blob: 2e2fc011ddbe6c3198c0ac3dafb6e144e471769f [file] [log] [blame]
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Rustdoc's HTML Rendering module
//!
//! This modules contains the bulk of the logic necessary for rendering a
//! rustdoc `clean::Crate` instance to a set of static HTML pages. This
//! rendering process is largely driven by the `format!` syntax extension to
//! perform all I/O into files and streams.
//!
//! The rendering process is largely driven by the `Context` and `Cache`
//! structures. The cache is pre-populated by crawling the crate in question,
//! and then it is shared among the various rendering threads. The cache is meant
//! to be a fairly large structure not implementing `Clone` (because it's shared
//! among threads). The context, however, should be a lightweight structure. This
//! is cloned per-thread and contains information about what is currently being
//! rendered.
//!
//! In order to speed up rendering (mostly because of markdown rendering), the
//! rendering process has been parallelized. This parallelization is only
//! exposed through the `crate` method on the context, and then also from the
//! fact that the shared cache is stored in TLS (and must be accessed as such).
//!
//! In addition to rendering the crate itself, this module is also responsible
//! for creating the corresponding search index and source file renderings.
//! These threads are not parallelized (they haven't been a bottleneck yet), and
//! both occur before the crate is rendered.
pub use self::ExternalLocation::*;
use std::ascii::AsciiExt;
use std::cell::RefCell;
use std::cmp::Ordering;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::default::Default;
use std::error;
use std::fmt::{self, Display, Formatter};
use std::fs::{self, File};
use std::io::prelude::*;
use std::io::{self, BufWriter, BufReader};
use std::iter::repeat;
use std::mem;
use std::path::{PathBuf, Path, Component};
use std::str;
use std::sync::Arc;
use externalfiles::ExternalHtml;
use serialize::json::{ToJson, Json, as_json};
use syntax::{abi, ast};
use syntax::feature_gate::UnstableFeatures;
use rustc::middle::cstore::LOCAL_CRATE;
use rustc::hir::def_id::{CRATE_DEF_INDEX, DefId};
use rustc::middle::privacy::AccessLevels;
use rustc::middle::stability;
use rustc::session::config::get_unstable_features_setting;
use rustc::hir;
use clean::{self, Attributes, GetDefId};
use doctree;
use fold::DocFolder;
use html::escape::Escape;
use html::format::{ConstnessSpace};
use html::format::{TyParamBounds, WhereClause, href, AbiSpace};
use html::format::{VisSpace, Method, UnsafetySpace, MutableSpace};
use html::format::fmt_impl_for_trait_page;
use html::item_type::ItemType;
use html::markdown::{self, Markdown};
use html::{highlight, layout};
/// A pair of name and its optional document.
pub type NameDoc = (String, Option<String>);
/// Major driving force in all rustdoc rendering. This contains information
/// about where in the tree-like hierarchy rendering is occurring and controls
/// how the current page is being rendered.
///
/// It is intended that this context is a lightweight object which can be fairly
/// easily cloned because it is cloned per work-job (about once per item in the
/// rustdoc tree).
#[derive(Clone)]
pub struct Context {
/// Current hierarchy of components leading down to what's currently being
/// rendered
pub current: Vec<String>,
/// String representation of how to get back to the root path of the 'doc/'
/// folder in terms of a relative URL.
pub root_path: String,
/// The current destination folder of where HTML artifacts should be placed.
/// This changes as the context descends into the module hierarchy.
pub dst: PathBuf,
/// A flag, which when `true`, will render pages which redirect to the
/// real location of an item. This is used to allow external links to
/// publicly reused items to redirect to the right location.
pub render_redirect_pages: bool,
pub shared: Arc<SharedContext>,
}
pub struct SharedContext {
/// The path to the crate root source minus the file name.
/// Used for simplifying paths to the highlighted source code files.
pub src_root: PathBuf,
/// This describes the layout of each page, and is not modified after
/// creation of the context (contains info like the favicon and added html).
pub layout: layout::Layout,
/// This flag indicates whether [src] links should be generated or not. If
/// the source files are present in the html rendering, then this will be
/// `true`.
pub include_sources: bool,
/// The local file sources we've emitted and their respective url-paths.
pub local_sources: HashMap<PathBuf, String>,
/// All the passes that were run on this crate.
pub passes: HashSet<String>,
/// The base-URL of the issue tracker for when an item has been tagged with
/// an issue number.
pub issue_tracker_base_url: Option<String>,
/// The given user css file which allow to customize the generated
/// documentation theme.
pub css_file_extension: Option<PathBuf>,
}
/// Indicates where an external crate can be found.
pub enum ExternalLocation {
/// Remote URL root of the external crate
Remote(String),
/// This external crate can be found in the local doc/ folder
Local,
/// The external crate could not be found.
Unknown,
}
/// Metadata about an implementor of a trait.
pub struct Implementor {
pub def_id: DefId,
pub stability: Option<clean::Stability>,
pub impl_: clean::Impl,
}
/// Metadata about implementations for a type.
#[derive(Clone)]
pub struct Impl {
pub impl_item: clean::Item,
}
impl Impl {
fn inner_impl(&self) -> &clean::Impl {
match self.impl_item.inner {
clean::ImplItem(ref impl_) => impl_,
_ => panic!("non-impl item found in impl")
}
}
fn trait_did(&self) -> Option<DefId> {
self.inner_impl().trait_.def_id()
}
}
#[derive(Debug)]
pub struct Error {
file: PathBuf,
error: io::Error,
}
impl error::Error for Error {
fn description(&self) -> &str {
self.error.description()
}
}
impl Display for Error {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "\"{}\": {}", self.file.display(), self.error)
}
}
impl Error {
pub fn new(e: io::Error, file: &Path) -> Error {
Error {
file: file.to_path_buf(),
error: e,
}
}
}
macro_rules! try_err {
($e:expr, $file:expr) => ({
match $e {
Ok(e) => e,
Err(e) => return Err(Error::new(e, $file)),
}
})
}
/// This cache is used to store information about the `clean::Crate` being
/// rendered in order to provide more useful documentation. This contains
/// information like all implementors of a trait, all traits a type implements,
/// documentation for all known traits, etc.
///
/// This structure purposefully does not implement `Clone` because it's intended
/// to be a fairly large and expensive structure to clone. Instead this adheres
/// to `Send` so it may be stored in a `Arc` instance and shared among the various
/// rendering threads.
#[derive(Default)]
pub struct Cache {
/// Mapping of typaram ids to the name of the type parameter. This is used
/// when pretty-printing a type (so pretty printing doesn't have to
/// painfully maintain a context like this)
pub typarams: HashMap<DefId, String>,
/// Maps a type id to all known implementations for that type. This is only
/// recognized for intra-crate `ResolvedPath` types, and is used to print
/// out extra documentation on the page of an enum/struct.
///
/// The values of the map are a list of implementations and documentation
/// found on that implementation.
pub impls: HashMap<DefId, Vec<Impl>>,
/// Maintains a mapping of local crate node ids to the fully qualified name
/// and "short type description" of that node. This is used when generating
/// URLs when a type is being linked to. External paths are not located in
/// this map because the `External` type itself has all the information
/// necessary.
pub paths: HashMap<DefId, (Vec<String>, ItemType)>,
/// Similar to `paths`, but only holds external paths. This is only used for
/// generating explicit hyperlinks to other crates.
pub external_paths: HashMap<DefId, (Vec<String>, ItemType)>,
/// This map contains information about all known traits of this crate.
/// Implementations of a crate should inherit the documentation of the
/// parent trait if no extra documentation is specified, and default methods
/// should show up in documentation about trait implementations.
pub traits: HashMap<DefId, clean::Trait>,
/// When rendering traits, it's often useful to be able to list all
/// implementors of the trait, and this mapping is exactly, that: a mapping
/// of trait ids to the list of known implementors of the trait
pub implementors: HashMap<DefId, Vec<Implementor>>,
/// Cache of where external crate documentation can be found.
pub extern_locations: HashMap<ast::CrateNum, (String, ExternalLocation)>,
/// Cache of where documentation for primitives can be found.
pub primitive_locations: HashMap<clean::PrimitiveType, ast::CrateNum>,
// Note that external items for which `doc(hidden)` applies to are shown as
// non-reachable while local items aren't. This is because we're reusing
// the access levels from crateanalysis.
pub access_levels: Arc<AccessLevels<DefId>>,
// Private fields only used when initially crawling a crate to build a cache
stack: Vec<String>,
parent_stack: Vec<DefId>,
parent_is_trait_impl: bool,
search_index: Vec<IndexItem>,
seen_modules: HashSet<DefId>,
seen_mod: bool,
stripped_mod: bool,
deref_trait_did: Option<DefId>,
// In rare case where a structure is defined in one module but implemented
// in another, if the implementing module is parsed before defining module,
// then the fully qualified name of the structure isn't presented in `paths`
// yet when its implementation methods are being indexed. Caches such methods
// and their parent id here and indexes them at the end of crate parsing.
orphan_methods: Vec<(DefId, clean::Item)>,
}
/// Temporary storage for data obtained during `RustdocVisitor::clean()`.
/// Later on moved into `CACHE_KEY`.
#[derive(Default)]
pub struct RenderInfo {
pub inlined: HashSet<DefId>,
pub external_paths: ::core::ExternalPaths,
pub external_typarams: HashMap<DefId, String>,
pub deref_trait_did: Option<DefId>,
}
/// Helper struct to render all source code to HTML pages
struct SourceCollector<'a> {
scx: &'a mut SharedContext,
/// Root destination to place all HTML output into
dst: PathBuf,
}
/// Wrapper struct to render the source code of a file. This will do things like
/// adding line numbers to the left-hand side.
struct Source<'a>(&'a str);
// Helper structs for rendering items/sidebars and carrying along contextual
// information
#[derive(Copy, Clone)]
struct Item<'a> {
cx: &'a Context,
item: &'a clean::Item,
}
struct Sidebar<'a> { cx: &'a Context, item: &'a clean::Item, }
/// Struct representing one entry in the JS search index. These are all emitted
/// by hand to a large JS file at the end of cache-creation.
struct IndexItem {
ty: ItemType,
name: String,
path: String,
desc: String,
parent: Option<DefId>,
parent_idx: Option<usize>,
search_type: Option<IndexItemFunctionType>,
}
impl ToJson for IndexItem {
fn to_json(&self) -> Json {
assert_eq!(self.parent.is_some(), self.parent_idx.is_some());
let mut data = Vec::with_capacity(6);
data.push((self.ty as usize).to_json());
data.push(self.name.to_json());
data.push(self.path.to_json());
data.push(self.desc.to_json());
data.push(self.parent_idx.to_json());
data.push(self.search_type.to_json());
Json::Array(data)
}
}
/// A type used for the search index.
struct Type {
name: Option<String>,
}
impl ToJson for Type {
fn to_json(&self) -> Json {
match self.name {
Some(ref name) => {
let mut data = BTreeMap::new();
data.insert("name".to_owned(), name.to_json());
Json::Object(data)
},
None => Json::Null
}
}
}
/// Full type of functions/methods in the search index.
struct IndexItemFunctionType {
inputs: Vec<Type>,
output: Option<Type>
}
impl ToJson for IndexItemFunctionType {
fn to_json(&self) -> Json {
// If we couldn't figure out a type, just write `null`.
if self.inputs.iter().chain(self.output.iter()).any(|ref i| i.name.is_none()) {
Json::Null
} else {
let mut data = BTreeMap::new();
data.insert("inputs".to_owned(), self.inputs.to_json());
data.insert("output".to_owned(), self.output.to_json());
Json::Object(data)
}
}
}
// TLS keys used to carry information around during rendering.
