blob: ea3765c76f89b2ec425fb845286e69338d7e685d [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A classic liveness analysis based on dataflow over the AST. Computes,
//! for each local variable in a function, whether that variable is live
//! at a given point. Program execution points are identified by their
//! id.
//!
//! # Basic idea
//!
//! The basic model is that each local variable is assigned an index. We
//! represent sets of local variables using a vector indexed by this
//! index. The value in the vector is either 0, indicating the variable
//! is dead, or the id of an expression that uses the variable.
//!
//! We conceptually walk over the AST in reverse execution order. If we
//! find a use of a variable, we add it to the set of live variables. If
//! we find an assignment to a variable, we remove it from the set of live
//! variables. When we have to merge two flows, we take the union of
//! those two flows---if the variable is live on both paths, we simply
//! pick one id. In the event of loops, we continue doing this until a
//! fixed point is reached.
//!
//! ## Checking initialization
//!
//! At the function entry point, all variables must be dead. If this is
//! not the case, we can report an error using the id found in the set of
//! live variables, which identifies a use of the variable which is not
//! dominated by an assignment.
//!
//! ## Checking moves
//!
//! After each explicit move, the variable must be dead.
//!
//! ## Computing last uses
//!
//! Any use of the variable where the variable is dead afterwards is a
//! last use.
//!
//! # Implementation details
//!
//! The actual implementation contains two (nested) walks over the AST.
//! The outer walk has the job of building up the ir_maps instance for the
//! enclosing function. On the way down the tree, it identifies those AST
//! nodes and variable IDs that will be needed for the liveness analysis
//! and assigns them contiguous IDs. The liveness id for an AST node is
//! called a `live_node` (it's a newtype'd usize) and the id for a variable
//! is called a `variable` (another newtype'd usize).
//!
//! On the way back up the tree, as we are about to exit from a function
//! declaration we allocate a `liveness` instance. Now that we know
//! precisely how many nodes and variables we need, we can allocate all
//! the various arrays that we will need to precisely the right size. We then
//! perform the actual propagation on the `liveness` instance.
//!
//! This propagation is encoded in the various `propagate_through_*()`
//! methods. It effectively does a reverse walk of the AST; whenever we
//! reach a loop node, we iterate until a fixed point is reached.
//!
//! ## The `Users` struct
//!
//! At each live node `N`, we track three pieces of information for each
//! variable `V` (these are encapsulated in the `Users` struct):
//!
//! - `reader`: the `LiveNode` ID of some node which will read the value
//! that `V` holds on entry to `N`. Formally: a node `M` such
//! that there exists a path `P` from `N` to `M` where `P` does not
//! write `V`. If the `reader` is `invalid_node()`, then the current
//! value will never be read (the variable is dead, essentially).
//!
//! - `writer`: the `LiveNode` ID of some node which will write the
//! variable `V` and which is reachable from `N`. Formally: a node `M`
//! such that there exists a path `P` from `N` to `M` and `M` writes
//! `V`. If the `writer` is `invalid_node()`, then there is no writer
//! of `V` that follows `N`.
//!
//! - `used`: a boolean value indicating whether `V` is *used*. We
//! distinguish a *read* from a *use* in that a *use* is some read that
//! is not just used to generate a new value. For example, `x += 1` is
//! a read but not a use. This is used to generate better warnings.
//!
//! ## Special Variables
//!
//! We generate various special variables for various, well, special purposes.
//! These are described in the `specials` struct:
//!
//! - `exit_ln`: a live node that is generated to represent every 'exit' from
//! the function, whether it be by explicit return, panic, or other means.
//!
//! - `fallthrough_ln`: a live node that represents a fallthrough
//!
//! - `no_ret_var`: a synthetic variable that is only 'read' from, the
//! fallthrough node. This allows us to detect functions where we fail
//! to return explicitly.
//! - `clean_exit_var`: a synthetic variable that is only 'read' from the
//! fallthrough node. It is only live if the function could converge
//! via means other than an explicit `return` expression. That is, it is
//! only dead if the end of the function's block can never be reached.
