blob: acaf9b9b2faeed9d57b1b4da9a0cccd4b3b26238 [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![crate_name = "rustc_privacy"]
#![unstable(feature = "rustc_private", issue = "27812")]
#![crate_type = "dylib"]
#![crate_type = "rlib"]
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/")]
#![cfg_attr(not(stage0), deny(warnings))]
#![feature(rustc_diagnostic_macros)]
#![feature(rustc_private)]
#![feature(staged_api)]
extern crate rustc;
#[macro_use] extern crate syntax;
extern crate syntax_pos;
use rustc::dep_graph::DepNode;
use rustc::hir::{self, PatKind};
use rustc::hir::def::{self, Def};
use rustc::hir::def_id::DefId;
use rustc::hir::intravisit::{self, Visitor};
use rustc::hir::pat_util::EnumerateAndAdjustIterator;
use rustc::lint;
use rustc::middle::privacy::{AccessLevel, AccessLevels};
use rustc::ty::{self, TyCtxt};
use rustc::util::nodemap::NodeSet;
use syntax::ast;
use syntax_pos::Span;
use std::cmp;
use std::mem::replace;
pub mod diagnostics;
////////////////////////////////////////////////////////////////////////////////
/// The embargo visitor, used to determine the exports of the ast
////////////////////////////////////////////////////////////////////////////////
struct EmbargoVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
export_map: &'a def::ExportMap,
// Accessibility levels for reachable nodes
access_levels: AccessLevels,
// Previous accessibility level, None means unreachable
prev_level: Option<AccessLevel>,
// Have something changed in the level map?
changed: bool,
}
struct ReachEverythingInTheInterfaceVisitor<'b, 'a: 'b, 'tcx: 'a> {
ev: &'b mut EmbargoVisitor<'a, 'tcx>,
}
impl<'a, 'tcx> EmbargoVisitor<'a, 'tcx> {
fn ty_level(&self, ty: &hir::Ty) -> Option<AccessLevel> {
if let hir::TyPath(..) = ty.node {
match self.tcx.expect_def(ty.id) {
Def::PrimTy(..) | Def::SelfTy(..) | Def::TyParam(..) => {
Some(AccessLevel::Public)
}
def => {
if let Some(node_id) = self.tcx.map.as_local_node_id(def.def_id()) {
self.get(node_id)
} else {
Some(AccessLevel::Public)
}
}
}
} else {
Some(AccessLevel::Public)
}
}
fn trait_level(&self, trait_ref: &hir::TraitRef) -> Option<AccessLevel> {
let did = self.tcx.expect_def(trait_ref.ref_id).def_id();
if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
self.get(node_id)
} else {
Some(AccessLevel::Public)
}
}
fn get(&self, id: ast::NodeId) -> Option<AccessLevel> {
self.access_levels.map.get(&id).cloned()
}
// Updates node level and returns the updated level
fn update(&mut self, id: ast::NodeId, level: Option<AccessLevel>) -> Option<AccessLevel> {
let old_level = self.get(id);
// Accessibility levels can only grow
if level > old_level {
self.access_levels.map.insert(id, level.unwrap());
self.changed = true;
level
} else {
old_level
}
}
fn reach<'b>(&'b mut self) -> ReachEverythingInTheInterfaceVisitor<'b, 'a, 'tcx> {
ReachEverythingInTheInterfaceVisitor { ev: self }
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for EmbargoVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
let tcx = self.tcx;
self.visit_item(tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
let inherited_item_level = match item.node {
// Impls inherit level from their types and traits
hir::ItemImpl(_, _, _, None, ref ty, _) => {
self.ty_level(&ty)
}
hir::ItemImpl(_, _, _, Some(ref trait_ref), ref ty, _) => {
cmp::min(self.ty_level(&ty), self.trait_level(trait_ref))
}
hir::ItemDefaultImpl(_, ref trait_ref) => {
self.trait_level(trait_ref)
}
// Foreign mods inherit level from parents
hir::ItemForeignMod(..) => {
self.prev_level
}
// Other `pub` items inherit levels from parents
_ => {
if item.vis == hir::Public { self.prev_level } else { None }
}
};
// Update level of the item itself
let item_level = self.update(item.id, inherited_item_level);
// Update levels of nested things
match item.node {
hir::ItemEnum(ref def, _) => {
for variant in &def.variants {
let variant_level = self.update(variant.node.data.id(), item_level);
for field in variant.node.data.fields() {
self.update(field.id, variant_level);
}
}
}
hir::ItemImpl(_, _, _, None, _, ref impl_items) => {
for impl_item in impl_items {
if impl_item.vis == hir::Public {
self.update(impl_item.id, item_level);
}
}
}
hir::ItemImpl(_, _, _, Some(_), _, ref impl_items) => {
for impl_item in impl_items {
self.update(impl_item.id, item_level);
}
}
hir::ItemTrait(_, _, _, ref trait_items) => {
for trait_item in trait_items {
self.update(trait_item.id, item_level);