thread_local!(static CACHE_KEY: RefCell<Arc<Cache>> = Default::default());
thread_local!(pub static CURRENT_LOCATION_KEY: RefCell<Vec<String>> =
RefCell::new(Vec::new()));
thread_local!(static USED_ID_MAP: RefCell<HashMap<String, usize>> =
RefCell::new(init_ids()));
fn init_ids() -> HashMap<String, usize> {
[
"main",
"search",
"help",
"TOC",
"render-detail",
"associated-types",
"associated-const",
"required-methods",
"provided-methods",
"implementors",
"implementors-list",
"methods",
"deref-methods",
"implementations",
].into_iter().map(|id| (String::from(*id), 1)).collect()
}
/// This method resets the local table of used ID attributes. This is typically
/// used at the beginning of rendering an entire HTML page to reset from the
/// previous state (if any).
pub fn reset_ids(embedded: bool) {
USED_ID_MAP.with(|s| {
*s.borrow_mut() = if embedded {
init_ids()
} else {
HashMap::new()
};
});
}
pub fn derive_id(candidate: String) -> String {
USED_ID_MAP.with(|map| {
let id = match map.borrow_mut().get_mut(&candidate) {
None => candidate,
Some(a) => {
let id = format!("{}-{}", candidate, *a);
*a += 1;
id
}
};
map.borrow_mut().insert(id.clone(), 1);
id
})
}
/// Generates the documentation for `crate` into the directory `dst`
pub fn run(mut krate: clean::Crate,
external_html: &ExternalHtml,
dst: PathBuf,
passes: HashSet<String>,
css_file_extension: Option<PathBuf>,
renderinfo: RenderInfo) -> Result<(), Error> {
let src_root = match krate.src.parent() {
Some(p) => p.to_path_buf(),
None => PathBuf::new(),
};
let mut scx = SharedContext {
src_root: src_root,
passes: passes,
include_sources: true,
local_sources: HashMap::new(),
issue_tracker_base_url: None,
layout: layout::Layout {
logo: "".to_string(),
favicon: "".to_string(),
external_html: external_html.clone(),
krate: krate.name.clone(),
playground_url: "".to_string(),
},
css_file_extension: css_file_extension.clone(),
};
// Crawl the crate attributes looking for attributes which control how we're
// going to emit HTML
if let Some(attrs) = krate.module.as_ref().map(|m| m.attrs.list("doc")) {
for attr in attrs {
match *attr {
clean::NameValue(ref x, ref s)
if "html_favicon_url" == *x => {
scx.layout.favicon = s.to_string();
}
clean::NameValue(ref x, ref s)
if "html_logo_url" == *x => {
scx.layout.logo = s.to_string();
}
clean::NameValue(ref x, ref s)
if "html_playground_url" == *x => {
scx.layout.playground_url = s.to_string();
markdown::PLAYGROUND_KRATE.with(|slot| {
if slot.borrow().is_none() {
let name = krate.name.clone();
*slot.borrow_mut() = Some(Some(name));
}
});
}
clean::NameValue(ref x, ref s)
if "issue_tracker_base_url" == *x => {
scx.issue_tracker_base_url = Some(s.to_string());
}
clean::Word(ref x)
if "html_no_source" == *x => {
scx.include_sources = false;
}
_ => {}
}
}
}
try_err!(mkdir(&dst), &dst);
krate = render_sources(&dst, &mut scx, krate)?;
let cx = Context {
current: Vec::new(),
root_path: String::new(),
dst: dst,
render_redirect_pages: false,
shared: Arc::new(scx),
};
// Crawl the crate to build various caches used for the output
let RenderInfo {
inlined: _,
external_paths,
external_typarams,
deref_trait_did,
} = renderinfo;
let external_paths = external_paths.into_iter()
.map(|(k, (v, t))| (k, (v, ItemType::from_type_kind(t))))
.collect();
let mut cache = Cache {
impls: HashMap::new(),
external_paths: external_paths,
paths: HashMap::new(),
implementors: HashMap::new(),
stack: Vec::new(),
parent_stack: Vec::new(),
search_index: Vec::new(),
parent_is_trait_impl: false,
extern_locations: HashMap::new(),
primitive_locations: HashMap::new(),
seen_modules: HashSet::new(),
seen_mod: false,
stripped_mod: false,
access_levels: krate.access_levels.clone(),
orphan_methods: Vec::new(),
traits: mem::replace(&mut krate.external_traits, HashMap::new()),
deref_trait_did: deref_trait_did,
typarams: external_typarams,
};
// Cache where all our extern crates are located
for &(n, ref e) in &krate.externs {
cache.extern_locations.insert(n, (e.name.clone(),
extern_location(e, &cx.dst)));
let did = DefId { krate: n, index: CRATE_DEF_INDEX };
cache.external_paths.insert(did, (vec![e.name.to_string()], ItemType::Module));
}
// Cache where all known primitives have their documentation located.
//
// Favor linking to as local extern as possible, so iterate all crates in
// reverse topological order.
for &(n, ref e) in krate.externs.iter().rev() {
for &prim in &e.primitives {
cache.primitive_locations.insert(prim, n);
}
}
for &prim in &krate.primitives {
cache.primitive_locations.insert(prim, LOCAL_CRATE);
}
cache.stack.push(krate.name.clone());
krate = cache.fold_crate(krate);
// Build our search index
let index = build_index(&krate, &mut cache);
// Freeze the cache now that the index has been built. Put an Arc into TLS
// for future parallelization opportunities
let cache = Arc::new(cache);
CACHE_KEY.with(|v| *v.borrow_mut() = cache.clone());
CURRENT_LOCATION_KEY.with(|s| s.borrow_mut().clear());
write_shared(&cx, &krate, &*cache, index)?;
// And finally render the whole crate's documentation
cx.krate(krate)
}
/// Build the search index from the collected metadata
fn build_index(krate: &clean::Crate, cache: &mut Cache) -> String {
let mut nodeid_to_pathid = HashMap::new();
let mut crate_items = Vec::with_capacity(cache.search_index.len());
let mut crate_paths = Vec::<Json>::new();
let Cache { ref mut search_index,
ref orphan_methods,
ref mut paths, .. } = *cache;
// Attach all orphan methods to the type's definition if the type
// has since been learned.
for &(did, ref item) in orphan_methods {
if let Some(&(ref fqp, _)) = paths.get(&did) {
search_index.push(IndexItem {
ty: shortty(item),
name: item.name.clone().unwrap(),
path: fqp[..fqp.len() - 1].join("::"),
desc: Escape(&shorter(item.doc_value())).to_string(),
parent: Some(did),
parent_idx: None,
search_type: get_index_search_type(&item),
});
}
}
// Reduce `NodeId` in paths into smaller sequential numbers,
// and prune the paths that do not appear in the index.
let mut lastpath = String::new();
let mut lastpathid = 0usize;
for item in search_index {
item.parent_idx = item.parent.map(|nodeid| {
if nodeid_to_pathid.contains_key(&nodeid) {
*nodeid_to_pathid.get(&nodeid).unwrap()
} else {
let pathid = lastpathid;
nodeid_to_pathid.insert(nodeid, pathid);
lastpathid += 1;
let &(ref fqp, short) = paths.get(&nodeid).unwrap();
crate_paths.push(((short as usize), fqp.last().unwrap().clone()).to_json());
pathid
}
});
// Omit the parent path if it is same to that of the prior item.
if lastpath == item.path {
item.path.clear();
} else {
lastpath = item.path.clone();
}
crate_items.push(item.to_json());
}
let crate_doc = krate.module.as_ref().map(|module| {
Escape(&shorter(module.doc_value())).to_string()
}).unwrap_or(String::new());
let mut crate_data = BTreeMap::new();
crate_data.insert("doc".to_owned(), Json::String(crate_doc));
crate_data.insert("items".to_owned(), Json::Array(crate_items));
crate_data.insert("paths".to_owned(), Json::Array(crate_paths));
// Collect the index into a string
format!("searchIndex[{}] = {};",
as_json(&krate.name),
Json::Object(crate_data))
}
fn write_shared(cx: &Context,
krate: &clean::Crate,
cache: &Cache,
search_index: String) -> Result<(), Error> {
// Write out the shared files. Note that these are shared among all rustdoc
// docs placed in the output directory, so this needs to be a synchronized
// operation with respect to all other rustdocs running around.
try_err!(mkdir(&cx.dst), &cx.dst);
let _lock = ::flock::Lock::new(&cx.dst.join(".lock"));
// Add all the static files. These may already exist, but we just
// overwrite them anyway to make sure that they're fresh and up-to-date.
write(cx.dst.join("jquery.js"),
include_bytes!("static/jquery-2.1.4.min.js"))?;
write(cx.dst.join("main.js"),
include_bytes!("static/main.js"))?;
write(cx.dst.join("playpen.js"),
include_bytes!("static/playpen.js"))?;
write(cx.dst.join("rustdoc.css"),
include_bytes!("static/rustdoc.css"))?;
write(cx.dst.join("main.css"),
include_bytes!("static/styles/main.css"))?;
if let Some(ref css) = cx.shared.css_file_extension {
let mut content = String::new();
let css = css.as_path();
let mut f = try_err!(File::open(css), css);
try_err!(f.read_to_string(&mut content), css);
let css = cx.dst.join("theme.css");
let css = css.as_path();
let mut f = try_err!(File::create(css), css);
try_err!(write!(f, "{}", &content), css);
}
write(cx.dst.join("normalize.css"),
include_bytes!("static/normalize.css"))?;
write(cx.dst.join("FiraSans-Regular.woff"),
include_bytes!("static/FiraSans-Regular.woff"))?;
write(cx.dst.join("FiraSans-Medium.woff"),
include_bytes!("static/FiraSans-Medium.woff"))?;
write(cx.dst.join("FiraSans-LICENSE.txt"),
include_bytes!("static/FiraSans-LICENSE.txt"))?;
write(cx.dst.join("Heuristica-Italic.woff"),
include_bytes!("static/Heuristica-Italic.woff"))?;
write(cx.dst.join("Heuristica-LICENSE.txt"),
include_bytes!("static/Heuristica-LICENSE.txt"))?;
write(cx.dst.join("SourceSerifPro-Regular.woff"),
include_bytes!("static/SourceSerifPro-Regular.woff"))?;
write(cx.dst.join("SourceSerifPro-Bold.woff"),
include_bytes!("static/SourceSerifPro-Bold.woff"))?;
write(cx.dst.join("SourceSerifPro-LICENSE.txt"),
include_bytes!("static/SourceSerifPro-LICENSE.txt"))?;
write(cx.dst.join("SourceCodePro-Regular.woff"),
include_bytes!("static/SourceCodePro-Regular.woff"))?;
write(cx.dst.join("SourceCodePro-Semibold.woff"),
include_bytes!("static/SourceCodePro-Semibold.woff"))?;
write(cx.dst.join("SourceCodePro-LICENSE.txt"),
include_bytes!("static/SourceCodePro-LICENSE.txt"))?;
write(cx.dst.join("LICENSE-MIT.txt"),
include_bytes!("static/LICENSE-MIT.txt"))?;
write(cx.dst.join("LICENSE-APACHE.txt"),
include_bytes!("static/LICENSE-APACHE.txt"))?;
write(cx.dst.join("COPYRIGHT.txt"),
include_bytes!("static/COPYRIGHT.txt"))?;
fn collect(path: &Path, krate: &str,
key: &str) -> io::Result<Vec<String>> {
let mut ret = Vec::new();
if path.exists() {
for line in BufReader::new(File::open(path)?).lines() {
let line = line?;
if !line.starts_with(key) {
continue
}
if line.starts_with(&format!(r#"{}["{}"]"#, key, krate)) {
continue
}
ret.push(line.to_string());
}
}
return Ok(ret);
}
// Update the search index
let dst = cx.dst.join("search-index.js");
let all_indexes = try_err!(collect(&dst, &krate.name, "searchIndex"), &dst);
let mut w = try_err!(File::create(&dst), &dst);
try_err!(writeln!(&mut w, "var searchIndex = {{}};"), &dst);
try_err!(writeln!(&mut w, "{}", search_index), &dst);
for index in &all_indexes {
try_err!(writeln!(&mut w, "{}", *index), &dst);
}
try_err!(writeln!(&mut w, "initSearch(searchIndex);"), &dst);
// Update the list of all implementors for traits
let dst = cx.dst.join("implementors");
try_err!(mkdir(&dst), &dst);
for (&did, imps) in &cache.implementors {
// Private modules can leak through to this phase of rustdoc, which
// could contain implementations for otherwise private types. In some
// rare cases we could find an implementation for an item which wasn't
// indexed, so we just skip this step in that case.
