blob: b004cd19020f8f6ab94bf64b22762fa599588759 [file] [log] [blame]
#![allow(missing_docs, nonstandard_style)]
use crate::ffi::{OsStr, OsString};
use crate::io::ErrorKind;
use crate::os::windows::ffi::{OsStrExt, OsStringExt};
use crate::path::PathBuf;
use crate::ptr;
use crate::time::Duration;
pub use self::rand::hashmap_random_keys;
pub use libc::strlen;
#[macro_use]
pub mod compat;
pub mod alloc;
pub mod args;
pub mod c;
pub mod cmath;
pub mod condvar;
pub mod env;
pub mod ext;
pub mod fast_thread_local;
pub mod fs;
pub mod handle;
pub mod io;
pub mod memchr;
pub mod mutex;
pub mod net;
pub mod os;
pub mod os_str;
pub mod path;
pub mod pipe;
pub mod process;
pub mod rand;
pub mod rwlock;
pub mod thread;
pub mod thread_local;
pub mod time;
cfg_if::cfg_if! {
if #[cfg(not(target_vendor = "uwp"))] {
pub mod stdio;
pub mod stack_overflow;
} else {
pub mod stdio_uwp;
pub mod stack_overflow_uwp;
pub use self::stdio_uwp as stdio;
pub use self::stack_overflow_uwp as stack_overflow;
}
}
#[cfg(not(test))]
pub fn init() {}
pub fn decode_error_kind(errno: i32) -> ErrorKind {
match errno as c::DWORD {
c::ERROR_ACCESS_DENIED => return ErrorKind::PermissionDenied,
c::ERROR_ALREADY_EXISTS => return ErrorKind::AlreadyExists,
c::ERROR_FILE_EXISTS => return ErrorKind::AlreadyExists,
c::ERROR_BROKEN_PIPE => return ErrorKind::BrokenPipe,
c::ERROR_FILE_NOT_FOUND => return ErrorKind::NotFound,
c::ERROR_PATH_NOT_FOUND => return ErrorKind::NotFound,
c::ERROR_NO_DATA => return ErrorKind::BrokenPipe,
c::ERROR_OPERATION_ABORTED => return ErrorKind::TimedOut,
_ => {}
}
match errno {
c::WSAEACCES => ErrorKind::PermissionDenied,
c::WSAEADDRINUSE => ErrorKind::AddrInUse,
c::WSAEADDRNOTAVAIL => ErrorKind::AddrNotAvailable,
c::WSAECONNABORTED => ErrorKind::ConnectionAborted,
c::WSAECONNREFUSED => ErrorKind::ConnectionRefused,
c::WSAECONNRESET => ErrorKind::ConnectionReset,
c::WSAEINVAL => ErrorKind::InvalidInput,
c::WSAENOTCONN => ErrorKind::NotConnected,
c::WSAEWOULDBLOCK => ErrorKind::WouldBlock,
c::WSAETIMEDOUT => ErrorKind::TimedOut,
_ => ErrorKind::Other,
}
}
pub fn to_u16s<S: AsRef<OsStr>>(s: S) -> crate::io::Result<Vec<u16>> {
fn inner(s: &OsStr) -> crate::io::Result<Vec<u16>> {
let mut maybe_result: Vec<u16> = s.encode_wide().collect();
if maybe_result.iter().any(|&u| u == 0) {
return Err(crate::io::Error::new(
ErrorKind::InvalidInput,
"strings passed to WinAPI cannot contain NULs",
));
}
maybe_result.push(0);
Ok(maybe_result)
}
inner(s.as_ref())
}
// Many Windows APIs follow a pattern of where we hand a buffer and then they
// will report back to us how large the buffer should be or how many bytes
// currently reside in the buffer. This function is an abstraction over these
// functions by making them easier to call.
//
// The first callback, `f1`, is yielded a (pointer, len) pair which can be
// passed to a syscall. The `ptr` is valid for `len` items (u16 in this case).
// The closure is expected to return what the syscall returns which will be
// interpreted by this function to determine if the syscall needs to be invoked
// again (with more buffer space).
//
// Once the syscall has completed (errors bail out early) the second closure is
// yielded the data which has been read from the syscall. The return value
// from this closure is then the return value of the function.
fn fill_utf16_buf<F1, F2, T>(mut f1: F1, f2: F2) -> crate::io::Result<T>
where
F1: FnMut(*mut u16, c::DWORD) -> c::DWORD,
F2: FnOnce(&[u16]) -> T,
{
// Start off with a stack buf but then spill over to the heap if we end up
// needing more space.
let mut stack_buf = [0u16; 512];
let mut heap_buf = Vec::new();
unsafe {
let mut n = stack_buf.len();
loop {
let buf = if n <= stack_buf.len() {
&mut stack_buf[..]