}
}
hir::ItemStruct(ref def, _) => {
if !def.is_struct() {
self.update(def.id(), item_level);
}
for field in def.fields() {
if field.vis == hir::Public {
self.update(field.id, item_level);
}
}
}
hir::ItemForeignMod(ref foreign_mod) => {
for foreign_item in &foreign_mod.items {
if foreign_item.vis == hir::Public {
self.update(foreign_item.id, item_level);
}
}
}
_ => {}
}
// Mark all items in interfaces of reachable items as reachable
match item.node {
// The interface is empty
hir::ItemExternCrate(..) => {}
// All nested items are checked by visit_item
hir::ItemMod(..) => {}
// Reexports are handled in visit_mod
hir::ItemUse(..) => {}
// Visit everything
hir::ItemConst(..) | hir::ItemStatic(..) | hir::ItemFn(..) |
hir::ItemTrait(..) | hir::ItemTy(..) | hir::ItemImpl(_, _, _, Some(..), _, _) => {
if item_level.is_some() {
self.reach().visit_item(item);
}
}
// Visit everything, but enum variants have their own levels
hir::ItemEnum(ref def, ref generics) => {
if item_level.is_some() {
self.reach().visit_generics(generics);
}
for variant in &def.variants {
if self.get(variant.node.data.id()).is_some() {
for field in variant.node.data.fields() {
self.reach().visit_struct_field(field);
}
// Corner case: if the variant is reachable, but its
// enum is not, make the enum reachable as well.
self.update(item.id, Some(AccessLevel::Reachable));
}
}
}
// Visit everything, but foreign items have their own levels
hir::ItemForeignMod(ref foreign_mod) => {
for foreign_item in &foreign_mod.items {
if self.get(foreign_item.id).is_some() {
self.reach().visit_foreign_item(foreign_item);
}
}
}
// Visit everything except for private fields
hir::ItemStruct(ref struct_def, ref generics) => {
if item_level.is_some() {
self.reach().visit_generics(generics);
for field in struct_def.fields() {
if self.get(field.id).is_some() {
self.reach().visit_struct_field(field);
}
}
}
}
// The interface is empty
hir::ItemDefaultImpl(..) => {}
// Visit everything except for private impl items
hir::ItemImpl(_, _, ref generics, None, _, ref impl_items) => {
if item_level.is_some() {
self.reach().visit_generics(generics);
for impl_item in impl_items {
if self.get(impl_item.id).is_some() {
self.reach().visit_impl_item(impl_item);
}
}
}
}
}
let orig_level = self.prev_level;
self.prev_level = item_level;
intravisit::walk_item(self, item);
self.prev_level = orig_level;
}
fn visit_block(&mut self, b: &'v hir::Block) {
let orig_level = replace(&mut self.prev_level, None);
// Blocks can have public items, for example impls, but they always
// start as completely private regardless of publicity of a function,
// constant, type, field, etc. in which this block resides
intravisit::walk_block(self, b);
self.prev_level = orig_level;
}
fn visit_mod(&mut self, m: &hir::Mod, _sp: Span, id: ast::NodeId) {
// This code is here instead of in visit_item so that the
// crate module gets processed as well.
if self.prev_level.is_some() {
if let Some(exports) = self.export_map.get(&id) {
for export in exports {
if let Some(node_id) = self.tcx.map.as_local_node_id(export.def_id) {
self.update(node_id, Some(AccessLevel::Exported));
}
}
}
}
intravisit::walk_mod(self, m);
}
fn visit_macro_def(&mut self, md: &'v hir::MacroDef) {
self.update(md.id, Some(AccessLevel::Public));
}
}
impl<'b, 'a, 'tcx: 'a> ReachEverythingInTheInterfaceVisitor<'b, 'a, 'tcx> {
// Make the type hidden under a type alias reachable
fn reach_aliased_type(&mut self, item: &hir::Item, path: &hir::Path) {
if let hir::ItemTy(ref ty, ref generics) = item.node {
// See `fn is_public_type_alias` for details
self.visit_ty(ty);
let provided_params = path.segments.last().unwrap().parameters.types().len();
for ty_param in &generics.ty_params[provided_params..] {
if let Some(ref default_ty) = ty_param.default {
self.visit_ty(default_ty);
}
}
}
}
}
impl<'b, 'a, 'tcx: 'a, 'v> Visitor<'v> for ReachEverythingInTheInterfaceVisitor<'b, 'a, 'tcx> {
fn visit_ty(&mut self, ty: &hir::Ty) {
if let hir::TyPath(_, ref path) = ty.node {
let def = self.ev.tcx.expect_def(ty.id);
match def {
Def::Struct(def_id) | Def::Enum(def_id) | Def::TyAlias(def_id) |
Def::Trait(def_id) | Def::AssociatedTy(def_id, _) => {
if let Some(node_id) = self.ev.tcx.map.as_local_node_id(def_id) {
let item = self.ev.tcx.map.expect_item(node_id);
if let Def::TyAlias(..) = def {
// Type aliases are substituted. Associated type aliases are not
// substituted yet, but ideally they should be.