//
// FIXME: this is a vague explanation for why this can't be a `get`, in
// theory it should be...
let &(ref remote_path, remote_item_type) = match cache.paths.get(&did) {
Some(p) => p,
None => match cache.external_paths.get(&did) {
Some(p) => p,
None => continue,
}
};
let mut mydst = dst.clone();
for part in &remote_path[..remote_path.len() - 1] {
mydst.push(part);
try_err!(mkdir(&mydst), &mydst);
}
mydst.push(&format!("{}.{}.js",
remote_item_type.to_static_str(),
remote_path[remote_path.len() - 1]));
let all_implementors = try_err!(collect(&mydst, &krate.name,
"implementors"),
&mydst);
try_err!(mkdir(mydst.parent().unwrap()),
&mydst.parent().unwrap().to_path_buf());
let mut f = BufWriter::new(try_err!(File::create(&mydst), &mydst));
try_err!(writeln!(&mut f, "(function() {{var implementors = {{}};"), &mydst);
for implementor in &all_implementors {
try_err!(write!(&mut f, "{}", *implementor), &mydst);
}
try_err!(write!(&mut f, r#"implementors["{}"] = ["#, krate.name), &mydst);
for imp in imps {
// If the trait and implementation are in the same crate, then
// there's no need to emit information about it (there's inlining
// going on). If they're in different crates then the crate defining
// the trait will be interested in our implementation.
if imp.def_id.krate == did.krate { continue }
try_err!(write!(&mut f, r#""{}","#, imp.impl_), &mydst);
}
try_err!(writeln!(&mut f, r"];"), &mydst);
try_err!(writeln!(&mut f, "{}", r"
if (window.register_implementors) {
window.register_implementors(implementors);
} else {
window.pending_implementors = implementors;
}
"), &mydst);
try_err!(writeln!(&mut f, r"}})()"), &mydst);
}
Ok(())
}
fn render_sources(dst: &Path, scx: &mut SharedContext,
krate: clean::Crate) -> Result<clean::Crate, Error> {
info!("emitting source files");
let dst = dst.join("src");
try_err!(mkdir(&dst), &dst);
let dst = dst.join(&krate.name);
try_err!(mkdir(&dst), &dst);
let mut folder = SourceCollector {
dst: dst,
scx: scx,
};
Ok(folder.fold_crate(krate))
}
/// Writes the entire contents of a string to a destination, not attempting to
/// catch any errors.
fn write(dst: PathBuf, contents: &[u8]) -> Result<(), Error> {
Ok(try_err!(try_err!(File::create(&dst), &dst).write_all(contents), &dst))
}
/// Makes a directory on the filesystem, failing the thread if an error occurs
/// and skipping if the directory already exists.
///
/// Note that this also handles races as rustdoc is likely to be run
/// concurrently against another invocation.
fn mkdir(path: &Path) -> io::Result<()> {
match fs::create_dir(path) {
Ok(()) => Ok(()),
Err(ref e) if e.kind() == io::ErrorKind::AlreadyExists => Ok(()),
Err(e) => Err(e)
}
}
/// Returns a documentation-level item type from the item.
fn shortty(item: &clean::Item) -> ItemType {
ItemType::from_item(item)
}
/// Takes a path to a source file and cleans the path to it. This canonicalizes
/// things like ".." to components which preserve the "top down" hierarchy of a
/// static HTML tree. Each component in the cleaned path will be passed as an
/// argument to `f`. The very last component of the path (ie the file name) will
/// be passed to `f` if `keep_filename` is true, and ignored otherwise.
// FIXME (#9639): The closure should deal with &[u8] instead of &str
// FIXME (#9639): This is too conservative, rejecting non-UTF-8 paths
fn clean_srcpath<F>(src_root: &Path, p: &Path, keep_filename: bool, mut f: F) where
F: FnMut(&str),
{
// make it relative, if possible
let p = p.strip_prefix(src_root).unwrap_or(p);
let mut iter = p.components().peekable();
while let Some(c) = iter.next() {
if !keep_filename && iter.peek().is_none() {
break;
}
match c {
Component::ParentDir => f("up"),
Component::Normal(c) => f(c.to_str().unwrap()),
_ => continue,
}
}
}
/// Attempts to find where an external crate is located, given that we're
/// rendering in to the specified source destination.
fn extern_location(e: &clean::ExternalCrate, dst: &Path) -> ExternalLocation {
// See if there's documentation generated into the local directory
let local_location = dst.join(&e.name);
if local_location.is_dir() {
return Local;
}
// Failing that, see if there's an attribute specifying where to find this
// external crate
e.attrs.list("doc").value("html_root_url").map(|url| {
let mut url = url.to_owned();
if !url.ends_with("/") {
url.push('/')
}
Remote(url)
}).unwrap_or(Unknown) // Well, at least we tried.
}
impl<'a> DocFolder for SourceCollector<'a> {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
// If we're including source files, and we haven't seen this file yet,
// then we need to render it out to the filesystem
if self.scx.include_sources
// skip all invalid spans
&& item.source.filename != ""
// macros from other libraries get special filenames which we can
// safely ignore
&& !(item.source.filename.starts_with("<")
&& item.source.filename.ends_with("macros>")) {
// If it turns out that we couldn't read this file, then we probably
// can't read any of the files (generating html output from json or
// something like that), so just don't include sources for the
// entire crate. The other option is maintaining this mapping on a
// per-file basis, but that's probably not worth it...
self.scx
.include_sources = match self.emit_source(&item.source.filename) {
Ok(()) => true,
Err(e) => {
println!("warning: source code was requested to be rendered, \
but processing `{}` had an error: {}",
item.source.filename, e);
println!(" skipping rendering of source code");
false
}
};
}
self.fold_item_recur(item)
}
}
impl<'a> SourceCollector<'a> {
/// Renders the given filename into its corresponding HTML source file.
fn emit_source(&mut self, filename: &str) -> io::Result<()> {
let p = PathBuf::from(filename);
if self.scx.local_sources.contains_key(&p) {
// We've already emitted this source
return Ok(());
}
let mut contents = Vec::new();
File::open(&p).and_then(|mut f| f.read_to_end(&mut contents))?;
let contents = str::from_utf8(&contents).unwrap();
// Remove the utf-8 BOM if any
let contents = if contents.starts_with("\u{feff}") {
&contents[3..]
} else {
contents
};
// Create the intermediate directories
let mut cur = self.dst.clone();
let mut root_path = String::from("../../");
let mut href = String::new();
clean_srcpath(&self.scx.src_root, &p, false, |component| {
cur.push(component);
mkdir(&cur).unwrap();
root_path.push_str("../");
href.push_str(component);
href.push('/');
});
let mut fname = p.file_name().expect("source has no filename")
.to_os_string();
fname.push(".html");
cur.push(&fname[..]);
href.push_str(&fname.to_string_lossy());
let mut w = BufWriter::new(File::create(&cur)?);
let title = format!("{} -- source", cur.file_name().unwrap()
.to_string_lossy());
let desc = format!("Source to the Rust file `{}`.", filename);
let page = layout::Page {
title: &title,
ty: "source",
root_path: &root_path,
description: &desc,
keywords: BASIC_KEYWORDS,
};
layout::render(&mut w, &self.scx.layout,
&page, &(""), &Source(contents),
self.scx.css_file_extension.is_some())?;
w.flush()?;
self.scx.local_sources.insert(p, href);
Ok(())
}
}
impl DocFolder for Cache {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
// If this is a stripped module,
// we don't want it or its children in the search index.
let orig_stripped_mod = match item.inner {
clean::StrippedItem(box clean::ModuleItem(..)) => {
mem::replace(&mut self.stripped_mod, true)
}
_ => self.stripped_mod,
};
// Inlining can cause us to visit the same item multiple times.
// (i.e. relevant for gathering impls and implementors)
let orig_seen_mod = if item.is_mod() {
let seen_this = self.seen_mod || !self.seen_modules.insert(item.def_id);
mem::replace(&mut self.seen_mod, seen_this)
} else {
self.seen_mod
};
// Register any generics to their corresponding string. This is used
// when pretty-printing types
match item.inner {
clean::StructItem(ref s) => self.generics(&s.generics),
clean::EnumItem(ref e) => self.generics(&e.generics),
clean::FunctionItem(ref f) => self.generics(&f.generics),
clean::TypedefItem(ref t, _) => self.generics(&t.generics),
clean::TraitItem(ref t) => self.generics(&t.generics),
clean::ImplItem(ref i) => self.generics(&i.generics),
clean::TyMethodItem(ref i) => self.generics(&i.generics),
clean::MethodItem(ref i) => self.generics(&i.generics),
clean::ForeignFunctionItem(ref f) => self.generics(&f.generics),
_ => {}
}
if !self.seen_mod {
// Propagate a trait methods' documentation to all implementors of the
// trait
if let clean::TraitItem(ref t) = item.inner {
self.traits.insert(item.def_id, t.clone());
}
// Collect all the implementors of traits.
if let clean::ImplItem(ref i) = item.inner {
if let Some(did) = i.trait_.def_id() {
self.implementors.entry(did).or_insert(vec![]).push(Implementor {
def_id: item.def_id,
stability: item.stability.clone(),
impl_: i.clone(),
});
}
}
}
// Index this method for searching later on
if let Some(ref s) = item.name {
let (parent, is_method) = match item.inner {
clean::StrippedItem(..) => ((None, None), false),
clean::AssociatedConstItem(..) |
clean::TypedefItem(_, true) if self.parent_is_trait_impl => {
// skip associated items in trait impls
((None, None), false)
}
clean::AssociatedTypeItem(..) |
clean::AssociatedConstItem(..) |
clean::TyMethodItem(..) |
clean::StructFieldItem(..) |
clean::VariantItem(..) => {
((Some(*self.parent_stack.last().unwrap()),
Some(&self.stack[..self.stack.len() - 1])),
false)
}
clean::MethodItem(..) => {
if self.parent_stack.is_empty() {
((None, None), false)
} else {
let last = self.parent_stack.last().unwrap();
let did = *last;
let path = match self.paths.get(&did) {
// The current stack not necessarily has correlation
// for where the type was defined. On the other
// hand, `paths` always has the right
// information if present.
