blob: 00feb2cd1de0961f5ec1e97965ea1480d3ee3543 [file] [log] [blame]
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm;
use llvm::{ConstFCmp, ConstICmp, SetLinkage, SetUnnamedAddr};
use llvm::{InternalLinkage, ValueRef, Bool, True};
use middle::const_qualif::ConstQualif;
use rustc_const_eval::{ConstEvalErr, lookup_const_fn_by_id, lookup_const_by_id, ErrKind};
use rustc_const_eval::eval_repeat_count;
use rustc::hir::def::Def;
use rustc::hir::def_id::DefId;
use rustc::hir::map as hir_map;
use {abi, adt, closure, debuginfo, expr, machine};
use base::{self, push_ctxt};
use callee::Callee;
use trans_item::TransItem;
use common::{type_is_sized, C_nil, const_get_elt};
use common::{CrateContext, C_integral, C_floating, C_bool, C_str_slice, C_bytes, val_ty};
use common::{C_struct, C_undef, const_to_opt_int, const_to_opt_uint, VariantInfo, C_uint};
use common::{type_is_fat_ptr, Field, C_vector, C_array, C_null};
use datum::{Datum, Lvalue};
use declare;
use monomorphize::{self, Instance};
use type_::Type;
use type_of;
use value::Value;
use Disr;
use rustc::ty::subst::Substs;
use rustc::ty::adjustment::{AdjustDerefRef, AdjustReifyFnPointer};
use rustc::ty::adjustment::{AdjustUnsafeFnPointer, AdjustMutToConstPointer};
use rustc::ty::{self, Ty, TyCtxt};
use rustc::ty::cast::{CastTy,IntTy};
use util::nodemap::NodeMap;
use rustc_const_math::{ConstInt, ConstUsize, ConstIsize};
use rustc::hir;
use std::ffi::{CStr, CString};
use std::borrow::Cow;
use libc::c_uint;
use syntax::ast::{self, LitKind};
use syntax::attr::{self, AttrMetaMethods};
use syntax::parse::token;
use syntax::ptr::P;
use syntax_pos::Span;
pub type FnArgMap<'a> = Option<&'a NodeMap<ValueRef>>;
pub fn const_lit(cx: &CrateContext, e: &hir::Expr, lit: &ast::Lit)
-> ValueRef {
let _icx = push_ctxt("trans_lit");
debug!("const_lit: {:?}", lit);
match lit.node {
LitKind::Byte(b) => C_integral(Type::uint_from_ty(cx, ast::UintTy::U8), b as u64, false),
LitKind::Char(i) => C_integral(Type::char(cx), i as u64, false),
LitKind::Int(i, ast::LitIntType::Signed(t)) => {
C_integral(Type::int_from_ty(cx, t), i, true)
}
LitKind::Int(u, ast::LitIntType::Unsigned(t)) => {
C_integral(Type::uint_from_ty(cx, t), u, false)
}
LitKind::Int(i, ast::LitIntType::Unsuffixed) => {
let lit_int_ty = cx.tcx().node_id_to_type(e.id);
match lit_int_ty.sty {
ty::TyInt(t) => {
C_integral(Type::int_from_ty(cx, t), i as u64, true)
}
ty::TyUint(t) => {
C_integral(Type::uint_from_ty(cx, t), i as u64, false)
}
_ => span_bug!(lit.span,
"integer literal has type {:?} (expected int \
or usize)",
lit_int_ty)
}
}
LitKind::Float(ref fs, t) => {
C_floating(&fs, Type::float_from_ty(cx, t))
}
LitKind::FloatUnsuffixed(ref fs) => {
let lit_float_ty = cx.tcx().node_id_to_type(e.id);
match lit_float_ty.sty {
ty::TyFloat(t) => {
C_floating(&fs, Type::float_from_ty(cx, t))
}
_ => {
span_bug!(lit.span,
"floating point literal doesn't have the right type");
}
}
}
LitKind::Bool(b) => C_bool(cx, b),
LitKind::Str(ref s, _) => C_str_slice(cx, (*s).clone()),
LitKind::ByteStr(ref data) => {
addr_of(cx, C_bytes(cx, &data[..]), 1, "byte_str")
}
}
}
pub fn ptrcast(val: ValueRef, ty: Type) -> ValueRef {
unsafe {
llvm::LLVMConstPointerCast(val, ty.to_ref())
}
}
pub fn addr_of_mut(ccx: &CrateContext,
cv: ValueRef,
align: machine::llalign,
kind: &str)
-> ValueRef {
unsafe {
// FIXME: this totally needs a better name generation scheme, perhaps a simple global
// counter? Also most other uses of gensym in trans.
let gsym = token::gensym("_");
let name = format!("{}{}", kind, gsym.0);
let gv = declare::define_global(ccx, &name[..], val_ty(cv)).unwrap_or_else(||{
bug!("symbol `{}` is already defined", name);
});
llvm::LLVMSetInitializer(gv, cv);
llvm::LLVMSetAlignment(gv, align);
SetLinkage(gv, InternalLinkage);
SetUnnamedAddr(gv, true);
gv
}
}
pub fn addr_of(ccx: &CrateContext,
cv: ValueRef,
align: machine::llalign,
kind: &str)
-> ValueRef {
if let Some(&gv) = ccx.const_globals().borrow().get(&cv) {
unsafe {
// Upgrade the alignment in cases where the same constant is used with different
// alignment requirements
if align > llvm::LLVMGetAlignment(gv) {
llvm::LLVMSetAlignment(gv, align);
}
}
return gv;
}
let gv = addr_of_mut(ccx, cv, align, kind);
unsafe {
llvm::LLVMSetGlobalConstant(gv, True);
}
ccx.const_globals().borrow_mut().insert(cv, gv);
gv
}
/// Deref a constant pointer
pub fn load_const(cx: &CrateContext, v: ValueRef, t: Ty) -> ValueRef {
let v = match cx.const_unsized().borrow().get(&v) {
Some(&v) => v,
None => v
};
let d = unsafe { llvm::LLVMGetInitializer(v) };
if !d.is_null() && t.is_bool() {
unsafe { llvm::LLVMConstTrunc(d, Type::i1(cx).to_ref()) }
} else {
d
}
}
fn const_deref<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
v: ValueRef,
ty: Ty<'tcx>)
-> (ValueRef, Ty<'tcx>) {
match ty.builtin_deref(true, ty::NoPreference) {
Some(mt) => {
if type_is_sized(cx.tcx(), mt.ty) {
(load_const(cx, v, mt.ty), mt.ty)
} else {
// Derefing a fat pointer does not change the representation,
// just the type to the unsized contents.