if self.ev.get(item.id).is_none() {
self.reach_aliased_type(item, path);
}
} else {
self.ev.update(item.id, Some(AccessLevel::Reachable));
}
}
}
_ => {}
}
}
intravisit::walk_ty(self, ty);
}
fn visit_trait_ref(&mut self, trait_ref: &hir::TraitRef) {
let def_id = self.ev.tcx.expect_def(trait_ref.ref_id).def_id();
if let Some(node_id) = self.ev.tcx.map.as_local_node_id(def_id) {
let item = self.ev.tcx.map.expect_item(node_id);
self.ev.update(item.id, Some(AccessLevel::Reachable));
}
intravisit::walk_trait_ref(self, trait_ref);
}
// Don't recurse into function bodies
fn visit_block(&mut self, _: &hir::Block) {}
// Don't recurse into expressions in array sizes or const initializers
fn visit_expr(&mut self, _: &hir::Expr) {}
// Don't recurse into patterns in function arguments
fn visit_pat(&mut self, _: &hir::Pat) {}
}
////////////////////////////////////////////////////////////////////////////////
/// The privacy visitor, where privacy checks take place (violations reported)
////////////////////////////////////////////////////////////////////////////////
struct PrivacyVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
curitem: ast::NodeId,
in_foreign: bool,
}
impl<'a, 'tcx> PrivacyVisitor<'a, 'tcx> {
fn item_is_accessible(&self, did: DefId) -> bool {
match self.tcx.map.as_local_node_id(did) {
Some(node_id) =>
ty::Visibility::from_hir(&self.tcx.map.expect_item(node_id).vis, node_id, self.tcx),
None => self.tcx.sess.cstore.visibility(did),
}.is_accessible_from(self.curitem, &self.tcx.map)
}
// Checks that a field is in scope.
fn check_field(&mut self, span: Span, def: ty::AdtDef<'tcx>, field: ty::FieldDef<'tcx>) {
if def.adt_kind() == ty::AdtKind::Struct &&
!field.vis.is_accessible_from(self.curitem, &self.tcx.map) {
span_err!(self.tcx.sess, span, E0451, "field `{}` of struct `{}` is private",
field.name, self.tcx.item_path_str(def.did));
}
}
// Checks that a method is in scope.
fn check_method(&mut self, span: Span, method_def_id: DefId) {
match self.tcx.impl_or_trait_item(method_def_id).container() {
// Trait methods are always all public. The only controlling factor
// is whether the trait itself is accessible or not.
ty::TraitContainer(trait_def_id) if !self.item_is_accessible(trait_def_id) => {
let msg = format!("source trait `{}` is private",
self.tcx.item_path_str(trait_def_id));
self.tcx.sess.span_err(span, &msg);
}
_ => {}
}
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for PrivacyVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
let tcx = self.tcx;
self.visit_item(tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
let orig_curitem = replace(&mut self.curitem, item.id);
intravisit::walk_item(self, item);
self.curitem = orig_curitem;
}
fn visit_expr(&mut self, expr: &hir::Expr) {
match expr.node {
hir::ExprMethodCall(..) => {
let method_call = ty::MethodCall::expr(expr.id);
let method = self.tcx.tables.borrow().method_map[&method_call];
self.check_method(expr.span, method.def_id);
}
hir::ExprStruct(..) => {
let adt = self.tcx.expr_ty(expr).ty_adt_def().unwrap();
let variant = adt.variant_of_def(self.tcx.expect_def(expr.id));
// RFC 736: ensure all unmentioned fields are visible.