Some(&(ref fqp, ItemType::Trait)) |
Some(&(ref fqp, ItemType::Struct)) |
Some(&(ref fqp, ItemType::Enum)) =>
Some(&fqp[..fqp.len() - 1]),
Some(..) => Some(&*self.stack),
None => None
};
((Some(*last), path), true)
}
}
_ => ((None, Some(&*self.stack)), false)
};
match parent {
(parent, Some(path)) if is_method || (!self.stripped_mod) => {
debug_assert!(!item.is_stripped());
// A crate has a module at its root, containing all items,
// which should not be indexed. The crate-item itself is
// inserted later on when serializing the search-index.
if item.def_id.index != CRATE_DEF_INDEX {
self.search_index.push(IndexItem {
ty: shortty(&item),
name: s.to_string(),
path: path.join("::").to_string(),
desc: Escape(&shorter(item.doc_value())).to_string(),
parent: parent,
parent_idx: None,
search_type: get_index_search_type(&item),
});
}
}
(Some(parent), None) if is_method => {
// We have a parent, but we don't know where they're
// defined yet. Wait for later to index this item.
self.orphan_methods.push((parent, item.clone()));
}
_ => {}
}
}
// Keep track of the fully qualified path for this item.
let pushed = match item.name {
Some(ref n) if !n.is_empty() => {
self.stack.push(n.to_string());
true
}
_ => false,
};
match item.inner {
clean::StructItem(..) | clean::EnumItem(..) |
clean::TypedefItem(..) | clean::TraitItem(..) |
clean::FunctionItem(..) | clean::ModuleItem(..) |
clean::ForeignFunctionItem(..) | clean::ForeignStaticItem(..) |
clean::ConstantItem(..) | clean::StaticItem(..)
if !self.stripped_mod => {
// Reexported items mean that the same id can show up twice
// in the rustdoc ast that we're looking at. We know,
// however, that a reexported item doesn't show up in the
// `public_items` map, so we can skip inserting into the
// paths map if there was already an entry present and we're
// not a public item.
if
!self.paths.contains_key(&item.def_id) ||
self.access_levels.is_public(item.def_id)
{
self.paths.insert(item.def_id,
(self.stack.clone(), shortty(&item)));
}
}
// link variants to their parent enum because pages aren't emitted
// for each variant
clean::VariantItem(..) if !self.stripped_mod => {
let mut stack = self.stack.clone();
stack.pop();
self.paths.insert(item.def_id, (stack, ItemType::Enum));
}
clean::PrimitiveItem(..) if item.visibility.is_some() => {
self.paths.insert(item.def_id, (self.stack.clone(),
shortty(&item)));
}
_ => {}
}
// Maintain the parent stack
let orig_parent_is_trait_impl = self.parent_is_trait_impl;
let parent_pushed = match item.inner {
clean::TraitItem(..) | clean::EnumItem(..) | clean::StructItem(..) => {
self.parent_stack.push(item.def_id);
self.parent_is_trait_impl = false;
true
}
clean::ImplItem(ref i) => {
self.parent_is_trait_impl = i.trait_.is_some();
match i.for_ {
clean::ResolvedPath{ did, .. } => {
self.parent_stack.push(did);
true
}
ref t => {
match t.primitive_type() {
Some(prim) => {
let did = DefId::local(prim.to_def_index());
self.parent_stack.push(did);
true
}
_ => false,
}
}
}
}
_ => false
};
// Once we've recursively found all the generics, then hoard off all the
// implementations elsewhere
let ret = self.fold_item_recur(item).and_then(|item| {
if let clean::Item { inner: clean::ImplItem(_), .. } = item {
// Figure out the id of this impl. This may map to a
// primitive rather than always to a struct/enum.
// Note: matching twice to restrict the lifetime of the `i` borrow.
let did = if let clean::Item { inner: clean::ImplItem(ref i), .. } = item {
match i.for_ {
clean::ResolvedPath { did, .. } |
clean::BorrowedRef {
type_: box clean::ResolvedPath { did, .. }, ..
} => {
Some(did)
}
ref t => {
t.primitive_type().and_then(|t| {
self.primitive_locations.get(&t).map(|n| {
let id = t.to_def_index();
DefId { krate: *n, index: id }
})
})
}
}
} else {
unreachable!()
};
if !self.seen_mod {
if let Some(did) = did {
self.impls.entry(did).or_insert(vec![]).push(Impl {
impl_item: item,
});
}
}
None
} else {
Some(item)
}
});
if pushed { self.stack.pop().unwrap(); }
if parent_pushed { self.parent_stack.pop().unwrap(); }
self.seen_mod = orig_seen_mod;
self.stripped_mod = orig_stripped_mod;
self.parent_is_trait_impl = orig_parent_is_trait_impl;
return ret;
}
}
impl<'a> Cache {
fn generics(&mut self, generics: &clean::Generics) {
for typ in &generics.type_params {
self.typarams.insert(typ.did, typ.name.clone());
}
}
}
impl Context {
/// Recurse in the directory structure and change the "root path" to make
/// sure it always points to the top (relatively)
fn recurse<T, F>(&mut self, s: String, f: F) -> T where
F: FnOnce(&mut Context) -> T,
{
if s.is_empty() {
panic!("Unexpected empty destination: {:?}", self.current);
}
let prev = self.dst.clone();
self.dst.push(&s);
self.root_path.push_str("../");
self.current.push(s);
info!("Recursing into {}", self.dst.display());
let ret = f(self);
info!("Recursed; leaving {}", self.dst.display());
// Go back to where we were at
self.dst = prev;
let len = self.root_path.len();
self.root_path.truncate(len - 3);
self.current.pop().unwrap();
return ret;
}
/// Main method for rendering a crate.
///
/// This currently isn't parallelized, but it'd be pretty easy to add
/// parallelization to this function.
fn krate(self, mut krate: clean::Crate) -> Result<(), Error> {
let mut item = match krate.module.take() {
Some(i) => i,
None => return Ok(())
};
item.name = Some(krate.name);
// render the crate documentation
let mut work = vec!((self, item));
while let Some((mut cx, item)) = work.pop() {
cx.item(item, |cx, item| {
work.push((cx.clone(), item))
})?
}
Ok(())
}
/// Non-parallelized version of rendering an item. This will take the input
/// item, render its contents, and then invoke the specified closure with
/// all sub-items which need to be rendered.
///
/// The rendering driver uses this closure to queue up more work.
fn item<F>(&mut self, item: clean::Item, mut f: F) -> Result<(), Error> where
F: FnMut(&mut Context, clean::Item),
{
fn render(writer: &mut io::Write, cx: &Context, it: &clean::Item,
pushname: bool) -> io::Result<()> {
// A little unfortunate that this is done like this, but it sure
// does make formatting *a lot* nicer.
CURRENT_LOCATION_KEY.with(|slot| {
*slot.borrow_mut() = cx.current.clone();
});
let mut title = if it.is_primitive() {
// No need to include the namespace for primitive types
String::new()
} else {
cx.current.join("::")
};
if pushname {
if !title.is_empty() {
title.push_str("::");
}
title.push_str(it.name.as_ref().unwrap());
}
title.push_str(" - Rust");
let tyname = shortty(it).to_static_str();
let desc = if it.is_crate() {
format!("API documentation for the Rust `{}` crate.",
cx.shared.layout.krate)
} else {
format!("API documentation for the Rust `{}` {} in crate `{}`.",
it.name.as_ref().unwrap(), tyname, cx.shared.layout.krate)
};
let keywords = make_item_keywords(it);
let page = layout::Page {
ty: tyname,
root_path: &cx.root_path,
title: &title,
description: &desc,
keywords: &keywords,
};
reset_ids(true);
if !cx.render_redirect_pages {
layout::render(writer, &cx.shared.layout, &page,
&Sidebar{ cx: cx, item: it },
&Item{ cx: cx, item: it },
cx.shared.css_file_extension.is_some())?;
} else {
let mut url = repeat("../").take(cx.current.len())
.collect::<String>();
if let Some(&(ref names, ty)) = cache().paths.get(&it.def_id) {
for name in &names[..names.len() - 1] {
url.push_str(name);
url.push_str("/");
}
url.push_str(&item_path(ty, names.last().unwrap()));
layout::redirect(writer, &url)?;
}
}
Ok(())
}
// Stripped modules survive the rustdoc passes (i.e. `strip-private`)
// if they contain impls for public types. These modules can also
// contain items such as publicly reexported structures.
//
// External crates will provide links to these structures, so
// these modules are recursed into, but not rendered normally
// (a flag on the context).
if !self.render_redirect_pages {
self.render_redirect_pages = self.maybe_ignore_item(&item);
}
if item.is_mod() {
// modules are special because they add a namespace. We also need to
// recurse into the items of the module as well.
let name = item.name.as_ref().unwrap().to_string();
let mut item = Some(item);
self.recurse(name, |this| {
let item = item.take().unwrap();
let mut buf = Vec::new();
render(&mut buf, this, &item, false).unwrap();
// buf will be empty if the module is stripped and there is no redirect for it
if !buf.is_empty() {
let joint_dst = this.dst.join("index.html");
try_err!(fs::create_dir_all(&this.dst), &this.dst);
let mut dst = try_err!(File::create(&joint_dst), &joint_dst);
try_err!(dst.write_all(&buf), &joint_dst);
}
let m = match item.inner {
clean::StrippedItem(box clean::ModuleItem(m)) |
clean::ModuleItem(m) => m,
_ => unreachable!()
};
// render sidebar-items.js used throughout this module
if !this.render_redirect_pages {
let items = this.build_sidebar_items(&m);
let js_dst = this.dst.join("sidebar-items.js");
let mut js_out = BufWriter::new(try_err!(File::create(&js_dst), &js_dst));
try_err!(write!(&mut js_out, "initSidebarItems({});",
as_json(&items)), &js_dst);
}
for item in m.items {
f(this,item);
}
Ok(())
})
} else if item.name.is_some() {
let mut buf = Vec::new();
render(&mut buf, self, &item, true).unwrap();
// buf will be empty if the item is stripped and there is no redirect for it
if !buf.is_empty() {
let joint_dst = self.dst.join(&item_path(shortty(&item),
item.name.as_ref().unwrap()));
try_err!(fs::create_dir_all(&self.dst), &self.dst);
let mut dst = try_err!(File::create(&joint_dst), &joint_dst);
try_err!(dst.write_all(&buf), &joint_dst);
}
Ok(())
} else {
Ok(())
}
}
fn build_sidebar_items(&self, m: &clean::Module) -> BTreeMap<String, Vec<NameDoc>> {
// BTreeMap instead of HashMap to get a sorted output
let mut map = BTreeMap::new();
for item in &m.items {
if self.maybe_ignore_item(item) { continue }
let short = shortty(item).to_static_str();
let myname = match item.name {
None => continue,
Some(ref s) => s.to_string(),
};
let short = short.to_string();
map.entry(short).or_insert(vec![])
.push((myname, Some(plain_summary_line(item.doc_value()))));
}
for (_, items) in &mut map {
items.sort();
}
return map;
}
fn maybe_ignore_item(&self, it: &clean::Item) -> bool {
match it.inner {
clean::StrippedItem(..) => true,
clean::ModuleItem(ref m) => {
it.doc_value().is_none() && m.items.is_empty()
&& it.visibility != Some(clean::Public)
},
_ => false,
}
}
}
impl<'a> Item<'a> {
/// Generate a url appropriate for an `href` attribute back to the source of
/// this item.
///
/// The url generated, when clicked, will redirect the browser back to the
/// original source code.