(v, mt.ty)
}
}
None => {
bug!("unexpected dereferenceable type {:?}", ty)
}
}
}
fn const_fn_call<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
def_id: DefId,
substs: &'tcx Substs<'tcx>,
arg_vals: &[ValueRef],
param_substs: &'tcx Substs<'tcx>,
trueconst: TrueConst) -> Result<ValueRef, ConstEvalFailure> {
let fn_like = lookup_const_fn_by_id(ccx.tcx(), def_id);
let fn_like = fn_like.expect("lookup_const_fn_by_id failed in const_fn_call");
let body = match fn_like.body().expr {
Some(ref expr) => expr,
None => return Ok(C_nil(ccx))
};
let args = &fn_like.decl().inputs;
assert_eq!(args.len(), arg_vals.len());
let arg_ids = args.iter().map(|arg| arg.pat.id);
let fn_args = arg_ids.zip(arg_vals.iter().cloned()).collect();
let substs = ccx.tcx().mk_substs(substs.clone().erase_regions());
let substs = monomorphize::apply_param_substs(ccx.tcx(),
param_substs,
&substs);
const_expr(ccx, body, substs, Some(&fn_args), trueconst).map(|(res, _)| res)
}
pub fn get_const_expr<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
def_id: DefId,
ref_expr: &hir::Expr,
param_substs: &'tcx Substs<'tcx>)
-> &'tcx hir::Expr {
let substs = ccx.tcx().node_id_item_substs(ref_expr.id).substs;
let substs = ccx.tcx().mk_substs(substs.clone().erase_regions());
let substs = monomorphize::apply_param_substs(ccx.tcx(),
param_substs,
&substs);
match lookup_const_by_id(ccx.tcx(), def_id, Some(substs)) {
Some((ref expr, _ty)) => expr,
None => {
span_bug!(ref_expr.span, "constant item not found")
}
}
}
pub enum ConstEvalFailure {
/// in case the const evaluator failed on something that panic at runtime
/// as defined in RFC 1229
Runtime(ConstEvalErr),
// in case we found a true constant
Compiletime(ConstEvalErr),
}
impl ConstEvalFailure {
fn into_inner(self) -> ConstEvalErr {
match self {
Runtime(e) => e,
Compiletime(e) => e,
}
}
pub fn description(&self) -> Cow<str> {
match self {
&Runtime(ref e) => e.description(),
&Compiletime(ref e) => e.description(),
}
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum TrueConst {
Yes, No
}
use self::ConstEvalFailure::*;
fn get_const_val<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
def_id: DefId,
ref_expr: &hir::Expr,
param_substs: &'tcx Substs<'tcx>)
-> Result<ValueRef, ConstEvalFailure> {
let expr = get_const_expr(ccx, def_id, ref_expr, param_substs);
let empty_substs = ccx.tcx().mk_substs(Substs::empty());
match get_const_expr_as_global(ccx, expr, ConstQualif::empty(), empty_substs, TrueConst::Yes) {
Err(Runtime(err)) => {
ccx.tcx().sess.span_err(expr.span, &err.description());
Err(Compiletime(err))
},
other => other,
}
}
pub fn get_const_expr_as_global<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
expr: &hir::Expr,
qualif: ConstQualif,
param_substs: &'tcx Substs<'tcx>,
trueconst: TrueConst)
-> Result<ValueRef, ConstEvalFailure> {
debug!("get_const_expr_as_global: {:?}", expr.id);
// Special-case constants to cache a common global for all uses.
if let hir::ExprPath(..) = expr.node {
// `def` must be its own statement and cannot be in the `match`
// otherwise the `def_map` will be borrowed for the entire match instead
// of just to get the `def` value
match ccx.tcx().expect_def(expr.id) {
Def::Const(def_id) | Def::AssociatedConst(def_id) => {
if !ccx.tcx().tables.borrow().adjustments.contains_key(&expr.id) {
debug!("get_const_expr_as_global ({:?}): found const {:?}",
expr.id, def_id);
return get_const_val(ccx, def_id, expr, param_substs);
}
},
_ => {},
}
}
let key = (expr.id, param_substs);
if let Some(&val) = ccx.const_values().borrow().get(&key) {
return Ok(val);
}
let ty = monomorphize::apply_param_substs(ccx.tcx(), param_substs,
&ccx.tcx().expr_ty(expr));
let val = if qualif.intersects(ConstQualif::NON_STATIC_BORROWS) {
// Avoid autorefs as they would create global instead of stack
// references, even when only the latter are correct.
const_expr_unadjusted(ccx, expr, ty, param_substs, None, trueconst)?