} else {
let extra = n - heap_buf.len();
heap_buf.reserve(extra);
heap_buf.set_len(n);
&mut heap_buf[..]
};
// This function is typically called on windows API functions which
// will return the correct length of the string, but these functions
// also return the `0` on error. In some cases, however, the
// returned "correct length" may actually be 0!
//
// To handle this case we call `SetLastError` to reset it to 0 and
// then check it again if we get the "0 error value". If the "last
// error" is still 0 then we interpret it as a 0 length buffer and
// not an actual error.
c::SetLastError(0);
let k = match f1(buf.as_mut_ptr(), n as c::DWORD) {
0 if c::GetLastError() == 0 => 0,
0 => return Err(crate::io::Error::last_os_error()),
n => n,
} as usize;
if k == n && c::GetLastError() == c::ERROR_INSUFFICIENT_BUFFER {
n *= 2;
} else if k >= n {
n = k;
} else {
return Ok(f2(&buf[..k]));
}
}
}
}
fn os2path(s: &[u16]) -> PathBuf {
PathBuf::from(OsString::from_wide(s))
}
#[allow(dead_code)] // Only used in backtrace::gnu::get_executable_filename()
fn wide_char_to_multi_byte(
code_page: u32,
flags: u32,
s: &[u16],
no_default_char: bool,
) -> crate::io::Result<Vec<i8>> {
unsafe {
let mut size = c::WideCharToMultiByte(
code_page,
flags,
s.as_ptr(),
s.len() as i32,
ptr::null_mut(),
0,
ptr::null(),
ptr::null_mut(),
);
if size == 0 {
return Err(crate::io::Error::last_os_error());
}
let mut buf = Vec::with_capacity(size as usize);
buf.set_len(size as usize);
let mut used_default_char = c::FALSE;
size = c::WideCharToMultiByte(
code_page,
flags,
s.as_ptr(),
s.len() as i32,
buf.as_mut_ptr(),
buf.len() as i32,
ptr::null(),
if no_default_char { &mut used_default_char } else { ptr::null_mut() },
);
if size == 0 {
return Err(crate::io::Error::last_os_error());
}
if no_default_char && used_default_char == c::TRUE {
return Err(crate::io::Error::new(
crate::io::ErrorKind::InvalidData,
"string cannot be converted to requested code page",
));
}
buf.set_len(size as usize);
Ok(buf)
}
}
pub fn truncate_utf16_at_nul(v: &[u16]) -> &[u16] {
match v.iter().position(|c| *c == 0) {
// don't include the 0
Some(i) => &v[..i],
None => v,
}
}
pub trait IsZero {
fn is_zero(&self) -> bool;
}
macro_rules! impl_is_zero {
($($t:ident)*) => ($(impl IsZero for $t {
fn is_zero(&self) -> bool {
*self == 0
}
})*)
}
impl_is_zero! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize }
pub fn cvt<I: IsZero>(i: I) -> crate::io::Result<I> {
if i.is_zero() { Err(crate::io::Error::last_os_error()) } else { Ok(i) }
}
pub fn dur2timeout(dur: Duration) -> c::DWORD {
// Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the
// timeouts in windows APIs are typically u32 milliseconds. To translate, we
// have two pieces to take care of:
//
// * Nanosecond precision is rounded up
// * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE
// (never time out).
dur.as_secs()
.checked_mul(1000)
.and_then(|ms| ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000))
.and_then(|ms| ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 { 1 } else { 0 }))
.map(|ms| if ms > <c::DWORD>::max_value() as u64 { c::INFINITE } else { ms as c::DWORD })
.unwrap_or(c::INFINITE)
}
// On Windows, use the processor-specific __fastfail mechanism. In Windows 8
// and later, this will terminate the process immediately without running any
// in-process exception handlers. In earlier versions of Windows, this
// sequence of instructions will be treated as an access violation,
// terminating the process but without necessarily bypassing all exception
// handlers.
//
// https://docs.microsoft.com/en-us/cpp/intrinsics/fastfail
#[allow(unreachable_code)]
pub unsafe fn abort_internal() -> ! {
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
{
asm!("int $$0x29" :: "{ecx}"(7) ::: volatile); // 7 is FAST_FAIL_FATAL_APP_EXIT
crate::intrinsics::unreachable();
}
crate::intrinsics::abort();
}