///
/// If `None` is returned, then a source link couldn't be generated. This
/// may happen, for example, with externally inlined items where the source
/// of their crate documentation isn't known.
fn href(&self) -> Option<String> {
let href = if self.item.source.loline == self.item.source.hiline {
format!("{}", self.item.source.loline)
} else {
format!("{}-{}", self.item.source.loline, self.item.source.hiline)
};
// First check to see if this is an imported macro source. In this case
// we need to handle it specially as cross-crate inlined macros have...
// odd locations!
let imported_macro_from = match self.item.inner {
clean::MacroItem(ref m) => m.imported_from.as_ref(),
_ => None,
};
if let Some(krate) = imported_macro_from {
let cache = cache();
let root = cache.extern_locations.values().find(|&&(ref n, _)| {
*krate == *n
}).map(|l| &l.1);
let root = match root {
Some(&Remote(ref s)) => s.to_string(),
Some(&Local) => self.cx.root_path.clone(),
None | Some(&Unknown) => return None,
};
Some(format!("{root}/{krate}/macro.{name}.html?gotomacrosrc=1",
root = root,
krate = krate,
name = self.item.name.as_ref().unwrap()))
// If this item is part of the local crate, then we're guaranteed to
// know the span, so we plow forward and generate a proper url. The url
// has anchors for the line numbers that we're linking to.
} else if self.item.def_id.is_local() {
let path = PathBuf::from(&self.item.source.filename);
self.cx.shared.local_sources.get(&path).map(|path| {
format!("{root}src/{krate}/{path}#{href}",
root = self.cx.root_path,
krate = self.cx.shared.layout.krate,
path = path,
href = href)
})
// If this item is not part of the local crate, then things get a little
// trickier. We don't actually know the span of the external item, but
// we know that the documentation on the other end knows the span!
//
// In this case, we generate a link to the *documentation* for this type
// in the original crate. There's an extra URL parameter which says that
// we want to go somewhere else, and the JS on the destination page will
// pick it up and instantly redirect the browser to the source code.
//
// If we don't know where the external documentation for this crate is
// located, then we return `None`.
} else {
let cache = cache();
let external_path = match cache.external_paths.get(&self.item.def_id) {
Some(&(ref path, _)) => path,
None => return None,
};
let mut path = match cache.extern_locations.get(&self.item.def_id.krate) {
Some(&(_, Remote(ref s))) => s.to_string(),
Some(&(_, Local)) => self.cx.root_path.clone(),
Some(&(_, Unknown)) => return None,
None => return None,
};
for item in &external_path[..external_path.len() - 1] {
path.push_str(item);
path.push_str("/");
}
Some(format!("{path}{file}?gotosrc={goto}",
path = path,
file = item_path(shortty(self.item), external_path.last().unwrap()),
goto = self.item.def_id.index.as_usize()))
}
}
}
impl<'a> fmt::Display for Item<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
debug_assert!(!self.item.is_stripped());
// Write the breadcrumb trail header for the top
write!(fmt, "\n<h1 class='fqn'><span class='in-band'>")?;
match self.item.inner {
clean::ModuleItem(ref m) => if m.is_crate {
write!(fmt, "Crate ")?;
} else {
write!(fmt, "Module ")?;
},
clean::FunctionItem(..) => write!(fmt, "Function ")?,
clean::TraitItem(..) => write!(fmt, "Trait ")?,
clean::StructItem(..) => write!(fmt, "Struct ")?,
clean::EnumItem(..) => write!(fmt, "Enum ")?,
clean::PrimitiveItem(..) => write!(fmt, "Primitive Type ")?,
_ => {}
}
if !self.item.is_primitive() {
let cur = &self.cx.current;
let amt = if self.item.is_mod() { cur.len() - 1 } else { cur.len() };
for (i, component) in cur.iter().enumerate().take(amt) {
write!(fmt, "<a href='{}index.html'>{}</a>::<wbr>",
repeat("../").take(cur.len() - i - 1)
.collect::<String>(),
component)?;
}
}
write!(fmt, "<a class='{}' href=''>{}</a>",
shortty(self.item), self.item.name.as_ref().unwrap())?;
write!(fmt, "</span>")?; // in-band
write!(fmt, "<span class='out-of-band'>")?;
if let Some(version) = self.item.stable_since() {
write!(fmt, "<span class='since' title='Stable since Rust version {0}'>{0}</span>",
version)?;
}
write!(fmt,
r##"<span id='render-detail'>
<a id="toggle-all-docs" href="javascript:void(0)" title="collapse all docs">
[<span class='inner'>&#x2212;</span>]
</a>
</span>"##)?;
// Write `src` tag
//
// When this item is part of a `pub use` in a downstream crate, the
// [src] link in the downstream documentation will actually come back to
// this page, and this link will be auto-clicked. The `id` attribute is
// used to find the link to auto-click.
if self.cx.shared.include_sources && !self.item.is_primitive() {
if let Some(l) = self.href() {
write!(fmt, "<a id='src-{}' class='srclink' \
href='{}' title='{}'>[src]</a>",
self.item.def_id.index.as_usize(), l, "goto source code")?;
}
}
write!(fmt, "</span>")?; // out-of-band
write!(fmt, "</h1>\n")?;
match self.item.inner {
clean::ModuleItem(ref m) => {
item_module(fmt, self.cx, self.item, &m.items)
}
clean::FunctionItem(ref f) | clean::ForeignFunctionItem(ref f) =>
item_function(fmt, self.cx, self.item, f),
clean::TraitItem(ref t) => item_trait(fmt, self.cx, self.item, t),
clean::StructItem(ref s) => item_struct(fmt, self.cx, self.item, s),
clean::EnumItem(ref e) => item_enum(fmt, self.cx, self.item, e),
clean::TypedefItem(ref t, _) => item_typedef(fmt, self.cx, self.item, t),
clean::MacroItem(ref m) => item_macro(fmt, self.cx, self.item, m),
clean::PrimitiveItem(ref p) => item_primitive(fmt, self.cx, self.item, p),
clean::StaticItem(ref i) | clean::ForeignStaticItem(ref i) =>
item_static(fmt, self.cx, self.item, i),
clean::ConstantItem(ref c) => item_constant(fmt, self.cx, self.item, c),
_ => Ok(())
}
}
}
fn item_path(ty: ItemType, name: &str) -> String {
match ty {
ItemType::Module => format!("{}/index.html", name),
_ => format!("{}.{}.html", ty.to_static_str(), name),
}
}
fn full_path(cx: &Context, item: &clean::Item) -> String {
let mut s = cx.current.join("::");
s.push_str("::");
s.push_str(item.name.as_ref().unwrap());
return s
}
fn shorter<'a>(s: Option<&'a str>) -> String {
match s {
Some(s) => s.lines().take_while(|line|{
(*line).chars().any(|chr|{
!chr.is_whitespace()
})
}).collect::<Vec<_>>().join("\n"),
None => "".to_string()
}
}
#[inline]
fn plain_summary_line(s: Option<&str>) -> String {
let line = shorter(s).replace("\n", " ");
markdown::plain_summary_line(&line[..])
}
fn document(w: &mut fmt::Formatter, cx: &Context, item: &clean::Item) -> fmt::Result {
document_stability(w, cx, item)?;
document_full(w, item)?;
Ok(())
}
fn document_short(w: &mut fmt::Formatter, item: &clean::Item, link: AssocItemLink) -> fmt::Result {
if let Some(s) = item.doc_value() {
let markdown = if s.contains('\n') {
format!("{} [Read more]({})",
&plain_summary_line(Some(s)), naive_assoc_href(item, link))
} else {
format!("{}", &plain_summary_line(Some(s)))
};
write!(w, "<div class='docblock'>{}</div>", Markdown(&markdown))?;
}
Ok(())
}
fn document_full(w: &mut fmt::Formatter, item: &clean::Item) -> fmt::Result {
if let Some(s) = item.doc_value() {
write!(w, "<div class='docblock'>{}</div>", Markdown(s))?;
}
Ok(())
}
fn document_stability(w: &mut fmt::Formatter, cx: &Context, item: &clean::Item) -> fmt::Result {
for stability in short_stability(item, cx, true) {
write!(w, "<div class='stability'>{}</div>", stability)?;
}
Ok(())
}
fn item_module(w: &mut fmt::Formatter, cx: &Context,
item: &clean::Item, items: &[clean::Item]) -> fmt::Result {
document(w, cx, item)?;
let mut indices = (0..items.len()).filter(|i| {
if let clean::DefaultImplItem(..) = items[*i].inner {
return false;
}
!cx.maybe_ignore_item(&items[*i])
}).collect::<Vec<usize>>();
// the order of item types in the listing
fn reorder(ty: ItemType) -> u8 {
match ty {
ItemType::ExternCrate => 0,
ItemType::Import => 1,
ItemType::Primitive => 2,
ItemType::Module => 3,
ItemType::Macro => 4,
ItemType::Struct => 5,
ItemType::Enum => 6,
ItemType::Constant => 7,
ItemType::Static => 8,
ItemType::Trait => 9,
ItemType::Function => 10,
ItemType::Typedef => 12,
_ => 13 + ty as u8,
}
}
fn cmp(i1: &clean::Item, i2: &clean::Item, idx1: usize, idx2: usize) -> Ordering {
let ty1 = shortty(i1);
let ty2 = shortty(i2);
if ty1 != ty2 {
return (reorder(ty1), idx1).cmp(&(reorder(ty2), idx2))
}
let s1 = i1.stability.as_ref().map(|s| s.level);
let s2 = i2.stability.as_ref().map(|s| s.level);
match (s1, s2) {
(Some(stability::Unstable), Some(stability::Stable)) => return Ordering::Greater,
(Some(stability::Stable), Some(stability::Unstable)) => return Ordering::Less,
_ => {}
}
i1.name.cmp(&i2.name)
}
indices.sort_by(|&i1, &i2| cmp(&items[i1], &items[i2], i1, i2));
debug!("{:?}", indices);
let mut curty = None;
for &idx in &indices {
let myitem = &items[idx];
if myitem.is_stripped() {
continue;
}
let myty = Some(shortty(myitem));
if curty == Some(ItemType::ExternCrate) && myty == Some(ItemType::Import) {
// Put `extern crate` and `use` re-exports in the same section.
curty = myty;
} else if myty != curty {
if curty.is_some() {
write!(w, "</table>")?;
}
curty = myty;
let (short, name) = match myty.unwrap() {
ItemType::ExternCrate |
ItemType::Import => ("reexports", "Reexports"),
ItemType::Module => ("modules", "Modules"),
ItemType::Struct => ("structs", "Structs"),
ItemType::Enum => ("enums", "Enums"),
ItemType::Function => ("functions", "Functions"),
ItemType::Typedef => ("types", "Type Definitions"),
ItemType::Static => ("statics", "Statics"),
ItemType::Constant => ("constants", "Constants"),
ItemType::Trait => ("traits", "Traits"),
ItemType::Impl => ("impls", "Implementations"),
ItemType::TyMethod => ("tymethods", "Type Methods"),
ItemType::Method => ("methods", "Methods"),
ItemType::StructField => ("fields", "Struct Fields"),
ItemType::Variant => ("variants", "Variants"),
ItemType::Macro => ("macros", "Macros"),
ItemType::Primitive => ("primitives", "Primitive Types"),
ItemType::AssociatedType => ("associated-types", "Associated Types"),
ItemType::AssociatedConst => ("associated-consts", "Associated Constants"),
};
write!(w, "<h2 id='{id}' class='section-header'>\
<a href=\"#{id}\">{name}</a></h2>\n<table>",
id = derive_id(short.to_owned()), name = name)?;
}
match myitem.inner {
clean::ExternCrateItem(ref name, ref src) => {
use html::format::HRef;
match *src {
Some(ref src) => {
write!(w, "<tr><td><code>{}extern crate {} as {};",
VisSpace(&myitem.visibility),
HRef::new(myitem.def_id, src),
name)?