} else {
const_expr(ccx, expr, param_substs, None, trueconst)?.0
};
// boolean SSA values are i1, but they have to be stored in i8 slots,
// otherwise some LLVM optimization passes don't work as expected
let val = unsafe {
if llvm::LLVMTypeOf(val) == Type::i1(ccx).to_ref() {
llvm::LLVMConstZExt(val, Type::i8(ccx).to_ref())
} else {
val
}
};
let lvalue = addr_of(ccx, val, type_of::align_of(ccx, ty), "const");
ccx.const_values().borrow_mut().insert(key, lvalue);
Ok(lvalue)
}
pub fn const_expr<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
e: &hir::Expr,
param_substs: &'tcx Substs<'tcx>,
fn_args: FnArgMap,
trueconst: TrueConst)
-> Result<(ValueRef, Ty<'tcx>), ConstEvalFailure> {
let ety = monomorphize::apply_param_substs(cx.tcx(), param_substs,
&cx.tcx().expr_ty(e));
let llconst = const_expr_unadjusted(cx, e, ety, param_substs, fn_args, trueconst)?;
let mut llconst = llconst;
let mut ety_adjusted = monomorphize::apply_param_substs(cx.tcx(), param_substs,
&cx.tcx().expr_ty_adjusted(e));
let opt_adj = cx.tcx().tables.borrow().adjustments.get(&e.id).cloned();
match opt_adj {
Some(AdjustReifyFnPointer) => {
match ety.sty {
ty::TyFnDef(def_id, substs, _) => {
llconst = Callee::def(cx, def_id, substs).reify(cx).val;
}
_ => {
bug!("{} cannot be reified to a fn ptr", ety)
}
}
}
Some(AdjustUnsafeFnPointer) | Some(AdjustMutToConstPointer) => {
// purely a type-level thing
}
Some(AdjustDerefRef(adj)) => {
let mut ty = ety;
// Save the last autoderef in case we can avoid it.
if adj.autoderefs > 0 {
for _ in 0..adj.autoderefs-1 {
let (dv, dt) = const_deref(cx, llconst, ty);
llconst = dv;
ty = dt;
}
}
if adj.autoref.is_some() {
if adj.autoderefs == 0 {
// Don't copy data to do a deref+ref
// (i.e., skip the last auto-deref).
llconst = addr_of(cx, llconst, type_of::align_of(cx, ty), "autoref");
ty = cx.tcx().mk_imm_ref(cx.tcx().mk_region(ty::ReErased), ty);
}
} else if adj.autoderefs > 0 {
let (dv, dt) = const_deref(cx, llconst, ty);
llconst = dv;
// If we derefed a fat pointer then we will have an
// open type here. So we need to update the type with
// the one returned from const_deref.
ety_adjusted = dt;
}
if let Some(target) = adj.unsize {
let target = monomorphize::apply_param_substs(cx.tcx(),
param_substs,
&target);
let pointee_ty = ty.builtin_deref(true, ty::NoPreference)
.expect("consts: unsizing got non-pointer type").ty;
let (base, old_info) = if !type_is_sized(cx.tcx(), pointee_ty) {
// Normally, the source is a thin pointer and we are
// adding extra info to make a fat pointer. The exception
// is when we are upcasting an existing object fat pointer
// to use a different vtable. In that case, we want to
// load out the original data pointer so we can repackage
// it.
(const_get_elt(llconst, &[abi::FAT_PTR_ADDR as u32]),
Some(const_get_elt(llconst, &[abi::FAT_PTR_EXTRA as u32])))
} else {
(llconst, None)
};
let unsized_ty = target.builtin_deref(true, ty::NoPreference)
.expect("consts: unsizing got non-pointer target type").ty;
let ptr_ty = type_of::in_memory_type_of(cx, unsized_ty).ptr_to();
let base = ptrcast(base, ptr_ty);
let info = base::unsized_info(cx, pointee_ty, unsized_ty, old_info);
if old_info.is_none() {
let prev_const = cx.const_unsized().borrow_mut()
.insert(base, llconst);
assert!(prev_const.is_none() || prev_const == Some(llconst));
}
assert_eq!(abi::FAT_PTR_ADDR, 0);
assert_eq!(abi::FAT_PTR_EXTRA, 1);
llconst = C_struct(cx, &[base, info], false);
}
}
None => {}
};
let llty = type_of::sizing_type_of(cx, ety_adjusted);
let csize = machine::llsize_of_alloc(cx, val_ty(llconst));
let tsize = machine::llsize_of_alloc(cx, llty);
if csize != tsize {
cx.sess().abort_if_errors();
unsafe {
// FIXME these values could use some context
llvm::LLVMDumpValue(llconst);
llvm::LLVMDumpValue(C_undef(llty));
}
bug!("const {:?} of type {:?} has size {} instead of {}",
e, ety_adjusted,
csize, tsize);
}
Ok((llconst, ety_adjusted))
}
fn check_unary_expr_validity(cx: &CrateContext, e: &hir::Expr, t: Ty,
te: ValueRef, trueconst: TrueConst) -> Result<(), ConstEvalFailure> {
// The only kind of unary expression that we check for validity
// here is `-expr`, to check if it "overflows" (e.g. `-i32::MIN`).
if let hir::ExprUnary(hir::UnNeg, ref inner_e) = e.node {
// An unfortunate special case: we parse e.g. -128 as a
// negation of the literal 128, which means if we're expecting
// a i8 (or if it was already suffixed, e.g. `-128_i8`), then
// 128 will have already overflowed to -128, and so then the
// constant evaluator thinks we're trying to negate -128.