// Rather than computing the set of unmentioned fields
// (i.e. `all_fields - fields`), just check them all.
for field in &variant.fields {
self.check_field(expr.span, adt, field);
}
}
hir::ExprPath(..) => {
if let Def::Struct(..) = self.tcx.expect_def(expr.id) {
let expr_ty = self.tcx.expr_ty(expr);
let def = match expr_ty.sty {
ty::TyFnDef(_, _, &ty::BareFnTy { sig: ty::Binder(ty::FnSig {
output: ty::FnConverging(ty), ..
}), ..}) => ty,
_ => expr_ty
}.ty_adt_def().unwrap();
let any_priv = def.struct_variant().fields.iter().any(|f| {
!f.vis.is_accessible_from(self.curitem, &self.tcx.map)
});
if any_priv {
span_err!(self.tcx.sess, expr.span, E0450,
"cannot invoke tuple struct constructor with private \
fields");
}
}
}
_ => {}
}
intravisit::walk_expr(self, expr);
}
fn visit_pat(&mut self, pattern: &hir::Pat) {
// Foreign functions do not have their patterns mapped in the def_map,
// and there's nothing really relevant there anyway, so don't bother
// checking privacy. If you can name the type then you can pass it to an
// external C function anyway.
if self.in_foreign { return }
match pattern.node {
PatKind::Struct(_, ref fields, _) => {
let adt = self.tcx.pat_ty(pattern).ty_adt_def().unwrap();
let variant = adt.variant_of_def(self.tcx.expect_def(pattern.id));
for field in fields {
self.check_field(pattern.span, adt, variant.field_named(field.node.name));
}
}
PatKind::TupleStruct(_, ref fields, ddpos) => {
match self.tcx.pat_ty(pattern).sty {
ty::TyStruct(def, _) => {
let expected_len = def.struct_variant().fields.len();
for (i, field) in fields.iter().enumerate_and_adjust(expected_len, ddpos) {
if let PatKind::Wild = field.node {
continue
}
self.check_field(field.span, def, &def.struct_variant().fields[i]);
}
}
ty::TyEnum(..) => {
// enum fields have no privacy at this time
}
_ => {}
}
}
_ => {}
}
intravisit::walk_pat(self, pattern);
}
fn visit_foreign_item(&mut self, fi: &hir::ForeignItem) {
self.in_foreign = true;
intravisit::walk_foreign_item(self, fi);
self.in_foreign = false;
}
}
///////////////////////////////////////////////////////////////////////////////
/// Obsolete visitors for checking for private items in public interfaces.
/// These visitors are supposed to be kept in frozen state and produce an
/// "old error node set". For backward compatibility the new visitor reports
/// warnings instead of hard errors when the erroneous node is not in this old set.
///////////////////////////////////////////////////////////////////////////////
struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
access_levels: &'a AccessLevels,
in_variant: bool,
// set of errors produced by this obsolete visitor
old_error_set: NodeSet,
}
struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b: 'a, 'tcx: 'b> {
inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>,
/// whether the type refers to private types.
contains_private: bool,
/// whether we've recurred at all (i.e. if we're pointing at the
/// first type on which visit_ty was called).
at_outer_type: bool,
// whether that first type is a public path.
outer_type_is_public_path: bool,
}
impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
fn path_is_private_type(&self, path_id: ast::NodeId) -> bool {
let did = match self.tcx.expect_def(path_id) {
Def::PrimTy(..) | Def::SelfTy(..) => return false,
def => def.def_id(),
};
// A path can only be private if:
// it's in this crate...
if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
// .. and it corresponds to a private type in the AST (this returns
// None for type parameters)
match self.tcx.map.find(node_id) {
Some(hir::map::NodeItem(ref item)) => item.vis != hir::Public,
Some(_) | None => false,
}
} else {
return false
}
}
fn trait_is_public(&self, trait_id: ast::NodeId) -> bool {
// FIXME: this would preferably be using `exported_items`, but all
// traits are exported currently (see `EmbargoVisitor.exported_trait`)
self.access_levels.is_public(trait_id)
}
fn check_ty_param_bound(&mut self,
ty_param_bound: &hir::TyParamBound) {
if let hir::TraitTyParamBound(ref trait_ref, _) = *ty_param_bound {
if self.path_is_private_type(trait_ref.trait_ref.ref_id) {
self.old_error_set.insert(trait_ref.trait_ref.ref_id);
}
}
}
fn item_is_public(&self, id: &ast::NodeId, vis: &hir::Visibility) -> bool {
self.access_levels.is_reachable(*id) || *vis == hir::Public
}
}
impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
fn visit_ty(&mut self, ty: &hir::Ty) {
if let hir::TyPath(..) = ty.node {
if self.inner.path_is_private_type(ty.id) {
self.contains_private = true;
// found what we're looking for so let's stop
// working.