//! It is the responsibility of typeck to ensure that there are no
//! `return` expressions in a function declared as diverging.
use self::LoopKind::*;
use self::LiveNodeKind::*;
use self::VarKind::*;
use dep_graph::DepNode;
use hir::def::*;
use hir::pat_util;
use ty::{self, TyCtxt, ParameterEnvironment};
use traits::{self, ProjectionMode};
use ty::subst::Subst;
use lint;
use util::nodemap::NodeMap;
use std::{fmt, usize};
use std::io::prelude::*;
use std::io;
use std::rc::Rc;
use syntax::ast::{self, NodeId};
use syntax::codemap::original_sp;
use syntax::parse::token::keywords;
use syntax::ptr::P;
use syntax_pos::{BytePos, Span};
use hir::Expr;
use hir;
use hir::print::{expr_to_string, block_to_string};
use hir::intravisit::{self, Visitor, FnKind};
/// For use with `propagate_through_loop`.
enum LoopKind<'a> {
/// An endless `loop` loop.
LoopLoop,
/// A `while` loop, with the given expression as condition.
WhileLoop(&'a Expr),
}
#[derive(Copy, Clone, PartialEq)]
struct Variable(usize);
#[derive(Copy, PartialEq)]
struct LiveNode(usize);
impl Variable {
fn get(&self) -> usize { let Variable(v) = *self; v }
}
impl LiveNode {
fn get(&self) -> usize { let LiveNode(v) = *self; v }
}
impl Clone for LiveNode {
fn clone(&self) -> LiveNode {
LiveNode(self.get())
}
}
#[derive(Copy, Clone, PartialEq, Debug)]
enum LiveNodeKind {
FreeVarNode(Span),
ExprNode(Span),
VarDefNode(Span),
ExitNode
}
fn live_node_kind_to_string(lnk: LiveNodeKind, tcx: TyCtxt) -> String {
let cm = tcx.sess.codemap();
match lnk {
FreeVarNode(s) => {
format!("Free var node [{}]", cm.span_to_string(s))
}
ExprNode(s) => {
format!("Expr node [{}]", cm.span_to_string(s))
}
VarDefNode(s) => {
format!("Var def node [{}]", cm.span_to_string(s))
}
ExitNode => "Exit node".to_string(),
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for IrMaps<'a, 'tcx> {
fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v hir::FnDecl,
b: &'v hir::Block, s: Span, id: NodeId) {
visit_fn(self, fk, fd, b, s, id);
}
fn visit_local(&mut self, l: &hir::Local) { visit_local(self, l); }
fn visit_expr(&mut self, ex: &Expr) { visit_expr(self, ex); }
fn visit_arm(&mut self, a: &hir::Arm) { visit_arm(self, a); }
}
pub fn check_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) {
let _task = tcx.dep_graph.in_task(DepNode::Liveness);
tcx.map.krate().visit_all_items(&mut IrMaps::new(tcx));
tcx.sess.abort_if_errors();
}
impl fmt::Debug for LiveNode {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "ln({})", self.get())
}
}
impl fmt::Debug for Variable {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "v({})", self.get())
}
}
// ______________________________________________________________________
// Creating ir_maps
//
// This is the first pass and the one that drives the main
// computation. It walks up and down the IR once. On the way down,
// we count for each function the number of variables as well as
// liveness nodes. A liveness node is basically an expression or
// capture clause that does something of interest: either it has
// interesting control flow or it uses/defines a local variable.
//
// On the way back up, at each function node we create liveness sets
// (we now know precisely how big to make our various vectors and so
// forth) and then do the data-flow propagation to compute the set
// of live variables at each program point.
//
// Finally, we run back over the IR one last time and, using the
// computed liveness, check various safety conditions. For example,
// there must be no live nodes at the definition site for a variable
// unless it has an initializer. Similarly, each non-mutable local
// variable must not be assigned if there is some successor
// assignment. And so forth.