//
// Catch this up front by looking for ExprLit directly,
// and just accepting it.
if let hir::ExprLit(_) = inner_e.node { return Ok(()); }
let cval = match to_const_int(te, t, cx.tcx()) {
Some(v) => v,
None => return Ok(()),
};
const_err(cx, e.span, (-cval).map_err(ErrKind::Math), trueconst)?;
}
Ok(())
}
pub fn to_const_int(value: ValueRef, t: Ty, tcx: TyCtxt) -> Option<ConstInt> {
match t.sty {
ty::TyInt(int_type) => const_to_opt_int(value).and_then(|input| match int_type {
ast::IntTy::I8 => {
assert_eq!(input as i8 as i64, input);
Some(ConstInt::I8(input as i8))
},
ast::IntTy::I16 => {
assert_eq!(input as i16 as i64, input);
Some(ConstInt::I16(input as i16))
},
ast::IntTy::I32 => {
assert_eq!(input as i32 as i64, input);
Some(ConstInt::I32(input as i32))
},
ast::IntTy::I64 => {
Some(ConstInt::I64(input))
},
ast::IntTy::Is => {
ConstIsize::new(input, tcx.sess.target.int_type)
.ok().map(ConstInt::Isize)
},
}),
ty::TyUint(uint_type) => const_to_opt_uint(value).and_then(|input| match uint_type {
ast::UintTy::U8 => {
assert_eq!(input as u8 as u64, input);
Some(ConstInt::U8(input as u8))
},
ast::UintTy::U16 => {
assert_eq!(input as u16 as u64, input);
Some(ConstInt::U16(input as u16))
},
ast::UintTy::U32 => {
assert_eq!(input as u32 as u64, input);
Some(ConstInt::U32(input as u32))
},
ast::UintTy::U64 => {
Some(ConstInt::U64(input))
},
ast::UintTy::Us => {
ConstUsize::new(input, tcx.sess.target.uint_type)
.ok().map(ConstInt::Usize)
},
}),
_ => None,
}
}
pub fn const_err<T>(cx: &CrateContext,
span: Span,
result: Result<T, ErrKind>,
trueconst: TrueConst)
-> Result<T, ConstEvalFailure> {
match (result, trueconst) {
(Ok(x), _) => Ok(x),
(Err(err), TrueConst::Yes) => {
let err = ConstEvalErr{ span: span, kind: err };
cx.tcx().sess.span_err(span, &err.description());
Err(Compiletime(err))
},
(Err(err), TrueConst::No) => {
let err = ConstEvalErr{ span: span, kind: err };
cx.tcx().sess.span_warn(span, &err.description());
Err(Runtime(err))
},
}
}
fn check_binary_expr_validity(cx: &CrateContext, e: &hir::Expr, t: Ty,
te1: ValueRef, te2: ValueRef,
trueconst: TrueConst) -> Result<(), ConstEvalFailure> {
let b = if let hir::ExprBinary(b, _, _) = e.node { b } else { bug!() };
let (lhs, rhs) = match (to_const_int(te1, t, cx.tcx()), to_const_int(te2, t, cx.tcx())) {
(Some(v1), Some(v2)) => (v1, v2),
_ => return Ok(()),
};
let result = match b.node {
hir::BiAdd => lhs + rhs,
hir::BiSub => lhs - rhs,
hir::BiMul => lhs * rhs,
hir::BiDiv => lhs / rhs,
hir::BiRem => lhs % rhs,
hir::BiShl => lhs << rhs,
hir::BiShr => lhs >> rhs,
_ => return Ok(()),
};
const_err(cx, e.span, result.map_err(ErrKind::Math), trueconst)?;
Ok(())
}
fn const_expr_unadjusted<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
e: &hir::Expr,
ety: Ty<'tcx>,
param_substs: &'tcx Substs<'tcx>,
fn_args: FnArgMap,
trueconst: TrueConst)
-> Result<ValueRef, ConstEvalFailure>
{
debug!("const_expr_unadjusted(e={:?}, ety={:?}, param_substs={:?})",
e,
ety,
param_substs);
let map_list = |exprs: &[P<hir::Expr>]| -> Result<Vec<ValueRef>, ConstEvalFailure> {
exprs.iter()
.map(|e| const_expr(cx, &e, param_substs, fn_args, trueconst).map(|(l, _)| l))
.collect::<Vec<Result<ValueRef, ConstEvalFailure>>>()
.into_iter()
.collect()
// this dance is necessary to eagerly run const_expr so all errors are reported
};
let _icx = push_ctxt("const_expr");
Ok(match e.node {
hir::ExprLit(ref lit) => const_lit(cx, e, &lit),
hir::ExprBinary(b, ref e1, ref e2) => {
/* Neither type is bottom, and we expect them to be unified
* already, so the following is safe. */
let (te1, ty) = const_expr(cx, &e1, param_substs, fn_args, trueconst)?;
debug!("const_expr_unadjusted: te1={:?}, ty={:?}",
Value(te1), ty);
assert!(!ty.is_simd());
let is_float = ty.is_fp();
let signed = ty.is_signed();
let (te2, ty2) = const_expr(cx, &e2, param_substs, fn_args, trueconst)?;
debug!("const_expr_unadjusted: te2={:?}, ty={:?}",
Value(te2), ty2);
check_binary_expr_validity(cx, e, ty, te1, te2, trueconst)?;
unsafe { match b.node {
