(Vec::new(), path, lo, true)
} else {
// Just a type path.
Ok(TyKind::Path(None, path))
}
}
fn error_illegal_c_varadic_ty(&self, lo: Span) {
struct_span_err!(
self.sess.span_diagnostic,
lo.to(self.prev_span),
E0743,
"C-variadic type `...` may not be nested inside another type",
)
.emit();
}
pub(super) fn parse_generic_bounds(
&mut self,
colon_span: Option<Span>,
) -> PResult<'a, GenericBounds> {
self.parse_generic_bounds_common(true, colon_span)
}
/// Parses bounds of a type parameter `BOUND + BOUND + ...`, possibly with trailing `+`.
///
/// See `parse_generic_bound` for the `BOUND` grammar.
fn parse_generic_bounds_common(
&mut self,
allow_plus: bool,
colon_span: Option<Span>,
) -> PResult<'a, GenericBounds> {
let mut bounds = Vec::new();
let mut negative_bounds = Vec::new();
while self.can_begin_bound() {
match self.parse_generic_bound()? {
Ok(bound) => bounds.push(bound),
Err(neg_sp) => negative_bounds.push(neg_sp),
}
if !allow_plus || !self.eat_plus() {
break;
}
}
if !negative_bounds.is_empty() {
self.error_negative_bounds(colon_span, &bounds, negative_bounds);
}
Ok(bounds)
}
/// Can the current token begin a bound?
fn can_begin_bound(&mut self) -> bool {
// This needs to be synchronized with `TokenKind::can_begin_bound`.
self.check_path()
|| self.check_lifetime()
|| self.check(&token::Not) // Used for error reporting only.
|| self.check(&token::Question)
|| self.check_keyword(kw::For)
|| self.check(&token::OpenDelim(token::Paren))
}
fn error_negative_bounds(
&self,
colon_span: Option<Span>,
bounds: &[GenericBound],
negative_bounds: Vec<Span>,
) {
let negative_bounds_len = negative_bounds.len();
let last_span = *negative_bounds.last().expect("no negative bounds, but still error?");
let mut err = self.struct_span_err(negative_bounds, "negative bounds are not supported");
err.span_label(last_span, "negative bounds are not supported");
if let Some(bound_list) = colon_span {
let bound_list = bound_list.to(self.prev_span);
let mut new_bound_list = String::new();
if !bounds.is_empty() {
let mut snippets = bounds.iter().map(|bound| self.span_to_snippet(bound.span()));
while let Some(Ok(snippet)) = snippets.next() {
new_bound_list.push_str(" + ");
new_bound_list.push_str(&snippet);
}
new_bound_list = new_bound_list.replacen(" +", ":", 1);
}
err.tool_only_span_suggestion(
bound_list,
&format!("remove the bound{}", pluralize!(negative_bounds_len)),
new_bound_list,
Applicability::MachineApplicable,
);
}
err.emit();
}
/// Parses a bound according to the grammar:
/// ```
/// BOUND = TY_BOUND | LT_BOUND
/// ```
fn parse_generic_bound(&mut self) -> PResult<'a, Result<GenericBound, Span>> {
let anchor_lo = self.prev_span;
let lo = self.token.span;
let has_parens = self.eat(&token::OpenDelim(token::Paren));
let inner_lo = self.token.span;
let is_negative = self.eat(&token::Not);
let modifiers = self.parse_ty_bound_modifiers();
let bound = if self.token.is_lifetime() {
self.error_lt_bound_with_modifiers(modifiers);
self.parse_generic_lt_bound(lo, inner_lo, has_parens)?
} else {
self.parse_generic_ty_bound(lo, has_parens, modifiers)?
};
Ok(if is_negative { Err(anchor_lo.to(self.prev_span)) } else { Ok(bound) })
}
/// Parses a lifetime ("outlives") bound, e.g. `'a`, according to:
/// ```
/// LT_BOUND = LIFETIME
/// ```
fn parse_generic_lt_bound(
&mut self,
lo: Span,
inner_lo: Span,
has_parens: bool,
) -> PResult<'a, GenericBound> {
let bound = GenericBound::Outlives(self.expect_lifetime());
if has_parens {
// FIXME(Centril): Consider not erroring here and accepting `('lt)` instead,
// possibly introducing `GenericBound::Paren(P<GenericBound>)`?
self.recover_paren_lifetime(lo, inner_lo)?;
}
Ok(bound)
}
/// Emits an error if any trait bound modifiers were present.