impl LiveNode {
fn is_valid(&self) -> bool {
self.get() != usize::MAX
}
}
fn invalid_node() -> LiveNode { LiveNode(usize::MAX) }
struct CaptureInfo {
ln: LiveNode,
var_nid: NodeId
}
#[derive(Copy, Clone, Debug)]
struct LocalInfo {
id: NodeId,
name: ast::Name
}
#[derive(Copy, Clone, Debug)]
enum VarKind {
Arg(NodeId, ast::Name),
Local(LocalInfo),
ImplicitRet,
CleanExit
}
struct IrMaps<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
num_live_nodes: usize,
num_vars: usize,
live_node_map: NodeMap<LiveNode>,
variable_map: NodeMap<Variable>,
capture_info_map: NodeMap<Rc<Vec<CaptureInfo>>>,
var_kinds: Vec<VarKind>,
lnks: Vec<LiveNodeKind>,
}
impl<'a, 'tcx> IrMaps<'a, 'tcx> {
fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> IrMaps<'a, 'tcx> {
IrMaps {
tcx: tcx,
num_live_nodes: 0,
num_vars: 0,
live_node_map: NodeMap(),
variable_map: NodeMap(),
capture_info_map: NodeMap(),
var_kinds: Vec::new(),
lnks: Vec::new(),
}
}
fn add_live_node(&mut self, lnk: LiveNodeKind) -> LiveNode {
let ln = LiveNode(self.num_live_nodes);
self.lnks.push(lnk);
self.num_live_nodes += 1;
debug!("{:?} is of kind {}", ln,
live_node_kind_to_string(lnk, self.tcx));
ln
}
fn add_live_node_for_node(&mut self, node_id: NodeId, lnk: LiveNodeKind) {
let ln = self.add_live_node(lnk);
self.live_node_map.insert(node_id, ln);
debug!("{:?} is node {}", ln, node_id);
}
fn add_variable(&mut self, vk: VarKind) -> Variable {
let v = Variable(self.num_vars);
self.var_kinds.push(vk);
self.num_vars += 1;
match vk {
Local(LocalInfo { id: node_id, .. }) | Arg(node_id, _) => {
self.variable_map.insert(node_id, v);
},
ImplicitRet | CleanExit => {}
}
debug!("{:?} is {:?}", v, vk);
v
}
fn variable(&self, node_id: NodeId, span: Span) -> Variable {
match self.variable_map.get(&node_id) {
Some(&var) => var,
None => {
span_bug!(span, "no variable registered for id {}", node_id);
}
}
}
fn variable_name(&self, var: Variable) -> String {
match self.var_kinds[var.get()] {
Local(LocalInfo { name, .. }) | Arg(_, name) => {
name.to_string()
},
ImplicitRet => "<implicit-ret>".to_string(),
CleanExit => "<clean-exit>".to_string()
}
}
fn set_captures(&mut self, node_id: NodeId, cs: Vec<CaptureInfo>) {
self.capture_info_map.insert(node_id, Rc::new(cs));
}
fn lnk(&self, ln: LiveNode) -> LiveNodeKind {
self.lnks[ln.get()]
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for Liveness<'a, 'tcx> {
fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v hir::FnDecl,
b: &'v hir::Block, s: Span, n: NodeId) {
check_fn(self, fk, fd, b, s, n);
}
fn visit_local(&mut self, l: &hir::Local) {
check_local(self, l);
}
fn visit_expr(&mut self, ex: &Expr) {
check_expr(self, ex);
}
fn visit_arm(&mut self, a: &hir::Arm) {
check_arm(self, a);
}
}
fn visit_fn(ir: &mut IrMaps,
fk: FnKind,
decl: &hir::FnDecl,
body: &hir::Block,
sp: Span,
id: ast::NodeId) {
debug!("visit_fn");
// swap in a new set of IR maps for this function body:
let mut fn_maps = IrMaps::new(ir.tcx);
debug!("creating fn_maps: {:?}", &fn_maps as *const IrMaps);
for arg in &decl.inputs {
pat_util::pat_bindings(&arg.pat, |_bm, arg_id, _x, path1| {
debug!("adding argument {}", arg_id);
let name = path1.node;
fn_maps.add_variable(Arg(arg_id, name));
})
};
// gather up the various local variables, significant expressions,
// and so forth:
intravisit::walk_fn(&mut fn_maps, fk, decl, body, sp);
// Special nodes and variables:
// - exit_ln represents the end of the fn, either by return or panic
// - implicit_ret_var is a pseudo-variable that represents
// an implicit return
let specials = Specials {
exit_ln: fn_maps.add_live_node(ExitNode),
fallthrough_ln: fn_maps.add_live_node(ExitNode),
no_ret_var: fn_maps.add_variable(ImplicitRet),
clean_exit_var: fn_maps.add_variable(CleanExit)
};
// compute liveness
let mut lsets = Liveness::new(&mut fn_maps, specials);
let entry_ln = lsets.compute(decl, body);
// check for various error conditions
lsets.visit_block(body);
lsets.check_ret(id, sp, fk, entry_ln, body);
lsets.warn_about_unused_args(decl, entry_ln);
}
fn visit_local(ir: &mut IrMaps, local: &hir::Local) {
pat_util::pat_bindings(&local.pat, |_, p_id, sp, path1| {
debug!("adding local variable {}", p_id);
let name = path1.node;
ir.add_live_node_for_node(p_id, VarDefNode(sp));
ir.add_variable(Local(LocalInfo {
id: p_id,
name: name
}));
});
intravisit::walk_local(ir, local);
}
fn visit_arm(ir: &mut IrMaps, arm: &hir::Arm) {
for pat in &arm.pats {
pat_util::pat_bindings(&pat, |bm, p_id, sp, path1| {
debug!("adding local variable {} from match with bm {:?}",
p_id, bm);
let name = path1.node;
ir.add_live_node_for_node(p_id, VarDefNode(sp));
ir.add_variable(Local(LocalInfo {
id: p_id,
name: name
}));
})
}
intravisit::walk_arm(ir, arm);
}
fn visit_expr(ir: &mut IrMaps, expr: &Expr) {
match expr.node {
// live nodes required for uses or definitions of variables:
hir::ExprPath(..) => {
let def = ir.tcx.expect_def(expr.id);
debug!("expr {}: path that leads to {:?}", expr.id, def);
if let Def::Local(..) = def {
ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
}
intravisit::walk_expr(ir, expr);
}
hir::ExprClosure(..) => {
// Interesting control flow (for loops can contain labeled
// breaks or continues)
ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
// Make a live_node for each captured variable, with the span
// being the location that the variable is used. This results
// in better error messages than just pointing at the closure
// construction site.