hir::BiAdd if is_float => llvm::LLVMConstFAdd(te1, te2),
hir::BiAdd => llvm::LLVMConstAdd(te1, te2),
hir::BiSub if is_float => llvm::LLVMConstFSub(te1, te2),
hir::BiSub => llvm::LLVMConstSub(te1, te2),
hir::BiMul if is_float => llvm::LLVMConstFMul(te1, te2),
hir::BiMul => llvm::LLVMConstMul(te1, te2),
hir::BiDiv if is_float => llvm::LLVMConstFDiv(te1, te2),
hir::BiDiv if signed => llvm::LLVMConstSDiv(te1, te2),
hir::BiDiv => llvm::LLVMConstUDiv(te1, te2),
hir::BiRem if is_float => llvm::LLVMConstFRem(te1, te2),
hir::BiRem if signed => llvm::LLVMConstSRem(te1, te2),
hir::BiRem => llvm::LLVMConstURem(te1, te2),
hir::BiAnd => llvm::LLVMConstAnd(te1, te2),
hir::BiOr => llvm::LLVMConstOr(te1, te2),
hir::BiBitXor => llvm::LLVMConstXor(te1, te2),
hir::BiBitAnd => llvm::LLVMConstAnd(te1, te2),
hir::BiBitOr => llvm::LLVMConstOr(te1, te2),
hir::BiShl => {
let te2 = base::cast_shift_const_rhs(b.node, te1, te2);
llvm::LLVMConstShl(te1, te2)
},
hir::BiShr => {
let te2 = base::cast_shift_const_rhs(b.node, te1, te2);
if signed { llvm::LLVMConstAShr(te1, te2) }
else { llvm::LLVMConstLShr(te1, te2) }
},
hir::BiEq | hir::BiNe | hir::BiLt | hir::BiLe | hir::BiGt | hir::BiGe => {
if is_float {
let cmp = base::bin_op_to_fcmp_predicate(b.node);
ConstFCmp(cmp, te1, te2)
} else {
let cmp = base::bin_op_to_icmp_predicate(b.node, signed);
ConstICmp(cmp, te1, te2)
}
},
} } // unsafe { match b.node {
},
hir::ExprUnary(u, ref inner_e) => {
let (te, ty) = const_expr(cx, &inner_e, param_substs, fn_args, trueconst)?;
check_unary_expr_validity(cx, e, ty, te, trueconst)?;
let is_float = ty.is_fp();
unsafe { match u {
hir::UnDeref => const_deref(cx, te, ty).0,
hir::UnNot => llvm::LLVMConstNot(te),
hir::UnNeg if is_float => llvm::LLVMConstFNeg(te),
hir::UnNeg => llvm::LLVMConstNeg(te),
} }
},
hir::ExprField(ref base, field) => {
let (bv, bt) = const_expr(cx, &base, param_substs, fn_args, trueconst)?;
let brepr = adt::represent_type(cx, bt);
let vinfo = VariantInfo::from_ty(cx.tcx(), bt, None);
let ix = vinfo.field_index(field.node);
adt::const_get_field(&brepr, bv, vinfo.discr, ix)
},
hir::ExprTupField(ref base, idx) => {
let (bv, bt) = const_expr(cx, &base, param_substs, fn_args, trueconst)?;
let brepr = adt::represent_type(cx, bt);
let vinfo = VariantInfo::from_ty(cx.tcx(), bt, None);
adt::const_get_field(&brepr, bv, vinfo.discr, idx.node)
},
hir::ExprIndex(ref base, ref index) => {
let (bv, bt) = const_expr(cx, &base, param_substs, fn_args, trueconst)?;
let iv = const_expr(cx, &index, param_substs, fn_args, TrueConst::Yes)?.0;
let iv = if let Some(iv) = const_to_opt_uint(iv) {
iv
} else {
span_bug!(index.span, "index is not an integer-constant expression");
};
let (arr, len) = match bt.sty {
ty::TyArray(_, u) => (bv, C_uint(cx, u)),
ty::TySlice(..) | ty::TyStr => {
let e1 = const_get_elt(bv, &[0]);
(load_const(cx, e1, bt), const_get_elt(bv, &[1]))
},
ty::TyRef(_, mt) => match mt.ty.sty {
ty::TyArray(_, u) => {
(load_const(cx, bv, mt.ty), C_uint(cx, u))
},
_ => span_bug!(base.span,
"index-expr base must be a vector \
or string type, found {:?}",
bt),
},
_ => span_bug!(base.span,
"index-expr base must be a vector \
or string type, found {:?}",
bt),
};
let len = unsafe { llvm::LLVMConstIntGetZExtValue(len) as u64 };
let len = match bt.sty {
ty::TyBox(ty) | ty::TyRef(_, ty::TypeAndMut{ty, ..}) => match ty.sty {
ty::TyStr => {
assert!(len > 0);
len - 1
},
_ => len,
},
_ => len,
};
if iv >= len {
// FIXME #3170: report this earlier on in the const-eval
// pass. Reporting here is a bit late.
const_err(cx, e.span, Err(ErrKind::IndexOutOfBounds {
len: len,
index: iv
}), trueconst)?;
C_undef(val_ty(arr).element_type())
} else {
const_get_elt(arr, &[iv as c_uint])
}
},
hir::ExprCast(ref base, _) => {
let t_cast = ety;
let llty = type_of::type_of(cx, t_cast);
let (v, t_expr) = const_expr(cx, &base, param_substs, fn_args, trueconst)?;
debug!("trans_const_cast({:?} as {:?})", t_expr, t_cast);
if expr::cast_is_noop(cx.tcx(), base, t_expr, t_cast) {
return Ok(v);
}
if type_is_fat_ptr(cx.tcx(), t_expr) {
// Fat pointer casts.