return
} else if self.at_outer_type {
self.outer_type_is_public_path = true;
}
}
self.at_outer_type = false;
intravisit::walk_ty(self, ty)
}
// don't want to recurse into [, .. expr]
fn visit_expr(&mut self, _: &hir::Expr) {}
}
impl<'a, 'tcx, 'v> Visitor<'v> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
let tcx = self.tcx;
self.visit_item(tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
match item.node {
// contents of a private mod can be reexported, so we need
// to check internals.
hir::ItemMod(_) => {}
// An `extern {}` doesn't introduce a new privacy
// namespace (the contents have their own privacies).
hir::ItemForeignMod(_) => {}
hir::ItemTrait(_, _, ref bounds, _) => {
if !self.trait_is_public(item.id) {
return
}
for bound in bounds.iter() {
self.check_ty_param_bound(bound)
}
}
// impls need some special handling to try to offer useful
// error messages without (too many) false positives
// (i.e. we could just return here to not check them at
// all, or some worse estimation of whether an impl is
// publicly visible).
hir::ItemImpl(_, _, ref g, ref trait_ref, ref self_, ref impl_items) => {
// `impl [... for] Private` is never visible.
let self_contains_private;
// impl [... for] Public<...>, but not `impl [... for]
// Vec<Public>` or `(Public,)` etc.
let self_is_public_path;
// check the properties of the Self type:
{
let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor {
inner: self,
contains_private: false,
at_outer_type: true,
outer_type_is_public_path: false,
};
visitor.visit_ty(&self_);
self_contains_private = visitor.contains_private;
self_is_public_path = visitor.outer_type_is_public_path;
}
// miscellaneous info about the impl
// `true` iff this is `impl Private for ...`.
let not_private_trait =
trait_ref.as_ref().map_or(true, // no trait counts as public trait
|tr| {
let did = self.tcx.expect_def(tr.ref_id).def_id();
if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
self.trait_is_public(node_id)
} else {
true // external traits must be public
}
});
// `true` iff this is a trait impl or at least one method is public.
//
// `impl Public { $( fn ...() {} )* }` is not visible.
//
// This is required over just using the methods' privacy
// directly because we might have `impl<T: Foo<Private>> ...`,
// and we shouldn't warn about the generics if all the methods
// are private (because `T` won't be visible externally).
let trait_or_some_public_method =
trait_ref.is_some() ||
impl_items.iter()
.any(|impl_item| {
match impl_item.node {
hir::ImplItemKind::Const(..) |
hir::ImplItemKind::Method(..) => {
self.access_levels.is_reachable(impl_item.id)
}
hir::ImplItemKind::Type(_) => false,
}
});
if !self_contains_private &&
not_private_trait &&
trait_or_some_public_method {
intravisit::walk_generics(self, g);
match *trait_ref {
None => {
for impl_item in impl_items {
// This is where we choose whether to walk down
// further into the impl to check its items. We
// should only walk into public items so that we
// don't erroneously report errors for private
// types in private items.
match impl_item.node {
hir::ImplItemKind::Const(..) |
hir::ImplItemKind::Method(..)
if self.item_is_public(&impl_item.id, &impl_item.vis) =>
{
intravisit::walk_impl_item(self, impl_item)
}
hir::ImplItemKind::Type(..) => {
intravisit::walk_impl_item(self, impl_item)
}
_ => {}
}
}
}
Some(ref tr) => {
// Any private types in a trait impl fall into three
// categories.
// 1. mentioned in the trait definition
// 2. mentioned in the type params/generics
// 3. mentioned in the associated types of the impl
//
// Those in 1. can only occur if the trait is in
// this crate and will've been warned about on the
// trait definition (there's no need to warn twice
// so we don't check the methods).
//
// Those in 2. are warned via walk_generics and this
// call here.
intravisit::walk_path(self, &tr.path);
// Those in 3. are warned with this call.
for impl_item in impl_items {
if let hir::ImplItemKind::Type(ref ty) = impl_item.node {
self.visit_ty(ty);
}
}
}
}
} else if trait_ref.is_none() && self_is_public_path {
// impl Public<Private> { ... }. Any public static
// methods will be visible as `Public::foo`.
let mut found_pub_static = false;
for impl_item in impl_items {
match impl_item.node {
hir::ImplItemKind::Const(..) => {
if self.item_is_public(&impl_item.id, &impl_item.vis) {
found_pub_static = true;
intravisit::walk_impl_item(self, impl_item);
}
}
hir::ImplItemKind::Method(ref sig, _) => {
if !sig.decl.has_self() &&
self.item_is_public(&impl_item.id, &impl_item.vis) {
found_pub_static = true;
intravisit::walk_impl_item(self, impl_item);
}
}
_ => {}
}
}
if found_pub_static {
intravisit::walk_generics(self, g)
}
}
return
}
// `type ... = ...;` can contain private types, because
// we're introducing a new name.
