blob: d38f979e33c5ac154b5277ecb0bee115dc234cc4 [file] [log] [blame]
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This pass is only used for the UNIT TESTS and DEBUGGING NEEDS
//! around dependency graph construction. It serves two purposes; it
//! will dump graphs in graphviz form to disk, and it searches for
//! `#[rustc_if_this_changed]` and `#[rustc_then_this_would_need]`
//! annotations. These annotations can be used to test whether paths
//! exist in the graph. These checks run after trans, so they view the
//! the final state of the dependency graph. Note that there are
//! similar assertions found in `persist::dirty_clean` which check the
//! **initial** state of the dependency graph, just after it has been
//! loaded from disk.
//!
//! In this code, we report errors on each `rustc_if_this_changed`
//! annotation. If a path exists in all cases, then we would report
//! "all path(s) exist". Otherwise, we report: "no path to `foo`" for
//! each case where no path exists. `compile-fail` tests can then be
//! used to check when paths exist or do not.
//!
//! The full form of the `rustc_if_this_changed` annotation is
//! `#[rustc_if_this_changed(id)]`. The `"id"` is optional and
//! defaults to `"id"` if omitted.
//!
//! Example:
//!
//! ```
//! #[rustc_if_this_changed]
//! fn foo() { }
//!
//! #[rustc_then_this_would_need("trans")] //~ ERROR no path from `foo`
//! fn bar() { }
//!
//! #[rustc_then_this_would_need("trans")] //~ ERROR OK
//! fn baz() { foo(); }
//! ```
use graphviz as dot;
use rustc::dep_graph::{DepGraphQuery, DepNode};
use rustc::dep_graph::debug::{DepNodeFilter, EdgeFilter};
use rustc::hir::def_id::DefId;
use rustc::ty::TyCtxt;
use rustc_data_structures::fnv::{FnvHashMap, FnvHashSet};
use rustc_data_structures::graph::{Direction, INCOMING, OUTGOING, NodeIndex};
use rustc::hir;
use rustc::hir::intravisit::Visitor;
use graphviz::IntoCow;
use std::env;
use std::fs::File;
use std::io::Write;
use syntax::ast;
use syntax::attr::AttrMetaMethods;
use syntax::parse::token::InternedString;
use syntax_pos::Span;
const IF_THIS_CHANGED: &'static str = "rustc_if_this_changed";
const THEN_THIS_WOULD_NEED: &'static str = "rustc_then_this_would_need";
const ID: &'static str = "id";
pub fn assert_dep_graph<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) {
let _ignore = tcx.dep_graph.in_ignore();
if tcx.sess.opts.debugging_opts.dump_dep_graph {
dump_graph(tcx);
}
// Find annotations supplied by user (if any).
let (if_this_changed, then_this_would_need) = {
let mut visitor = IfThisChanged { tcx: tcx,
if_this_changed: FnvHashMap(),
then_this_would_need: FnvHashMap() };
tcx.map.krate().visit_all_items(&mut visitor);
(visitor.if_this_changed, visitor.then_this_would_need)
};
if !if_this_changed.is_empty() || !then_this_would_need.is_empty() {
assert!(tcx.sess.opts.debugging_opts.query_dep_graph,
"cannot use the `#[{}]` or `#[{}]` annotations \
without supplying `-Z query-dep-graph`",
IF_THIS_CHANGED, THEN_THIS_WOULD_NEED);
}
// Check paths.