let t_cast_inner =
t_cast.builtin_deref(true, ty::NoPreference).expect("cast to non-pointer").ty;
let ptr_ty = type_of::in_memory_type_of(cx, t_cast_inner).ptr_to();
let addr = ptrcast(const_get_elt(v, &[abi::FAT_PTR_ADDR as u32]),
ptr_ty);
if type_is_fat_ptr(cx.tcx(), t_cast) {
let info = const_get_elt(v, &[abi::FAT_PTR_EXTRA as u32]);
return Ok(C_struct(cx, &[addr, info], false))
} else {
return Ok(addr);
}
}
unsafe { match (
CastTy::from_ty(t_expr).expect("bad input type for cast"),
CastTy::from_ty(t_cast).expect("bad output type for cast"),
) {
(CastTy::Int(IntTy::CEnum), CastTy::Int(_)) => {
let repr = adt::represent_type(cx, t_expr);
let discr = adt::const_get_discrim(&repr, v);
let iv = C_integral(cx.int_type(), discr.0, false);
let s = adt::is_discr_signed(&repr) as Bool;
llvm::LLVMConstIntCast(iv, llty.to_ref(), s)
},
(CastTy::Int(_), CastTy::Int(_)) => {
let s = t_expr.is_signed() as Bool;
llvm::LLVMConstIntCast(v, llty.to_ref(), s)
},
(CastTy::Int(_), CastTy::Float) => {
if t_expr.is_signed() {
llvm::LLVMConstSIToFP(v, llty.to_ref())
} else {
llvm::LLVMConstUIToFP(v, llty.to_ref())
}
},
(CastTy::Float, CastTy::Float) => llvm::LLVMConstFPCast(v, llty.to_ref()),
(CastTy::Float, CastTy::Int(IntTy::I)) => llvm::LLVMConstFPToSI(v, llty.to_ref()),
(CastTy::Float, CastTy::Int(_)) => llvm::LLVMConstFPToUI(v, llty.to_ref()),
(CastTy::Ptr(_), CastTy::Ptr(_)) | (CastTy::FnPtr, CastTy::Ptr(_))
| (CastTy::RPtr(_), CastTy::Ptr(_)) => {
ptrcast(v, llty)
},
(CastTy::FnPtr, CastTy::FnPtr) => ptrcast(v, llty), // isn't this a coercion?
(CastTy::Int(_), CastTy::Ptr(_)) => llvm::LLVMConstIntToPtr(v, llty.to_ref()),
(CastTy::Ptr(_), CastTy::Int(_)) | (CastTy::FnPtr, CastTy::Int(_)) => {
llvm::LLVMConstPtrToInt(v, llty.to_ref())
},
_ => {
span_bug!(e.span, "bad combination of types for cast")
},
} } // unsafe { match ( ... ) {
},
hir::ExprAddrOf(hir::MutImmutable, ref sub) => {
// If this is the address of some static, then we need to return
// the actual address of the static itself (short circuit the rest
// of const eval).
let mut cur = sub;
loop {
match cur.node {
hir::ExprBlock(ref blk) => {
if let Some(ref sub) = blk.expr {
cur = sub;
} else {
break;
}
},
_ => break,
}
}
if let Some(Def::Static(def_id, _)) = cx.tcx().expect_def_or_none(cur.id) {
get_static(cx, def_id).val
} else {
// If this isn't the address of a static, then keep going through
// normal constant evaluation.
let (v, ty) = const_expr(cx, &sub, param_substs, fn_args, trueconst)?;
addr_of(cx, v, type_of::align_of(cx, ty), "ref")
}
},
hir::ExprAddrOf(hir::MutMutable, ref sub) => {
let (v, ty) = const_expr(cx, &sub, param_substs, fn_args, trueconst)?;
addr_of_mut(cx, v, type_of::align_of(cx, ty), "ref_mut_slice")
},
hir::ExprTup(ref es) => {
let repr = adt::represent_type(cx, ety);
let vals = map_list(&es[..])?;
adt::trans_const(cx, &repr, Disr(0), &vals[..])
},
hir::ExprStruct(_, ref fs, ref base_opt) => {
let repr = adt::represent_type(cx, ety);
let base_val = match *base_opt {
Some(ref base) => Some(const_expr(
cx,
&base,
param_substs,
fn_args,
trueconst,
)?),
None => None
};
let VariantInfo { discr, fields } = VariantInfo::of_node(cx.tcx(), ety, e.id);
let cs = fields.iter().enumerate().map(|(ix, &Field(f_name, _))| {
match (fs.iter().find(|f| f_name == f.name.node), base_val) {
(Some(ref f), _) => {
const_expr(cx, &f.expr, param_substs, fn_args, trueconst).map(|(l, _)| l)
},
(_, Some((bv, _))) => Ok(adt::const_get_field(&repr, bv, discr, ix)),
(_, None) => span_bug!(e.span, "missing struct field"),
}
})
.collect::<Vec<Result<_, ConstEvalFailure>>>()
.into_iter()
.collect::<Result<Vec<_>,ConstEvalFailure>>();
let cs = cs?;
if ety.is_simd() {
C_vector(&cs[..])
} else {
adt::trans_const(cx, &repr, discr, &cs[..])
}
},
hir::ExprVec(ref es) => {
let unit_ty = ety.sequence_element_type(cx.tcx());
let llunitty = type_of::type_of(cx, unit_ty);
let vs = es.iter()
.map(|e| const_expr(
cx,
&e,
param_substs,
fn_args,
trueconst,
).map(|(l, _)| l))
.collect::<Vec<Result<_, ConstEvalFailure>>>()
.into_iter()
.collect::<Result<Vec<_>, ConstEvalFailure>>();
let vs = vs?;
// If the vector contains enums, an LLVM array won't work.
if vs.iter().any(|vi| val_ty(*vi) != llunitty) {
C_struct(cx, &vs[..], false)
} else {
C_array(llunitty, &vs[..])
}
},
hir::ExprRepeat(ref elem, ref count) => {
let unit_ty = ety.sequence_element_type(cx.tcx());
let llunitty = type_of::type_of(cx, unit_ty);
let n = eval_repeat_count(cx.tcx(), count);
let unit_val = const_expr(cx, &elem, param_substs, fn_args, trueconst)?.0;
let vs = vec![unit_val; n];
if val_ty(unit_val) != llunitty {
C_struct(cx, &vs[..], false)
} else {
C_array(llunitty, &vs[..])