hir::ItemTy(..) => return,
// not at all public, so we don't care
_ if !self.item_is_public(&item.id, &item.vis) => {
return;
}
_ => {}
}
// We've carefully constructed it so that if we're here, then
// any `visit_ty`'s will be called on things that are in
// public signatures, i.e. things that we're interested in for
// this visitor.
intravisit::walk_item(self, item);
}
fn visit_generics(&mut self, generics: &hir::Generics) {
for ty_param in generics.ty_params.iter() {
for bound in ty_param.bounds.iter() {
self.check_ty_param_bound(bound)
}
}
for predicate in &generics.where_clause.predicates {
match predicate {
&hir::WherePredicate::BoundPredicate(ref bound_pred) => {
for bound in bound_pred.bounds.iter() {
self.check_ty_param_bound(bound)
}
}
&hir::WherePredicate::RegionPredicate(_) => {}
&hir::WherePredicate::EqPredicate(ref eq_pred) => {
self.visit_ty(&eq_pred.ty);
}
}
}
}
fn visit_foreign_item(&mut self, item: &hir::ForeignItem) {
if self.access_levels.is_reachable(item.id) {
intravisit::walk_foreign_item(self, item)
}
}
fn visit_ty(&mut self, t: &hir::Ty) {
if let hir::TyPath(..) = t.node {
if self.path_is_private_type(t.id) {
self.old_error_set.insert(t.id);
}
}
intravisit::walk_ty(self, t)
}
fn visit_variant(&mut self, v: &hir::Variant, g: &hir::Generics, item_id: ast::NodeId) {
if self.access_levels.is_reachable(v.node.data.id()) {
self.in_variant = true;
intravisit::walk_variant(self, v, g, item_id);
self.in_variant = false;
}
}
fn visit_struct_field(&mut self, s: &hir::StructField) {
if s.vis == hir::Public || self.in_variant {
intravisit::walk_struct_field(self, s);
}
}
// we don't need to introspect into these at all: an
// expression/block context can't possibly contain exported things.
// (Making them no-ops stops us from traversing the whole AST without
// having to be super careful about our `walk_...` calls above.)
// FIXME(#29524): Unfortunately this ^^^ is not true, blocks can contain
// exported items (e.g. impls) and actual code in rustc itself breaks
// if we don't traverse blocks in `EmbargoVisitor`
fn visit_block(&mut self, _: &hir::Block) {}
fn visit_expr(&mut self, _: &hir::Expr) {}
}
///////////////////////////////////////////////////////////////////////////////
/// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and
/// finds any private components in it.
/// PrivateItemsInPublicInterfacesVisitor ensures there are no private types
/// and traits in public interfaces.
///////////////////////////////////////////////////////////////////////////////
struct SearchInterfaceForPrivateItemsVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
/// The visitor checks that each component type is at least this visible
required_visibility: ty::Visibility,
/// The visibility of the least visible component that has been visited
min_visibility: ty::Visibility,
old_error_set: &'a NodeSet,
}
impl<'a, 'tcx: 'a> SearchInterfaceForPrivateItemsVisitor<'a, 'tcx> {
fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>, old_error_set: &'a NodeSet) -> Self {
SearchInterfaceForPrivateItemsVisitor {
tcx: tcx,
min_visibility: ty::Visibility::Public,
required_visibility: ty::Visibility::PrivateExternal,
old_error_set: old_error_set,
}
}
}
impl<'a, 'tcx: 'a> SearchInterfaceForPrivateItemsVisitor<'a, 'tcx> {
// Return the visibility of the type alias's least visible component type when substituted
fn substituted_alias_visibility(&self, item: &hir::Item, path: &hir::Path)
-> Option<ty::Visibility> {
// We substitute type aliases only when determining impl publicity
// FIXME: This will probably change and all type aliases will be substituted,
// requires an amendment to RFC 136.
if self.required_visibility != ty::Visibility::PrivateExternal {
return None;
}
// Type alias is considered public if the aliased type is
// public, even if the type alias itself is private. So, something
// like `type A = u8; pub fn f() -> A {...}` doesn't cause an error.
if let hir::ItemTy(ref ty, ref generics) = item.node {
let mut check = SearchInterfaceForPrivateItemsVisitor {
min_visibility: ty::Visibility::Public, ..*self
};
check.visit_ty(ty);
// If a private type alias with default type parameters is used in public
// interface we must ensure, that the defaults are public if they are actually used.