check_paths(tcx, &if_this_changed, &then_this_would_need);
}
type SourceHashMap =
FnvHashMap<InternedString,
FnvHashSet<(Span, DefId, DepNode<DefId>)>>;
type TargetHashMap =
FnvHashMap<InternedString,
FnvHashSet<(Span, InternedString, ast::NodeId, DepNode<DefId>)>>;
struct IfThisChanged<'a, 'tcx:'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
if_this_changed: SourceHashMap,
then_this_would_need: TargetHashMap,
}
impl<'a, 'tcx> IfThisChanged<'a, 'tcx> {
fn process_attrs(&mut self, node_id: ast::NodeId, def_id: DefId) {
for attr in self.tcx.get_attrs(def_id).iter() {
if attr.check_name(IF_THIS_CHANGED) {
let mut id = None;
for meta_item in attr.meta_item_list().unwrap_or_default() {
match meta_item.node {
ast::MetaItemKind::Word(ref s) if id.is_none() => id = Some(s.clone()),
_ => {
self.tcx.sess.span_err(
meta_item.span,
&format!("unexpected meta-item {:?}", meta_item.node));
}
}
}
let id = id.unwrap_or(InternedString::new(ID));
self.if_this_changed.entry(id)
.or_insert(FnvHashSet())
.insert((attr.span, def_id, DepNode::Hir(def_id)));
} else if attr.check_name(THEN_THIS_WOULD_NEED) {
let mut dep_node_interned = None;
let mut id = None;
for meta_item in attr.meta_item_list().unwrap_or_default() {
match meta_item.node {
ast::MetaItemKind::Word(ref s) if dep_node_interned.is_none() =>
dep_node_interned = Some(s.clone()),
ast::MetaItemKind::Word(ref s) if id.is_none() =>
id = Some(s.clone()),
_ => {
self.tcx.sess.span_err(
meta_item.span,
&format!("unexpected meta-item {:?}", meta_item.node));
}
}
}
let dep_node = match dep_node_interned {
Some(ref n) => {
match DepNode::from_label_string(&n[..], def_id) {
Ok(n) => n,
Err(()) => {
self.tcx.sess.span_fatal(
attr.span,
&format!("unrecognized DepNode variant {:?}", n));
}
}
}
None => {
self.tcx.sess.span_fatal(
attr.span,
&format!("missing DepNode variant"));
}
};
let id = id.unwrap_or(InternedString::new(ID));
self.then_this_would_need
.entry(id)
.or_insert(FnvHashSet())
.insert((attr.span, dep_node_interned.clone().unwrap(), node_id, dep_node));
}
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for IfThisChanged<'a, 'tcx> {
fn visit_item(&mut self, item: &'tcx hir::Item) {
let def_id = self.tcx.map.local_def_id(item.id);
self.process_attrs(item.id, def_id);
}
}
fn check_paths<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
if_this_changed: &SourceHashMap,
then_this_would_need: &TargetHashMap)
{
// Return early here so as not to construct the query, which is not cheap.
if if_this_changed.is_empty() {
return;
}
let query = tcx.dep_graph.query();
for (id, sources) in if_this_changed {
let targets = match then_this_would_need.get(id) {
Some(targets) => targets,
None => {
for &(source_span, _, _) in sources.iter().take(1) {
tcx.sess.span_err(
source_span,
&format!("no targets for id `{}`", id));
}
continue;
}
};
for &(_, source_def_id, ref source_dep_node) in sources {
let dependents = query.transitive_successors(source_dep_node);
for &(target_span, ref target_pass, _, ref target_dep_node) in targets {
if !dependents.contains(&target_dep_node) {
tcx.sess.span_err(
target_span,
&format!("no path from `{}` to `{}`",
tcx.item_path_str(source_def_id),
target_pass));
} else {
tcx.sess.span_err(
target_span,
&format!("OK"));
}
}
}
}
}
fn dump_graph(tcx: TyCtxt) {
let path: String = env::var("RUST_DEP_GRAPH").unwrap_or_else(|_| format!("dep_graph"));
let query = tcx.dep_graph.query();
let nodes = match env::var("RUST_DEP_GRAPH_FILTER") {
Ok(string) => {
// Expect one of: "-> target", "source -> target", or "source ->".
let edge_filter = EdgeFilter::new(&string).unwrap_or_else(|e| {
bug!("invalid filter: {}", e)
});
let sources = node_set(&query, &edge_filter.source);
let targets = node_set(&query, &edge_filter.target);
filter_nodes(&query, &sources, &targets)
}
Err(_) => {
query.nodes()
.into_iter()
.collect()
}
};
let edges = filter_edges(&query, &nodes);
{ // dump a .txt file with just the edges:
let txt_path = format!("{}.txt", path);
let mut file = File::create(&txt_path).unwrap();
for &(ref source, ref target) in &edges {
write!(file, "{:?} -> {:?}\n", source, target).unwrap();
}
}
{ // dump a .dot file in graphviz format:
let dot_path = format!("{}.dot", path);
let mut v = Vec::new();
dot::render(&GraphvizDepGraph(nodes, edges), &mut v).unwrap();
File::create(&dot_path).and_then(|mut f| f.write_all(&v)).unwrap();
}
}
pub struct GraphvizDepGraph<'q>(FnvHashSet<&'q DepNode<DefId>>,
Vec<(&'q DepNode<DefId>, &'q DepNode<DefId>)>);
impl<'a, 'tcx, 'q> dot::GraphWalk<'a> for GraphvizDepGraph<'q> {
type Node = &'q DepNode<DefId>;
type Edge = (&'q DepNode<DefId>, &'q DepNode<DefId>);
fn nodes(&self) -> dot::Nodes<&'q DepNode<DefId>> {
let nodes: Vec<_> = self.0.iter().cloned().collect();
nodes.into_cow()
}
fn edges(&self) -> dot::Edges<(&'q DepNode<DefId>, &'q DepNode<DefId>)> {
self.1[..].into_cow()
}
fn source(&self, edge: &(&'q DepNode<DefId>, &'q DepNode<DefId>)) -> &'q DepNode<DefId> {
edge.0
}
fn target(&self, edge: &(&'q DepNode<DefId>, &'q DepNode<DefId>)) -> &'q DepNode<DefId> {
edge.1
}
}
impl<'a, 'tcx, 'q> dot::Labeller<'a> for GraphvizDepGraph<'q> {
type Node = &'q DepNode<DefId>;
type Edge = (&'q DepNode<DefId>, &'q DepNode<DefId>);
fn graph_id(&self) -> dot::Id {
dot::Id::new("DependencyGraph").unwrap()
}
fn node_id(&self, n: &&'q DepNode<DefId>) -> dot::Id {
let s: String =
format!("{:?}", n).chars()
.map(|c| if c == '_' || c.is_alphanumeric() { c } else { '_' })
.collect();
debug!("n={:?} s={:?}", n, s);
dot::Id::new(s).unwrap()
}
fn node_label(&self, n: &&'q DepNode<DefId>) -> dot::LabelText {
dot::LabelText::label(format!("{:?}", n))
}
}
// Given an optional filter like `"x,y,z"`, returns either `None` (no
// filter) or the set of nodes whose labels contain all of those
// substrings.
