blob: 2a2169dd348c211ec14edac3e33e5f5c886ac54e [file] [log] [blame]
// Original implementation taken from rust-memchr.
// Copyright 2015 Andrew Gallant, bluss and Nicolas Koch
// ignore-tidy-undocumented-unsafe
use crate::cmp;
use crate::mem;
const LO_U64: u64 = 0x0101010101010101;
const HI_U64: u64 = 0x8080808080808080;
// Use truncation.
const LO_USIZE: usize = LO_U64 as usize;
const HI_USIZE: usize = HI_U64 as usize;
/// Returns `true` if `x` contains any zero byte.
///
/// From *Matters Computational*, J. Arndt:
///
/// "The idea is to subtract one from each of the bytes and then look for
/// bytes where the borrow propagated all the way to the most significant
/// bit."
#[inline]
fn contains_zero_byte(x: usize) -> bool {
x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0
}
#[cfg(target_pointer_width = "16")]
#[inline]
fn repeat_byte(b: u8) -> usize {
(b as usize) << 8 | b as usize
}
#[cfg(not(target_pointer_width = "16"))]
#[inline]
fn repeat_byte(b: u8) -> usize {
(b as usize) * (crate::usize::MAX / 255)
}
/// Returns the first index matching the byte `x` in `text`.
pub fn memchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned initial part, before the first word aligned address in text
// - body, scan by 2 words at a time
// - the last remaining part, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search up to an aligned boundary
let mut offset = ptr.align_offset(usize_bytes);
if offset > 0 {
offset = cmp::min(offset, len);
if let Some(index) = text[..offset].iter().position(|elt| *elt == x) {
return Some(index);
}
}
// search the body of the text
let repeated_x = repeat_byte(x);
if len >= 2 * usize_bytes {
while offset <= len - 2 * usize_bytes {
unsafe {
let u = *(ptr.add(offset) as *const usize);
let v = *(ptr.add(offset + usize_bytes) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset += usize_bytes * 2;
}
}
// Find the byte after the point the body loop stopped.
text[offset..].iter().position(|elt| *elt == x).map(|i| offset + i)
}
/// Returns the last index matching the byte `x` in `text`.
pub fn memrchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts:
// - unaligned tail, after the last word aligned address in text,
// - body, scanned by 2 words at a time,
// - the first remaining bytes, < 2 word size.
let len = text.len();
let ptr = text.as_ptr();
type Chunk = usize;
let (min_aligned_offset, max_aligned_offset) = {
// We call this just to obtain the length of the prefix and suffix.
// In the middle we always process two chunks at once.
let (prefix, _, suffix) = unsafe { text.align_to::<(Chunk, Chunk)>() };
(prefix.len(), len - suffix.len())
};
let mut offset = max_aligned_offset;
if let Some(index) = text[offset..].iter().rposition(|elt| *elt == x) {
return Some(offset + index);
}
// Search the body of the text, make sure we don't cross min_aligned_offset.
// offset is always aligned, so just testing `>` is sufficient and avoids possible
// overflow.
let repeated_x = repeat_byte(x);
let chunk_bytes = mem::size_of::<Chunk>();
while offset > min_aligned_offset {
unsafe {
let u = *(ptr.offset(offset as isize - 2 * chunk_bytes as isize) as *const Chunk);
let v = *(ptr.offset(offset as isize - chunk_bytes as isize) as *const Chunk);
// Break if there is a matching byte.
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset -= 2 * chunk_bytes;
}
// Find the byte before the point the body loop stopped.
text[..offset].iter().rposition(|elt| *elt == x)
}