// ```
// type Alias<T = Private> = T;
// pub fn f() -> Alias {...} // `Private` is implicitly used here, so it must be public
// ```
let provided_params = path.segments.last().unwrap().parameters.types().len();
for ty_param in &generics.ty_params[provided_params..] {
if let Some(ref default_ty) = ty_param.default {
check.visit_ty(default_ty);
}
}
Some(check.min_visibility)
} else {
None
}
}
}
impl<'a, 'tcx: 'a, 'v> Visitor<'v> for SearchInterfaceForPrivateItemsVisitor<'a, 'tcx> {
fn visit_ty(&mut self, ty: &hir::Ty) {
if let hir::TyPath(_, ref path) = ty.node {
match self.tcx.expect_def(ty.id) {
Def::PrimTy(..) | Def::SelfTy(..) | Def::TyParam(..) => {
// Public
}
Def::AssociatedTy(..)
if self.required_visibility == ty::Visibility::PrivateExternal => {
// Conservatively approximate the whole type alias as public without
// recursing into its components when determining impl publicity.
// For example, `impl <Type as Trait>::Alias {...}` may be a public impl
// even if both `Type` and `Trait` are private.
// Ideally, associated types should be substituted in the same way as
// free type aliases, but this isn't done yet.
return
}
Def::Struct(def_id) | Def::Enum(def_id) | Def::TyAlias(def_id) |
Def::Trait(def_id) | Def::AssociatedTy(def_id, _) => {
// Non-local means public (private items can't leave their crate, modulo bugs)
if let Some(node_id) = self.tcx.map.as_local_node_id(def_id) {
let item = self.tcx.map.expect_item(node_id);
let vis = match self.substituted_alias_visibility(item, path) {
Some(vis) => vis,
None => ty::Visibility::from_hir(&item.vis, node_id, self.tcx),
};
if !vis.is_at_least(self.min_visibility, &self.tcx.map) {
self.min_visibility = vis;
}
if !vis.is_at_least(self.required_visibility, &self.tcx.map) {
if self.tcx.sess.features.borrow().pub_restricted ||
self.old_error_set.contains(&ty.id) {
span_err!(self.tcx.sess, ty.span, E0446,
"private type in public interface");
} else {
self.tcx.sess.add_lint(lint::builtin::PRIVATE_IN_PUBLIC,
node_id,
ty.span,
format!("private type in public interface"));
}
}
}
}
_ => {}
}
}
intravisit::walk_ty(self, ty);
}
fn visit_trait_ref(&mut self, trait_ref: &hir::TraitRef) {
// Non-local means public (private items can't leave their crate, modulo bugs)
let def_id = self.tcx.expect_def(trait_ref.ref_id).def_id();
if let Some(node_id) = self.tcx.map.as_local_node_id(def_id) {
let item = self.tcx.map.expect_item(node_id);
let vis = ty::Visibility::from_hir(&item.vis, node_id, self.tcx);
if !vis.is_at_least(self.min_visibility, &self.tcx.map) {
self.min_visibility = vis;
}
if !vis.is_at_least(self.required_visibility, &self.tcx.map) {
if self.tcx.sess.features.borrow().pub_restricted ||
self.old_error_set.contains(&trait_ref.ref_id) {
span_err!(self.tcx.sess, trait_ref.path.span, E0445,
"private trait in public interface");
} else {
self.tcx.sess.add_lint(lint::builtin::PRIVATE_IN_PUBLIC,
node_id,
trait_ref.path.span,
"private trait in public interface (error E0445)"
.to_string());
}
}
}
intravisit::walk_trait_ref(self, trait_ref);
}
// Don't recurse into function bodies
fn visit_block(&mut self, _: &hir::Block) {}
// Don't recurse into expressions in array sizes or const initializers
fn visit_expr(&mut self, _: &hir::Expr) {}
// Don't recurse into patterns in function arguments
fn visit_pat(&mut self, _: &hir::Pat) {}
}
struct PrivateItemsInPublicInterfacesVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
old_error_set: &'a NodeSet,
}
impl<'a, 'tcx> PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
// A type is considered public if it doesn't contain any private components
fn ty_visibility(&self, ty: &hir::Ty) -> ty::Visibility {
let mut check = SearchInterfaceForPrivateItemsVisitor::new(self.tcx, self.old_error_set);
check.visit_ty(ty);
check.min_visibility
}
// A trait reference is considered public if it doesn't contain any private components
fn trait_ref_visibility(&self, trait_ref: &hir::TraitRef) -> ty::Visibility {