}
},
hir::ExprPath(..) => {
match cx.tcx().expect_def(e.id) {
Def::Local(_, id) => {
if let Some(val) = fn_args.and_then(|args| args.get(&id).cloned()) {
val
} else {
span_bug!(e.span, "const fn argument not found")
}
}
Def::Fn(..) | Def::Method(..) => C_nil(cx),
Def::Const(def_id) | Def::AssociatedConst(def_id) => {
load_const(cx, get_const_val(cx, def_id, e, param_substs)?,
ety)
}
Def::Variant(enum_did, variant_did) => {
let vinfo = cx.tcx().lookup_adt_def(enum_did).variant_with_id(variant_did);
match vinfo.kind {
ty::VariantKind::Unit => {
let repr = adt::represent_type(cx, ety);
adt::trans_const(cx, &repr, Disr::from(vinfo.disr_val), &[])
}
ty::VariantKind::Tuple => C_nil(cx),
ty::VariantKind::Struct => {
span_bug!(e.span, "path-expr refers to a dict variant!")
}
}
}
// Unit struct or ctor.
Def::Struct(..) => C_null(type_of::type_of(cx, ety)),
_ => {
span_bug!(e.span, "expected a const, fn, struct, \
or variant def")
}
}
},
hir::ExprCall(ref callee, ref args) => {
let mut callee = &**callee;
loop {
callee = match callee.node {
hir::ExprBlock(ref block) => match block.expr {
Some(ref tail) => &tail,
None => break,
},
_ => break,
};
}
let arg_vals = map_list(args)?;
match cx.tcx().expect_def(callee.id) {
Def::Fn(did) | Def::Method(did) => {
const_fn_call(
cx,
did,
cx.tcx().node_id_item_substs(callee.id).substs,
&arg_vals,
param_substs,
trueconst,
)?
}
Def::Struct(..) => {
if ety.is_simd() {
C_vector(&arg_vals[..])
} else {
let repr = adt::represent_type(cx, ety);
adt::trans_const(cx, &repr, Disr(0), &arg_vals[..])
}
}
Def::Variant(enum_did, variant_did) => {
let repr = adt::represent_type(cx, ety);
let vinfo = cx.tcx().lookup_adt_def(enum_did).variant_with_id(variant_did);
adt::trans_const(cx,
&repr,
Disr::from(vinfo.disr_val),
&arg_vals[..])
}
_ => span_bug!(e.span, "expected a struct, variant, or const fn def"),
}
},
hir::ExprMethodCall(_, _, ref args) => {
let arg_vals = map_list(args)?;
let method_call = ty::MethodCall::expr(e.id);
let method = cx.tcx().tables.borrow().method_map[&method_call];
const_fn_call(cx, method.def_id, method.substs,
&arg_vals, param_substs, trueconst)?
},
hir::ExprType(ref e, _) => const_expr(cx, &e, param_substs, fn_args, trueconst)?.0,
hir::ExprBlock(ref block) => {
match block.expr {
Some(ref expr) => const_expr(
cx,
&expr,
param_substs,
fn_args,
trueconst,
)?.0,
None => C_nil(cx),
}
},
hir::ExprClosure(_, ref decl, ref body, _) => {
match ety.sty {
ty::TyClosure(def_id, substs) => {
closure::trans_closure_expr(closure::Dest::Ignore(cx),
decl,
body,
e.id,
def_id,
substs);
}
_ =>
span_bug!(
e.span,
"bad type for closure expr: {:?}", ety)
}
C_null(type_of::type_of(cx, ety))
},
_ => span_bug!(e.span,
"bad constant expression type in consts::const_expr"),
})
}
pub fn get_static<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, def_id: DefId)
-> Datum<'tcx, Lvalue> {
let ty = ccx.tcx().lookup_item_type(def_id).ty;
let instance = Instance::mono(ccx.shared(), def_id);
if let Some(&g) = ccx.instances().borrow().get(&instance) {
return Datum::new(g, ty, Lvalue::new("static"));
}
let g = if let Some(id) = ccx.tcx().map.as_local_node_id(def_id) {
let llty = type_of::type_of(ccx, ty);
let (g, attrs) = match ccx.tcx().map.get(id) {
hir_map::NodeItem(&hir::Item {
ref attrs, span, node: hir::ItemStatic(..), ..
}) => {
let sym = ccx.symbol_map()
.get(TransItem::Static(id))
.expect("Local statics should always be in the SymbolMap");
// Make sure that this is never executed for something inlined.
assert!(!ccx.external_srcs().borrow().contains_key(&id));
let defined_in_current_codegen_unit = ccx.codegen_unit()
.items
.contains_key(&TransItem::Static(id));
if defined_in_current_codegen_unit {
if declare::get_declared_value(ccx, sym).is_none() {
span_bug!(span, "trans: Static not properly pre-defined?");
}
} else {
if declare::get_declared_value(ccx, sym).is_some() {
span_bug!(span, "trans: Conflicting symbol names for static?");
}
}
let g = declare::define_global(ccx, sym, llty).unwrap();
(g, attrs)
}
hir_map::NodeForeignItem(&hir::ForeignItem {
ref attrs, span, node: hir::ForeignItemStatic(..), ..