}
None => {
write!(w, "<tr><td><code>{}extern crate {};",
VisSpace(&myitem.visibility),
HRef::new(myitem.def_id, name))?
}
}
write!(w, "</code></td></tr>")?;
}
clean::ImportItem(ref import) => {
write!(w, "<tr><td><code>{}{}</code></td></tr>",
VisSpace(&myitem.visibility), *import)?;
}
_ => {
if myitem.name.is_none() { continue }
let stabilities = short_stability(myitem, cx, false);
let stab_docs = if !stabilities.is_empty() {
stabilities.iter()
.map(|s| format!("[{}]", s))
.collect::<Vec<_>>()
.as_slice()
.join(" ")
} else {
String::new()
};
let doc_value = myitem.doc_value().unwrap_or("");
write!(w, "
<tr class='{stab} module-item'>
<td><a class='{class}' href='{href}'
title='{title}'>{name}</a></td>
<td class='docblock short'>
{stab_docs} {docs}
</td>
</tr>",
name = *myitem.name.as_ref().unwrap(),
stab_docs = stab_docs,
docs = shorter(Some(&Markdown(doc_value).to_string())),
class = shortty(myitem),
stab = myitem.stability_class(),
href = item_path(shortty(myitem), myitem.name.as_ref().unwrap()),
title = full_path(cx, myitem))?;
}
}
}
if curty.is_some() {
write!(w, "</table>")?;
}
Ok(())
}
fn short_stability(item: &clean::Item, cx: &Context, show_reason: bool) -> Vec<String> {
let mut stability = vec![];
if let Some(stab) = item.stability.as_ref() {
let reason = if show_reason && !stab.reason.is_empty() {
format!(": {}", stab.reason)
} else {
String::new()
};
if !stab.deprecated_since.is_empty() {
let since = if show_reason {
format!(" since {}", Escape(&stab.deprecated_since))
} else {
String::new()
};
let text = format!("Deprecated{}{}", since, Markdown(&reason));
stability.push(format!("<em class='stab deprecated'>{}</em>", text))
};
if stab.level == stability::Unstable {
let unstable_extra = if show_reason {
match (!stab.feature.is_empty(), &cx.shared.issue_tracker_base_url, stab.issue) {
(true, &Some(ref tracker_url), Some(issue_no)) if issue_no > 0 =>
format!(" (<code>{}</code> <a href=\"{}{}\">#{}</a>)",
Escape(&stab.feature), tracker_url, issue_no, issue_no),
(false, &Some(ref tracker_url), Some(issue_no)) if issue_no > 0 =>
format!(" (<a href=\"{}{}\">#{}</a>)", Escape(&tracker_url), issue_no,
issue_no),
(true, _, _) =>
format!(" (<code>{}</code>)", Escape(&stab.feature)),
_ => String::new(),
}
} else {
String::new()
};
let text = format!("Unstable{}{}", unstable_extra, Markdown(&reason));
stability.push(format!("<em class='stab unstable'>{}</em>", text))
};
} else if let Some(depr) = item.deprecation.as_ref() {
let note = if show_reason && !depr.note.is_empty() {
format!(": {}", depr.note)
} else {
String::new()
};
let since = if show_reason && !depr.since.is_empty() {
format!(" since {}", Escape(&depr.since))
} else {
String::new()
};
let text = format!("Deprecated{}{}", since, Markdown(&note));
stability.push(format!("<em class='stab deprecated'>{}</em>", text))
}
stability
}
struct Initializer<'a>(&'a str);
impl<'a> fmt::Display for Initializer<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Initializer(s) = *self;
if s.is_empty() { return Ok(()); }
write!(f, "<code> = </code>")?;
write!(f, "<code>{}</code>", Escape(s))
}
}
fn item_constant(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
c: &clean::Constant) -> fmt::Result {
write!(w, "<pre class='rust const'>{vis}const \
{name}: {typ}{init}</pre>",
vis = VisSpace(&it.visibility),
name = it.name.as_ref().unwrap(),
typ = c.type_,
init = Initializer(&c.expr))?;
document(w, cx, it)
}
fn item_static(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
s: &clean::Static) -> fmt::Result {
write!(w, "<pre class='rust static'>{vis}static {mutability}\
{name}: {typ}{init}</pre>",
vis = VisSpace(&it.visibility),
mutability = MutableSpace(s.mutability),
name = it.name.as_ref().unwrap(),
typ = s.type_,
init = Initializer(&s.expr))?;
document(w, cx, it)
}
fn item_function(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
f: &clean::Function) -> fmt::Result {
// FIXME(#24111): remove when `const_fn` is stabilized
let vis_constness = match get_unstable_features_setting() {
UnstableFeatures::Allow => f.constness,
_ => hir::Constness::NotConst
};
write!(w, "<pre class='rust fn'>{vis}{constness}{unsafety}{abi}fn \
{name}{generics}{decl}{where_clause}</pre>",
vis = VisSpace(&it.visibility),
constness = ConstnessSpace(vis_constness),
unsafety = UnsafetySpace(f.unsafety),
abi = AbiSpace(f.abi),
name = it.name.as_ref().unwrap(),
generics = f.generics,
where_clause = WhereClause(&f.generics),
decl = f.decl)?;
document(w, cx, it)
}
fn item_trait(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
t: &clean::Trait) -> fmt::Result {
let mut bounds = String::new();
if !t.bounds.is_empty() {
if !bounds.is_empty() {
bounds.push(' ');
}
bounds.push_str(": ");
for (i, p) in t.bounds.iter().enumerate() {
if i > 0 { bounds.push_str(" + "); }
bounds.push_str(&format!("{}", *p));
}
}
// Output the trait definition
write!(w, "<pre class='rust trait'>{}{}trait {}{}{}{} ",
VisSpace(&it.visibility),
UnsafetySpace(t.unsafety),
it.name.as_ref().unwrap(),
t.generics,
bounds,
WhereClause(&t.generics))?;
let types = t.items.iter().filter(|m| m.is_associated_type()).collect::<Vec<_>>();
let consts = t.items.iter().filter(|m| m.is_associated_const()).collect::<Vec<_>>();
let required = t.items.iter().filter(|m| m.is_ty_method()).collect::<Vec<_>>();
let provided = t.items.iter().filter(|m| m.is_method()).collect::<Vec<_>>();
if t.items.is_empty() {
write!(w, "{{ }}")?;
} else {
// FIXME: we should be using a derived_id for the Anchors here
write!(w, "{{\n")?;
for t in &types {
write!(w, " ")?;
render_assoc_item(w, t, AssocItemLink::Anchor(None))?;
write!(w, ";\n")?;
}
if !types.is_empty() && !consts.is_empty() {
w.write_str("\n")?;
}
for t in &consts {
write!(w, " ")?;
render_assoc_item(w, t, AssocItemLink::Anchor(None))?;
write!(w, ";\n")?;
}
if !consts.is_empty() && !required.is_empty() {
w.write_str("\n")?;
}
for m in &required {
write!(w, " ")?;
render_assoc_item(w, m, AssocItemLink::Anchor(None))?;
write!(w, ";\n")?;
}
if !required.is_empty() && !provided.is_empty() {
w.write_str("\n")?;
}
for m in &provided {
write!(w, " ")?;
render_assoc_item(w, m, AssocItemLink::Anchor(None))?;
write!(w, " {{ ... }}\n")?;
}
write!(w, "}}")?;
}
write!(w, "</pre>")?;
// Trait documentation
document(w, cx, it)?;
fn trait_item(w: &mut fmt::Formatter, cx: &Context, m: &clean::Item, t: &clean::Item)
-> fmt::Result {
let name = m.name.as_ref().unwrap();
let id = derive_id(format!("{}.{}", shortty(m), name));
write!(w, "<h3 id='{id}' class='method stab {stab}'><code>",
id = id,
stab = m.stability_class())?;
render_assoc_item(w, m, AssocItemLink::Anchor(Some(&id)))?;
write!(w, "</code>")?;
render_stability_since(w, m, t)?;
write!(w, "</h3>")?;
document(w, cx, m)?;
Ok(())
}
if !types.is_empty() {
write!(w, "
<h2 id='associated-types'>Associated Types</h2>
<div class='methods'>
")?;
for t in &types {
trait_item(w, cx, *t, it)?;
}
write!(w, "</div>")?;
}
if !consts.is_empty() {
write!(w, "
<h2 id='associated-const'>Associated Constants</h2>
<div class='methods'>
")?;
for t in &consts {
trait_item(w, cx, *t, it)?;
}
write!(w, "</div>")?;
}
// Output the documentation for each function individually
if !required.is_empty() {
write!(w, "
<h2 id='required-methods'>Required Methods</h2>
<div class='methods'>
")?;
for m in &required {
trait_item(w, cx, *m, it)?;
}
write!(w, "</div>")?;
}
if !provided.is_empty() {
write!(w, "
<h2 id='provided-methods'>Provided Methods</h2>
<div class='methods'>
")?;
for m in &provided {
trait_item(w, cx, *m, it)?;
}
write!(w, "</div>")?;
}
// If there are methods directly on this trait object, render them here.
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)?;
let cache = cache();
write!(w, "
<h2 id='implementors'>Implementors</h2>
<ul class='item-list' id='implementors-list'>
")?;
if let Some(implementors) = cache.implementors.get(&it.def_id) {
for i in implementors {
write!(w, "<li><code>")?;
fmt_impl_for_trait_page(&i.impl_, w)?;
writeln!(w, "</code></li>")?;
}
}
write!(w, "</ul>")?;
write!(w, r#"<script type="text/javascript" async
src="{root_path}/implementors/{path}/{ty}.{name}.js">
</script>"#,
root_path = vec![".."; cx.current.len()].join("/"),
path = if it.def_id.is_local() {
cx.current.join("/")
} else {
let (ref path, _) = cache.external_paths[&it.def_id];
path[..path.len() - 1].join("/")
},
ty = shortty(it).to_static_str(),
name = *it.name.as_ref().unwrap())?;
Ok(())
}
fn naive_assoc_href(it: &clean::Item, link: AssocItemLink) -> String {
use html::item_type::ItemType::*;
let name = it.name.as_ref().unwrap();
let ty = match shortty(it) {
Typedef | AssociatedType => AssociatedType,
s@_ => s,
};
let anchor = format!("#{}.{}", ty, name);
match link {
AssocItemLink::Anchor(Some(ref id)) => format!("#{}", id),
AssocItemLink::Anchor(None) => anchor,
AssocItemLink::GotoSource(did, _) => {
href(did).map(|p| format!("{}{}", p.0, anchor)).unwrap_or(anchor)
}
}
}
fn assoc_const(w: &mut fmt::Formatter,
it: &clean::Item,
ty: &clean::Type,
default: Option<&String>,
link: AssocItemLink) -> fmt::Result {
write!(w, "const <a href='{}' class='constant'>{}</a>",
naive_assoc_href(it, link),
it.name.as_ref().unwrap())?;
write!(w, ": {}", ty)?;
if let Some(default) = default {
write!(w, " = {}", Escape(default))?;
}
Ok(())
}
fn assoc_type(w: &mut fmt::Formatter, it: &clean::Item,
bounds: &Vec<clean::TyParamBound>,
default: Option<&clean::Type>,
link: AssocItemLink) -> fmt::Result {
write!(w, "type <a href='{}' class='type'>{}</a>",
naive_assoc_href(it, link),
it.name.as_ref().unwrap())?;
if !bounds.is_empty() {
write!(w, ": {}", TyParamBounds(bounds))?