fn error_lt_bound_with_modifiers(&self, modifiers: BoundModifiers) {
if let Some(span) = modifiers.maybe_const {
self.struct_span_err(
span,
"`?const` may only modify trait bounds, not lifetime bounds",
)
.emit();
}
if let Some(span) = modifiers.maybe {
self.struct_span_err(span, "`?` may only modify trait bounds, not lifetime bounds")
.emit();
}
}
/// Recover on `('lifetime)` with `(` already eaten.
fn recover_paren_lifetime(&mut self, lo: Span, inner_lo: Span) -> PResult<'a, ()> {
let inner_span = inner_lo.to(self.prev_span);
self.expect(&token::CloseDelim(token::Paren))?;
let mut err = self.struct_span_err(
lo.to(self.prev_span),
"parenthesized lifetime bounds are not supported",
);
if let Ok(snippet) = self.span_to_snippet(inner_span) {
err.span_suggestion_short(
lo.to(self.prev_span),
"remove the parentheses",
snippet,
Applicability::MachineApplicable,
);
}
err.emit();
Ok(())
}
/// Parses the modifiers that may precede a trait in a bound, e.g. `?Trait` or `?const Trait`.
///
/// If no modifiers are present, this does not consume any tokens.
///
/// ```
/// TY_BOUND_MODIFIERS = "?" ["const" ["?"]]
/// ```
fn parse_ty_bound_modifiers(&mut self) -> BoundModifiers {
if !self.eat(&token::Question) {
return BoundModifiers { maybe: None, maybe_const: None };
}
// `? ...`
let first_question = self.prev_span;
if !self.eat_keyword(kw::Const) {
return BoundModifiers { maybe: Some(first_question), maybe_const: None };
}
// `?const ...`
let maybe_const = first_question.to(self.prev_span);
self.sess.gated_spans.gate(sym::const_trait_bound_opt_out, maybe_const);
if !self.eat(&token::Question) {
return BoundModifiers { maybe: None, maybe_const: Some(maybe_const) };
}
// `?const ? ...`
let second_question = self.prev_span;
BoundModifiers { maybe: Some(second_question), maybe_const: Some(maybe_const) }
}
/// Parses a type bound according to:
/// ```
/// TY_BOUND = TY_BOUND_NOPAREN | (TY_BOUND_NOPAREN)
/// TY_BOUND_NOPAREN = [TY_BOUND_MODIFIERS] [for<LT_PARAM_DEFS>] SIMPLE_PATH
/// ```
///
/// For example, this grammar accepts `?const ?for<'a: 'b> m::Trait<'a>`.
fn parse_generic_ty_bound(
&mut self,
lo: Span,
has_parens: bool,
modifiers: BoundModifiers,
) -> PResult<'a, GenericBound> {
let lifetime_defs = self.parse_late_bound_lifetime_defs()?;
let path = self.parse_path(PathStyle::Type)?;
if has_parens {
self.expect(&token::CloseDelim(token::Paren))?;
}
let modifier = modifiers.to_trait_bound_modifier();
let poly_trait = PolyTraitRef::new(lifetime_defs, path, lo.to(self.prev_span));
Ok(GenericBound::Trait(poly_trait, modifier))
}
/// Optionally parses `for<$generic_params>`.
pub(super) fn parse_late_bound_lifetime_defs(&mut self) -> PResult<'a, Vec<GenericParam>> {
if self.eat_keyword(kw::For) {
self.expect_lt()?;
let params = self.parse_generic_params()?;
self.expect_gt()?;
// We rely on AST validation to rule out invalid cases: There must not be type
// parameters, and the lifetime parameters must not have bounds.
Ok(params)
} else {
Ok(Vec::new())
}
}
pub fn check_lifetime(&mut self) -> bool {
self.expected_tokens.push(TokenType::Lifetime);
self.token.is_lifetime()
}
/// Parses a single lifetime `'a` or panics.
pub fn expect_lifetime(&mut self) -> Lifetime {
if let Some(ident) = self.token.lifetime() {
let span = self.token.span;
self.bump();
Lifetime { ident: Ident::new(ident.name, span), id: ast::DUMMY_NODE_ID }
} else {
self.span_bug(self.token.span, "not a lifetime")
}
}
pub(super) fn mk_ty(&self, span: Span, kind: TyKind) -> P<Ty> {
P(Ty { kind, span, id: ast::DUMMY_NODE_ID })
}
}