let mut check = SearchInterfaceForPrivateItemsVisitor::new(self.tcx, self.old_error_set);
check.visit_trait_ref(trait_ref);
check.min_visibility
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
fn visit_item(&mut self, item: &hir::Item) {
let min = |vis1: ty::Visibility, vis2| {
if vis1.is_at_least(vis2, &self.tcx.map) { vis2 } else { vis1 }
};
let mut check = SearchInterfaceForPrivateItemsVisitor::new(self.tcx, self.old_error_set);
let item_visibility = ty::Visibility::from_hir(&item.vis, item.id, self.tcx);
match item.node {
// Crates are always public
hir::ItemExternCrate(..) => {}
// All nested items are checked by visit_item
hir::ItemMod(..) => {}
// Checked in resolve
hir::ItemUse(..) => {}
// Subitems of these items have inherited publicity
hir::ItemConst(..) | hir::ItemStatic(..) | hir::ItemFn(..) |
hir::ItemEnum(..) | hir::ItemTrait(..) | hir::ItemTy(..) => {
check.required_visibility = item_visibility;
check.visit_item(item);
}
// Subitems of foreign modules have their own publicity
hir::ItemForeignMod(ref foreign_mod) => {
for foreign_item in &foreign_mod.items {
check.required_visibility =
ty::Visibility::from_hir(&foreign_item.vis, item.id, self.tcx);
check.visit_foreign_item(foreign_item);
}
}
// Subitems of structs have their own publicity
hir::ItemStruct(ref struct_def, ref generics) => {
check.required_visibility = item_visibility;
check.visit_generics(generics);
for field in struct_def.fields() {
let field_visibility = ty::Visibility::from_hir(&field.vis, item.id, self.tcx);
check.required_visibility = min(item_visibility, field_visibility);
check.visit_struct_field(field);
}
}
// The interface is empty
hir::ItemDefaultImpl(..) => {}
// An inherent impl is public when its type is public
// Subitems of inherent impls have their own publicity
hir::ItemImpl(_, _, ref generics, None, ref ty, ref impl_items) => {
let ty_vis = self.ty_visibility(ty);
check.required_visibility = ty_vis;
check.visit_generics(generics);
for impl_item in impl_items {
let impl_item_vis =
ty::Visibility::from_hir(&impl_item.vis, item.id, self.tcx);
check.required_visibility = min(impl_item_vis, ty_vis);
check.visit_impl_item(impl_item);
}
}
// A trait impl is public when both its type and its trait are public
// Subitems of trait impls have inherited publicity
hir::ItemImpl(_, _, ref generics, Some(ref trait_ref), ref ty, ref impl_items) => {
let vis = min(self.ty_visibility(ty), self.trait_ref_visibility(trait_ref));
check.required_visibility = vis;
check.visit_generics(generics);
for impl_item in impl_items {
check.visit_impl_item(impl_item);
}
}
}
}
}
pub fn check_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
export_map: &def::ExportMap)
-> AccessLevels {
let _task = tcx.dep_graph.in_task(DepNode::Privacy);
let krate = tcx.map.krate();
// Use the parent map to check the privacy of everything
let mut visitor = PrivacyVisitor {
curitem: ast::DUMMY_NODE_ID,
in_foreign: false,
tcx: tcx,
};
intravisit::walk_crate(&mut visitor, krate);
tcx.sess.abort_if_errors();
// Build up a set of all exported items in the AST. This is a set of all
// items which are reachable from external crates based on visibility.
let mut visitor = EmbargoVisitor {
tcx: tcx,
export_map: export_map,
access_levels: Default::default(),
prev_level: Some(AccessLevel::Public),
changed: false,
};
loop {
intravisit::walk_crate(&mut visitor, krate);
if visitor.changed {
visitor.changed = false;
} else {
break
}
}
visitor.update(ast::CRATE_NODE_ID, Some(AccessLevel::Public));
{
let mut visitor = ObsoleteVisiblePrivateTypesVisitor {
tcx: tcx,
access_levels: &visitor.access_levels,
in_variant: false,
old_error_set: NodeSet(),
};
intravisit::walk_crate(&mut visitor, krate);
// Check for private types and traits in public interfaces
let mut visitor = PrivateItemsInPublicInterfacesVisitor {
tcx: tcx,
old_error_set: &visitor.old_error_set,
};
krate.visit_all_items(&mut visitor);
}
visitor.access_levels
}
__build_diagnostic_array! { librustc_privacy, DIAGNOSTICS }