fn node_set<'q>(query: &'q DepGraphQuery<DefId>, filter: &DepNodeFilter)
-> Option<FnvHashSet<&'q DepNode<DefId>>>
{
debug!("node_set(filter={:?})", filter);
if filter.accepts_all() {
return None;
}
Some(query.nodes().into_iter().filter(|n| filter.test(n)).collect())
}
fn filter_nodes<'q>(query: &'q DepGraphQuery<DefId>,
sources: &Option<FnvHashSet<&'q DepNode<DefId>>>,
targets: &Option<FnvHashSet<&'q DepNode<DefId>>>)
-> FnvHashSet<&'q DepNode<DefId>>
{
if let &Some(ref sources) = sources {
if let &Some(ref targets) = targets {
walk_between(query, sources, targets)
} else {
walk_nodes(query, sources, OUTGOING)
}
} else if let &Some(ref targets) = targets {
walk_nodes(query, targets, INCOMING)
} else {
query.nodes().into_iter().collect()
}
}
fn walk_nodes<'q>(query: &'q DepGraphQuery<DefId>,
starts: &FnvHashSet<&'q DepNode<DefId>>,
direction: Direction)
-> FnvHashSet<&'q DepNode<DefId>>
{
let mut set = FnvHashSet();
for &start in starts {
debug!("walk_nodes: start={:?} outgoing?={:?}", start, direction == OUTGOING);
if set.insert(start) {
let mut stack = vec![query.indices[start]];
while let Some(index) = stack.pop() {
for (_, edge) in query.graph.adjacent_edges(index, direction) {
let neighbor_index = edge.source_or_target(direction);
let neighbor = query.graph.node_data(neighbor_index);
if set.insert(neighbor) {
stack.push(neighbor_index);
}
}
}
}
}
set
}
fn walk_between<'q>(query: &'q DepGraphQuery<DefId>,
sources: &FnvHashSet<&'q DepNode<DefId>>,
targets: &FnvHashSet<&'q DepNode<DefId>>)
-> FnvHashSet<&'q DepNode<DefId>>
{
// This is a bit tricky. We want to include a node only if it is:
// (a) reachable from a source and (b) will reach a target. And we
// have to be careful about cycles etc. Luckily efficiency is not
// a big concern!
#[derive(Copy, Clone, PartialEq)]
enum State { Undecided, Deciding, Included, Excluded }
let mut node_states = vec![State::Undecided; query.graph.len_nodes()];
for &target in targets {
node_states[query.indices[target].0] = State::Included;
}
for source in sources.iter().map(|&n| query.indices[n]) {
recurse(query, &mut node_states, source);
}
return query.nodes()
.into_iter()
.filter(|&n| {
let index = query.indices[n];
node_states[index.0] == State::Included
})
.collect();
fn recurse(query: &DepGraphQuery<DefId>,
node_states: &mut [State],
node: NodeIndex)
-> bool
{
match node_states[node.0] {
// known to reach a target
State::Included => return true,
// known not to reach a target
State::Excluded => return false,
// backedge, not yet known, say false
State::Deciding => return false,
State::Undecided => { }
}
node_states[node.0] = State::Deciding;
for neighbor_index in query.graph.successor_nodes(node) {
if recurse(query, node_states, neighbor_index) {
node_states[node.0] = State::Included;
}
}
// if we didn't find a path to target, then set to excluded
if node_states[node.0] == State::Deciding {
node_states[node.0] = State::Excluded;
false
} else {
assert!(node_states[node.0] == State::Included);
true
}
}
}
fn filter_edges<'q>(query: &'q DepGraphQuery<DefId>,
nodes: &FnvHashSet<&'q DepNode<DefId>>)
-> Vec<(&'q DepNode<DefId>, &'q DepNode<DefId>)>
{
query.edges()
.into_iter()
.filter(|&(source, target)| nodes.contains(source) && nodes.contains(target))
.collect()
}