}
if let Some(default) = default {
write!(w, " = {}", default)?;
}
Ok(())
}
fn render_stability_since_raw<'a>(w: &mut fmt::Formatter,
ver: Option<&'a str>,
containing_ver: Option<&'a str>) -> fmt::Result {
if let Some(v) = ver {
if containing_ver != ver && v.len() > 0 {
write!(w, "<div class='since' title='Stable since Rust version {0}'>{0}</div>",
v)?
}
}
Ok(())
}
fn render_stability_since(w: &mut fmt::Formatter,
item: &clean::Item,
containing_item: &clean::Item) -> fmt::Result {
render_stability_since_raw(w, item.stable_since(), containing_item.stable_since())
}
fn render_assoc_item(w: &mut fmt::Formatter,
item: &clean::Item,
link: AssocItemLink) -> fmt::Result {
fn method(w: &mut fmt::Formatter,
meth: &clean::Item,
unsafety: hir::Unsafety,
constness: hir::Constness,
abi: abi::Abi,
g: &clean::Generics,
d: &clean::FnDecl,
link: AssocItemLink)
-> fmt::Result {
let name = meth.name.as_ref().unwrap();
let anchor = format!("#{}.{}", shortty(meth), name);
let href = match link {
AssocItemLink::Anchor(Some(ref id)) => format!("#{}", id),
AssocItemLink::Anchor(None) => anchor,
AssocItemLink::GotoSource(did, provided_methods) => {
// We're creating a link from an impl-item to the corresponding
// trait-item and need to map the anchored type accordingly.
let ty = if provided_methods.contains(name) {
ItemType::Method
} else {
ItemType::TyMethod
};
href(did).map(|p| format!("{}#{}.{}", p.0, ty, name)).unwrap_or(anchor)
}
};
// FIXME(#24111): remove when `const_fn` is stabilized
let vis_constness = match get_unstable_features_setting() {
UnstableFeatures::Allow => constness,
_ => hir::Constness::NotConst
};
write!(w, "{}{}{}fn <a href='{href}' class='fnname'>{name}</a>\
{generics}{decl}{where_clause}",
ConstnessSpace(vis_constness),
UnsafetySpace(unsafety),
AbiSpace(abi),
href = href,
name = name,
generics = *g,
decl = Method(d),
where_clause = WhereClause(g))
}
match item.inner {
clean::StrippedItem(..) => Ok(()),
clean::TyMethodItem(ref m) => {
method(w, item, m.unsafety, hir::Constness::NotConst,
m.abi, &m.generics, &m.decl, link)
}
clean::MethodItem(ref m) => {
method(w, item, m.unsafety, m.constness,
m.abi, &m.generics, &m.decl,
link)
}
clean::AssociatedConstItem(ref ty, ref default) => {
assoc_const(w, item, ty, default.as_ref(), link)
}
clean::AssociatedTypeItem(ref bounds, ref default) => {
assoc_type(w, item, bounds, default.as_ref(), link)
}
_ => panic!("render_assoc_item called on non-associated-item")
}
}
fn item_struct(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
s: &clean::Struct) -> fmt::Result {
write!(w, "<pre class='rust struct'>")?;
render_attributes(w, it)?;
render_struct(w,
it,
Some(&s.generics),
s.struct_type,
&s.fields,
"",
true)?;
write!(w, "</pre>")?;
document(w, cx, it)?;
let mut fields = s.fields.iter().filter_map(|f| {
match f.inner {
clean::StructFieldItem(ref ty) => Some((f, ty)),
_ => None,
}
}).peekable();
if let doctree::Plain = s.struct_type {
if fields.peek().is_some() {
write!(w, "<h2 class='fields'>Fields</h2>")?;
for (field, ty) in fields {
write!(w, "<span id='{shortty}.{name}' class='{shortty}'><code>{name}: {ty}</code>
</span><span class='stab {stab}'></span>",
shortty = ItemType::StructField,
stab = field.stability_class(),
name = field.name.as_ref().unwrap(),
ty = ty)?;
document(w, cx, field)?;
}
}
}
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
fn item_enum(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
e: &clean::Enum) -> fmt::Result {
write!(w, "<pre class='rust enum'>")?;
render_attributes(w, it)?;
write!(w, "{}enum {}{}{}",
VisSpace(&it.visibility),
it.name.as_ref().unwrap(),
e.generics,
WhereClause(&e.generics))?;
if e.variants.is_empty() && !e.variants_stripped {
write!(w, " {{}}")?;
} else {
write!(w, " {{\n")?;
for v in &e.variants {
write!(w, " ")?;
let name = v.name.as_ref().unwrap();
match v.inner {
clean::VariantItem(ref var) => {
match var.kind {
clean::CLikeVariant => write!(w, "{}", name)?,
clean::TupleVariant(ref tys) => {
write!(w, "{}(", name)?;
for (i, ty) in tys.iter().enumerate() {
if i > 0 {
write!(w, ",&nbsp;")?
}
write!(w, "{}", *ty)?;
}
write!(w, ")")?;
}
clean::StructVariant(ref s) => {
render_struct(w,
v,
None,
s.struct_type,
&s.fields,
" ",
false)?;
}
}
}
_ => unreachable!()
}
write!(w, ",\n")?;
}
if e.variants_stripped {
write!(w, " // some variants omitted\n")?;
}
write!(w, "}}")?;
}
write!(w, "</pre>")?;
render_stability_since_raw(w, it.stable_since(), None)?;
document(w, cx, it)?;
if !e.variants.is_empty() {
write!(w, "<h2 class='variants'>Variants</h2>\n")?;
for variant in &e.variants {
write!(w, "<span id='{shortty}.{name}' class='variant'><code>{name}",
shortty = ItemType::Variant,
name = variant.name.as_ref().unwrap())?;
if let clean::VariantItem(ref var) = variant.inner {
if let clean::TupleVariant(ref tys) = var.kind {
write!(w, "(")?;
for (i, ty) in tys.iter().enumerate() {
if i > 0 {
write!(w, ",&nbsp;")?;
}
write!(w, "{}", *ty)?;
}
write!(w, ")")?;
}
}
write!(w, "</code></span>")?;
document(w, cx, variant)?;
use clean::{Variant, StructVariant};
if let clean::VariantItem( Variant { kind: StructVariant(ref s) } ) = variant.inner {
write!(w, "<h3 class='fields'>Fields</h3>\n
<table>")?;
for field in &s.fields {
use clean::StructFieldItem;
if let StructFieldItem(ref ty) = field.inner {
write!(w, "<tr><td \
id='variant.{v}.field.{f}'>\
<code>{f}:&nbsp;{t}</code></td><td>",
v = variant.name.as_ref().unwrap(),
f = field.name.as_ref().unwrap(),
t = *ty)?;
document(w, cx, field)?;
write!(w, "</td></tr>")?;
}
}
write!(w, "</table>")?;
}
render_stability_since(w, variant, it)?;
}
}
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)?;
Ok(())
}
fn render_attributes(w: &mut fmt::Formatter, it: &clean::Item) -> fmt::Result {
for attr in &it.attrs {
match *attr {
clean::Word(ref s) if *s == "must_use" => {
write!(w, "#[{}]\n", s)?;
}
clean::NameValue(ref k, ref v) if *k == "must_use" => {
write!(w, "#[{} = \"{}\"]\n", k, v)?;
}
_ => ()
}
}
Ok(())
}
fn render_struct(w: &mut fmt::Formatter, it: &clean::Item,
g: Option<&clean::Generics>,
ty: doctree::StructType,
fields: &[clean::Item],
tab: &str,
structhead: bool) -> fmt::Result {
write!(w, "{}{}{}",
VisSpace(&it.visibility),
if structhead {"struct "} else {""},
it.name.as_ref().unwrap())?;
if let Some(g) = g {
write!(w, "{}{}", *g, WhereClause(g))?
}
match ty {
doctree::Plain => {
write!(w, " {{\n{}", tab)?;
for field in fields {
if let clean::StructFieldItem(ref ty) = field.inner {
write!(w, " {}{}: {},\n{}",
VisSpace(&field.visibility),
field.name.as_ref().unwrap(),
*ty,
tab)?;
}
}
if it.has_stripped_fields().unwrap() {
write!(w, " // some fields omitted\n{}", tab)?;
}
write!(w, "}}")?;
}
doctree::Tuple | doctree::Newtype => {
write!(w, "(")?;
for (i, field) in fields.iter().enumerate() {
if i > 0 {
write!(w, ", ")?;
}
match field.inner {
clean::StrippedItem(box clean::StructFieldItem(..)) => {
write!(w, "_")?
}
clean::StructFieldItem(ref ty) => {
write!(w, "{}{}", VisSpace(&field.visibility), *ty)?