}) => {
let sym = instance.symbol_name(ccx.shared());
let g = if let Some(name) =
attr::first_attr_value_str_by_name(&attrs, "linkage") {
// If this is a static with a linkage specified, then we need to handle
// it a little specially. The typesystem prevents things like &T and
// extern "C" fn() from being non-null, so we can't just declare a
// static and call it a day. Some linkages (like weak) will make it such
// that the static actually has a null value.
let linkage = match base::llvm_linkage_by_name(&name) {
Some(linkage) => linkage,
None => {
ccx.sess().span_fatal(span, "invalid linkage specified");
}
};
let llty2 = match ty.sty {
ty::TyRawPtr(ref mt) => type_of::type_of(ccx, mt.ty),
_ => {
ccx.sess().span_fatal(span, "must have type `*const T` or `*mut T`");
}
};
unsafe {
// Declare a symbol `foo` with the desired linkage.
let g1 = declare::declare_global(ccx, &sym, llty2);
llvm::SetLinkage(g1, linkage);
// Declare an internal global `extern_with_linkage_foo` which
// is initialized with the address of `foo`. If `foo` is
// discarded during linking (for example, if `foo` has weak
// linkage and there are no definitions), then
// `extern_with_linkage_foo` will instead be initialized to
// zero.
let mut real_name = "_rust_extern_with_linkage_".to_string();
real_name.push_str(&sym);
let g2 = declare::define_global(ccx, &real_name, llty).unwrap_or_else(||{
ccx.sess().span_fatal(span,
&format!("symbol `{}` is already defined", &sym))
});
llvm::SetLinkage(g2, llvm::InternalLinkage);
llvm::LLVMSetInitializer(g2, g1);
g2
}
} else {
// Generate an external declaration.
declare::declare_global(ccx, &sym, llty)
};
(g, attrs)
}
item => bug!("get_static: expected static, found {:?}", item)
};
for attr in attrs {
if attr.check_name("thread_local") {
llvm::set_thread_local(g, true);
}
}
g
} else {
let sym = instance.symbol_name(ccx.shared());
// FIXME(nagisa): perhaps the map of externs could be offloaded to llvm somehow?
// FIXME(nagisa): investigate whether it can be changed into define_global
let g = declare::declare_global(ccx, &sym, type_of::type_of(ccx, ty));
// Thread-local statics in some other crate need to *always* be linked
// against in a thread-local fashion, so we need to be sure to apply the
// thread-local attribute locally if it was present remotely. If we
// don't do this then linker errors can be generated where the linker
// complains that one object files has a thread local version of the
// symbol and another one doesn't.
for attr in ccx.tcx().get_attrs(def_id).iter() {
if attr.check_name("thread_local") {
llvm::set_thread_local(g, true);
}
}
if ccx.use_dll_storage_attrs() {
llvm::SetDLLStorageClass(g, llvm::DLLImportStorageClass);
}
g
};
ccx.instances().borrow_mut().insert(instance, g);
ccx.statics().borrow_mut().insert(g, def_id);
Datum::new(g, ty, Lvalue::new("static"))
}
pub fn trans_static(ccx: &CrateContext,
m: hir::Mutability,
expr: &hir::Expr,
id: ast::NodeId,
attrs: &[ast::Attribute])
-> Result<ValueRef, ConstEvalErr> {
unsafe {
let _icx = push_ctxt("trans_static");
let def_id = ccx.tcx().map.local_def_id(id);
let datum = get_static(ccx, def_id);
let check_attrs = |attrs: &[ast::Attribute]| {
let default_to_mir = ccx.sess().opts.debugging_opts.orbit;
let invert = if default_to_mir { "rustc_no_mir" } else { "rustc_mir" };
default_to_mir ^ attrs.iter().any(|item| item.check_name(invert))
};
let use_mir = check_attrs(ccx.tcx().map.attrs(id));
let v = if use_mir {
::mir::trans_static_initializer(ccx, def_id)
} else {
let empty_substs = ccx.tcx().mk_substs(Substs::empty());
const_expr(ccx, expr, empty_substs, None, TrueConst::Yes)
.map(|(v, _)| v)
}.map_err(|e| e.into_inner())?;
// boolean SSA values are i1, but they have to be stored in i8 slots,
// otherwise some LLVM optimization passes don't work as expected
let mut val_llty = val_ty(v);
let v = if val_llty == Type::i1(ccx) {
val_llty = Type::i8(ccx);
llvm::LLVMConstZExt(v, val_llty.to_ref())
} else {
v
};
let llty = type_of::type_of(ccx, datum.ty);
let g = if val_llty == llty {
datum.val
} else {
// If we created the global with the wrong type,
// correct the type.
let empty_string = CString::new("").unwrap();
let name_str_ref = CStr::from_ptr(llvm::LLVMGetValueName(datum.val));
let name_string = CString::new(name_str_ref.to_bytes()).unwrap();
llvm::LLVMSetValueName(datum.val, empty_string.as_ptr());
let new_g = llvm::LLVMGetOrInsertGlobal(
ccx.llmod(), name_string.as_ptr(), val_llty.to_ref());
// To avoid breaking any invariants, we leave around the old
// global for the moment; we'll replace all references to it
// with the new global later. (See base::trans_crate.)
ccx.statics_to_rauw().borrow_mut().push((datum.val, new_g));
new_g
};
llvm::LLVMSetAlignment(g, type_of::align_of(ccx, datum.ty));
llvm::LLVMSetInitializer(g, v);
// As an optimization, all shared statics which do not have interior
// mutability are placed into read-only memory.
if m != hir::MutMutable {
let tcontents = datum.ty.type_contents(ccx.tcx());
if !tcontents.interior_unsafe() {
llvm::LLVMSetGlobalConstant(g, llvm::True);
}
}
debuginfo::create_global_var_metadata(ccx, id, g);
if attr::contains_name(attrs,
"thread_local") {
llvm::set_thread_local(g, true);
}
base::set_link_section(ccx, g, attrs);
Ok(g)
}
}