let mut call_caps = Vec::new();
ir.tcx.with_freevars(expr.id, |freevars| {
for fv in freevars {
if let Def::Local(_, rv) = fv.def {
let fv_ln = ir.add_live_node(FreeVarNode(fv.span));
call_caps.push(CaptureInfo {ln: fv_ln,
var_nid: rv});
}
}
});
ir.set_captures(expr.id, call_caps);
intravisit::walk_expr(ir, expr);
}
// live nodes required for interesting control flow:
hir::ExprIf(..) | hir::ExprMatch(..) | hir::ExprWhile(..) | hir::ExprLoop(..) => {
ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
intravisit::walk_expr(ir, expr);
}
hir::ExprBinary(op, _, _) if op.node.is_lazy() => {
ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
intravisit::walk_expr(ir, expr);
}
// otherwise, live nodes are not required:
hir::ExprIndex(..) | hir::ExprField(..) | hir::ExprTupField(..) |
hir::ExprVec(..) | hir::ExprCall(..) | hir::ExprMethodCall(..) |
hir::ExprTup(..) | hir::ExprBinary(..) | hir::ExprAddrOf(..) |
hir::ExprCast(..) | hir::ExprUnary(..) | hir::ExprBreak(_) |
hir::ExprAgain(_) | hir::ExprLit(_) | hir::ExprRet(..) |
hir::ExprBlock(..) | hir::ExprAssign(..) | hir::ExprAssignOp(..) |
hir::ExprStruct(..) | hir::ExprRepeat(..) |
hir::ExprInlineAsm(..) | hir::ExprBox(..) |
hir::ExprType(..) => {
intravisit::walk_expr(ir, expr);
}
}
}
// ______________________________________________________________________
// Computing liveness sets
//
// Actually we compute just a bit more than just liveness, but we use
// the same basic propagation framework in all cases.
#[derive(Clone, Copy)]
struct Users {
reader: LiveNode,
writer: LiveNode,
used: bool
}
fn invalid_users() -> Users {
Users {
reader: invalid_node(),
writer: invalid_node(),
used: false
}
}
#[derive(Copy, Clone)]
struct Specials {
exit_ln: LiveNode,
fallthrough_ln: LiveNode,
no_ret_var: Variable,
clean_exit_var: Variable
}
const ACC_READ: u32 = 1;
const ACC_WRITE: u32 = 2;
const ACC_USE: u32 = 4;
struct Liveness<'a, 'tcx: 'a> {
ir: &'a mut IrMaps<'a, 'tcx>,
s: Specials,
successors: Vec<LiveNode>,
users: Vec<Users>,
// The list of node IDs for the nested loop scopes
// we're in.
loop_scope: Vec<NodeId>,
// mappings from loop node ID to LiveNode
// ("break" label should map to loop node ID,
// it probably doesn't now)
break_ln: NodeMap<LiveNode>,
cont_ln: NodeMap<LiveNode>
}
impl<'a, 'tcx> Liveness<'a, 'tcx> {
fn new(ir: &'a mut IrMaps<'a, 'tcx>, specials: Specials) -> Liveness<'a, 'tcx> {
let num_live_nodes = ir.num_live_nodes;
let num_vars = ir.num_vars;
Liveness {
ir: ir,
s: specials,
successors: vec![invalid_node(); num_live_nodes],
users: vec![invalid_users(); num_live_nodes * num_vars],
loop_scope: Vec::new(),
break_ln: NodeMap(),
cont_ln: NodeMap(),
}
}
fn live_node(&self, node_id: NodeId, span: Span) -> LiveNode {
match self.ir.live_node_map.get(&node_id) {
Some(&ln) => ln,
None => {
// This must be a mismatch between the ir_map construction
// above and the propagation code below; the two sets of
// code have to agree about which AST nodes are worth
// creating liveness nodes for.