}
_ => unreachable!()
}
}
write!(w, ");")?;
}
doctree::Unit => {
write!(w, ";")?;
}
}
Ok(())
}
#[derive(Copy, Clone)]
enum AssocItemLink<'a> {
Anchor(Option<&'a str>),
GotoSource(DefId, &'a HashSet<String>),
}
impl<'a> AssocItemLink<'a> {
fn anchor(&self, id: &'a String) -> Self {
match *self {
AssocItemLink::Anchor(_) => { AssocItemLink::Anchor(Some(&id)) },
ref other => *other,
}
}
}
enum AssocItemRender<'a> {
All,
DerefFor { trait_: &'a clean::Type, type_: &'a clean::Type },
}
fn render_assoc_items(w: &mut fmt::Formatter,
cx: &Context,
containing_item: &clean::Item,
it: DefId,
what: AssocItemRender) -> fmt::Result {
let c = cache();
let v = match c.impls.get(&it) {
Some(v) => v,
None => return Ok(()),
};
let (non_trait, traits): (Vec<_>, _) = v.iter().partition(|i| {
i.inner_impl().trait_.is_none()
});
if !non_trait.is_empty() {
let render_header = match what {
AssocItemRender::All => {
write!(w, "<h2 id='methods'>Methods</h2>")?;
true
}
AssocItemRender::DerefFor { trait_, type_ } => {
write!(w, "<h2 id='deref-methods'>Methods from \
{}&lt;Target={}&gt;</h2>", trait_, type_)?;
false
}
};
for i in &non_trait {
render_impl(w, cx, i, AssocItemLink::Anchor(None), render_header,
containing_item.stable_since())?;
}
}
if let AssocItemRender::DerefFor { .. } = what {
return Ok(());
}
if !traits.is_empty() {
let deref_impl = traits.iter().find(|t| {
t.inner_impl().trait_.def_id() == c.deref_trait_did
});
if let Some(impl_) = deref_impl {
render_deref_methods(w, cx, impl_, containing_item)?;
}
write!(w, "<h2 id='implementations'>Trait \
Implementations</h2>")?;
for i in &traits {
let did = i.trait_did().unwrap();
let assoc_link = AssocItemLink::GotoSource(did, &i.inner_impl().provided_trait_methods);
render_impl(w, cx, i, assoc_link, true, containing_item.stable_since())?;
}
}
Ok(())
}
fn render_deref_methods(w: &mut fmt::Formatter, cx: &Context, impl_: &Impl,
container_item: &clean::Item) -> fmt::Result {
let deref_type = impl_.inner_impl().trait_.as_ref().unwrap();
let target = impl_.inner_impl().items.iter().filter_map(|item| {
match item.inner {
clean::TypedefItem(ref t, true) => Some(&t.type_),
_ => None,
}
}).next().expect("Expected associated type binding");
let what = AssocItemRender::DerefFor { trait_: deref_type, type_: target };
if let Some(did) = target.def_id() {
render_assoc_items(w, cx, container_item, did, what)
} else {
if let Some(prim) = target.primitive_type() {
if let Some(c) = cache().primitive_locations.get(&prim) {
let did = DefId { krate: *c, index: prim.to_def_index() };
render_assoc_items(w, cx, container_item, did, what)?;
}
}
Ok(())
}
}
// Render_header is false when we are rendering a `Deref` impl and true
// otherwise. If render_header is false, we will avoid rendering static
// methods, since they are not accessible for the type implementing `Deref`
fn render_impl(w: &mut fmt::Formatter, cx: &Context, i: &Impl, link: AssocItemLink,
render_header: bool, outer_version: Option<&str>) -> fmt::Result {
if render_header {
write!(w, "<h3 class='impl'><span class='in-band'><code>{}</code>", i.inner_impl())?;
write!(w, "</span><span class='out-of-band'>")?;
let since = i.impl_item.stability.as_ref().map(|s| &s.since[..]);
if let Some(l) = (Item { item: &i.impl_item, cx: cx }).href() {
write!(w, "<div class='ghost'></div>")?;
render_stability_since_raw(w, since, outer_version)?;
write!(w, "<a id='src-{}' class='srclink' \
href='{}' title='{}'>[src]</a>",
i.impl_item.def_id.index.as_usize(), l, "goto source code")?;
} else {
render_stability_since_raw(w, since, outer_version)?;
}
write!(w, "</span>")?;
write!(w, "</h3>\n")?;
if let Some(ref dox) = i.impl_item.attrs.value("doc") {
write!(w, "<div class='docblock'>{}</div>", Markdown(dox))?;
}
}
fn doctraititem(w: &mut fmt::Formatter, cx: &Context, item: &clean::Item,
link: AssocItemLink, render_static: bool,
is_default_item: bool, outer_version: Option<&str>,
trait_: Option<&clean::Trait>) -> fmt::Result {
let shortty = shortty(item);
let name = item.name.as_ref().unwrap();
let is_static = match item.inner {
clean::MethodItem(ref method) => !method.decl.has_self(),
clean::TyMethodItem(ref method) => !method.decl.has_self(),
_ => false
};
match item.inner {
clean::MethodItem(..) | clean::TyMethodItem(..) => {
// Only render when the method is not static or we allow static methods
if !is_static || render_static {
let id = derive_id(format!("{}.{}", shortty, name));
write!(w, "<h4 id='{}' class='{}'>", id, shortty)?;
write!(w, "<code>")?;
render_assoc_item(w, item, link.anchor(&id))?;
write!(w, "</code>")?;
render_stability_since_raw(w, item.stable_since(), outer_version)?;
write!(w, "</h4>\n")?;
}
}
clean::TypedefItem(ref tydef, _) => {
let id = derive_id(format!("{}.{}", ItemType::AssociatedType, name));
write!(w, "<h4 id='{}' class='{}'><code>", id, shortty)?;
assoc_type(w, item, &Vec::new(), Some(&tydef.type_), link.anchor(&id))?;
write!(w, "</code></h4>\n")?;
}
clean::AssociatedConstItem(ref ty, ref default) => {
let id = derive_id(format!("{}.{}", shortty, name));
write!(w, "<h4 id='{}' class='{}'><code>", id, shortty)?;
assoc_const(w, item, ty, default.as_ref(), link.anchor(&id))?;
write!(w, "</code></h4>\n")?;
}
clean::ConstantItem(ref c) => {
let id = derive_id(format!("{}.{}", shortty, name));
write!(w, "<h4 id='{}' class='{}'><code>", id, shortty)?;
assoc_const(w, item, &c.type_, Some(&c.expr), link.anchor(&id))?;
write!(w, "</code></h4>\n")?;
}
clean::AssociatedTypeItem(ref bounds, ref default) => {
let id = derive_id(format!("{}.{}", shortty, name));
write!(w, "<h4 id='{}' class='{}'><code>", id, shortty)?;
assoc_type(w, item, bounds, default.as_ref(), link.anchor(&id))?;
write!(w, "</code></h4>\n")?;
}
clean::StrippedItem(..) => return Ok(()),
_ => panic!("can't make docs for trait item with name {:?}", item.name)
}
if !is_static || render_static {
if !is_default_item {
if let Some(t) = trait_ {
// The trait item may have been stripped so we might not
// find any documentation or stability for it.
if let Some(it) = t.items.iter().find(|i| i.name == item.name) {
// We need the stability of the item from the trait
// because impls can't have a stability.
document_stability(w, cx, it)?;
if item.doc_value().is_some() {
document_full(w, item)?;
} else {
// In case the item isn't documented,
// provide short documentation from the trait.
document_short(w, it, link)?;
}
}
} else {
document(w, cx, item)?;
}
} else {
document_stability(w, cx, item)?;
document_short(w, item, link)?;
}
}
Ok(())
}
let traits = &cache().traits;
let trait_ = i.trait_did().and_then(|did| traits.get(&did));
write!(w, "<div class='impl-items'>")?;
for trait_item in &i.inner_impl().items {
doctraititem(w, cx, trait_item, link, render_header,
false, outer_version, trait_)?;
}
fn render_default_items(w: &mut fmt::Formatter,
cx: &Context,
t: &clean::Trait,
i: &clean::Impl,
render_static: bool,
outer_version: Option<&str>) -> fmt::Result {
for trait_item in &t.items {
let n = trait_item.name.clone();
if i.items.iter().find(|m| m.name == n).is_some() {
continue;
}
let did = i.trait_.as_ref().unwrap().def_id().unwrap();
let assoc_link = AssocItemLink::GotoSource(did, &i.provided_trait_methods);
doctraititem(w, cx, trait_item, assoc_link, render_static, true,
outer_version, None)?;
}
Ok(())
}
// If we've implemented a trait, then also emit documentation for all
// default items which weren't overridden in the implementation block.
if let Some(t) = trait_ {
render_default_items(w, cx, t, &i.inner_impl(), render_header, outer_version)?;
}
write!(w, "</div>")?;
Ok(())
}
fn item_typedef(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
t: &clean::Typedef) -> fmt::Result {
write!(w, "<pre class='rust typedef'>type {}{}{where_clause} = {type_};</pre>",
it.name.as_ref().unwrap(),
t.generics,
where_clause = WhereClause(&t.generics),
type_ = t.type_)?;
document(w, cx, it)
}
impl<'a> fmt::Display for Sidebar<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let cx = self.cx;
let it = self.item;
let parentlen = cx.current.len() - if it.is_mod() {1} else {0};
// the sidebar is designed to display sibling functions, modules and
// other miscellaneous information. since there are lots of sibling
// items (and that causes quadratic growth in large modules),
// we refactor common parts into a shared JavaScript file per module.
// still, we don't move everything into JS because we want to preserve
// as much HTML as possible in order to allow non-JS-enabled browsers
// to navigate the documentation (though slightly inefficiently).
write!(fmt, "<p class='location'>")?;
for (i, name) in cx.current.iter().take(parentlen).enumerate() {
if i > 0 {
write!(fmt, "::<wbr>")?;
}
write!(fmt, "<a href='{}index.html'>{}</a>",
&cx.root_path[..(cx.current.len() - i - 1) * 3],
*name)?;
}
write!(fmt, "</p>")?;
// sidebar refers to the enclosing module, not this module
let relpath = if it.is_mod() { "../" } else { "" };
write!(fmt,
"<script>window.sidebarCurrent = {{\
name: '{name}', \
ty: '{ty}', \
relpath: '{path}'\
}};</script>",
name = it.name.as_ref().map(|x| &x[..]).unwrap_or(""),
ty = shortty(it).to_static_str(),
path = relpath)?;
if parentlen == 0 {
// there is no sidebar-items.js beyond the crate root path
// FIXME maybe dynamic crate loading can be merged here
} else {
write!(fmt, "<script defer src=\"{path}sidebar-items.js\"></script>",
path = relpath)?;
}
Ok(())
}
}
impl<'a> fmt::Display for Source<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let Source(s) = *self;
let lines = s.lines().count();
let mut cols = 0;
let mut tmp = lines;
while tmp > 0 {
cols += 1;
tmp /= 10;
}
write!(fmt, "<pre class=\"line-numbers\">")?;
for i in 1..lines + 1 {
write!(fmt, "<span id=\"{0}\">{0:1$}</span>\n", i, cols)?;
}
write!(fmt, "</pre>")?;
write!(fmt, "{}", highlight::render_with_highlighting(s, None, None))?;
Ok(())
}
}
fn item_macro(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
t: &clean::Macro) -> fmt::Result {
w.write_str(&highlight::render_with_highlighting(&t.source,
Some("macro"),
None))?;
render_stability_since_raw(w, it.stable_since(), None)?;
document(w, cx, it)
}
fn item_primitive(w: &mut fmt::Formatter, cx: &Context,
it: &clean::Item,
_p: &clean::PrimitiveType) -> fmt::Result {
document(w, cx, it)?;
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
const BASIC_KEYWORDS: &'static str = "rust, rustlang, rust-lang";
fn make_item_keywords(it: &clean::Item) -> String {
format!("{}, {}", BASIC_KEYWORDS, it.name.as_ref().unwrap())
}
fn get_index_search_type(item: &clean::Item) -> Option<IndexItemFunctionType> {
let decl = match item.inner {
clean::FunctionItem(ref f) => &f.decl,
clean::MethodItem(ref m) => &m.decl,
clean::TyMethodItem(ref m) => &m.decl,
_ => return None
};
let inputs = decl.inputs.values.iter().map(|arg| get_index_type(&arg.type_)).collect();
let output = match decl.output {
clean::FunctionRetTy::Return(ref return_type) => Some(get_index_type(return_type)),
_ => None
};
Some(IndexItemFunctionType { inputs: inputs, output: output })
}
fn get_index_type(clean_type: &clean::Type) -> Type {
Type { name: get_index_type_name(clean_type).map(|s| s.to_ascii_lowercase()) }
}
fn get_index_type_name(clean_type: &clean::Type) -> Option<String> {
match *clean_type {
clean::ResolvedPath { ref path, .. } => {
let segments = &path.segments;
Some(segments[segments.len() - 1].name.clone())
},
clean::Generic(ref s) => Some(s.clone()),
clean::Primitive(ref p) => Some(format!("{:?}", p)),
clean::BorrowedRef { ref type_, .. } => get_index_type_name(type_),
// FIXME: add all from clean::Type.
_ => None
}
}
pub fn cache() -> Arc<Cache> {
CACHE_KEY.with(|c| c.borrow().clone())
}
#[cfg(test)]
#[test]
fn test_unique_id() {
let input = ["foo", "examples", "examples", "method.into_iter","examples",
"method.into_iter", "foo", "main", "search", "methods",
"examples", "method.into_iter", "assoc_type.Item", "assoc_type.Item"];
let expected = ["foo", "examples", "examples-1", "method.into_iter", "examples-2",
"method.into_iter-1", "foo-1", "main-1", "search-1", "methods-1",
"examples-3", "method.into_iter-2", "assoc_type.Item", "assoc_type.Item-1"];
let test = || {
let actual: Vec<String> = input.iter().map(|s| derive_id(s.to_string())).collect();
assert_eq!(&actual[..], expected);
};
test();
reset_ids(true);
test();
}