span_bug!(
span,
"no live node registered for node {}",
node_id);
}
}
}
fn variable(&self, node_id: NodeId, span: Span) -> Variable {
self.ir.variable(node_id, span)
}
fn pat_bindings<F>(&mut self, pat: &hir::Pat, mut f: F) where
F: FnMut(&mut Liveness<'a, 'tcx>, LiveNode, Variable, Span, NodeId),
{
pat_util::pat_bindings(pat, |_bm, p_id, sp, _n| {
let ln = self.live_node(p_id, sp);
let var = self.variable(p_id, sp);
f(self, ln, var, sp, p_id);
})
}
fn arm_pats_bindings<F>(&mut self, pat: Option<&hir::Pat>, f: F) where
F: FnMut(&mut Liveness<'a, 'tcx>, LiveNode, Variable, Span, NodeId),
{
if let Some(pat) = pat {
self.pat_bindings(pat, f);
}
}
fn define_bindings_in_pat(&mut self, pat: &hir::Pat, succ: LiveNode)
-> LiveNode {
self.define_bindings_in_arm_pats(Some(pat), succ)
}
fn define_bindings_in_arm_pats(&mut self, pat: Option<&hir::Pat>, succ: LiveNode)
-> LiveNode {
let mut succ = succ;
self.arm_pats_bindings(pat, |this, ln, var, _sp, _id| {
this.init_from_succ(ln, succ);
this.define(ln, var);
succ = ln;
});
succ
}
fn idx(&self, ln: LiveNode, var: Variable) -> usize {
ln.get() * self.ir.num_vars + var.get()
}
fn live_on_entry(&self, ln: LiveNode, var: Variable)
-> Option<LiveNodeKind> {
assert!(ln.is_valid());
let reader = self.users[self.idx(ln, var)].reader;
if reader.is_valid() {Some(self.ir.lnk(reader))} else {None}
}
/*
Is this variable live on entry to any of its successor nodes?
*/
fn live_on_exit(&self, ln: LiveNode, var: Variable)
-> Option<LiveNodeKind> {
let successor = self.successors[ln.get()];
self.live_on_entry(successor, var)
}
fn used_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
assert!(ln.is_valid());
self.users[self.idx(ln, var)].used
}
fn assigned_on_entry(&self, ln: LiveNode, var: Variable)
-> Option<LiveNodeKind> {
assert!(ln.is_valid());
let writer = self.users[self.idx(ln, var)].writer;
if writer.is_valid() {Some(self.ir.lnk(writer))} else {None}
}
fn assigned_on_exit(&self, ln: LiveNode, var: Variable)
-> Option<LiveNodeKind> {
let successor = self.successors[ln.get()];
self.assigned_on_entry(successor, var)
}
fn indices2<F>(&mut self, ln: LiveNode, succ_ln: LiveNode, mut op: F) where
F: FnMut(&mut Liveness<'a, 'tcx>, usize, usize),
{
let node_base_idx = self.idx(ln, Variable(0));
let succ_base_idx = self.idx(succ_ln, Variable(0));
for var_idx in 0..self.ir.num_vars {
op(self, node_base_idx + var_idx, succ_base_idx + var_idx);
}
}
fn write_vars<F>(&self,
wr: &mut Write,
ln: LiveNode,
mut test: F)
-> io::Result<()> where
F: FnMut(usize) -> LiveNode,
{
let node_base_idx = self.idx(ln, Variable(0));
for var_idx in 0..self.ir.num_vars {
let idx = node_base_idx + var_idx;
if test(idx).is_valid() {
write!(wr, " {:?}", Variable(var_idx))?;
}
}
Ok(())
}
fn find_loop_scope(&self,
opt_label: Option<ast::Name>,
id: NodeId,
sp: Span)
-> NodeId {
match opt_label {
Some(_) => {
// Refers to a labeled loop. Use the results of resolve
// to find with one
match self.ir.tcx.expect_def(id) {
Def::Label(loop_id) => loop_id,
_ => span_bug!(sp, "label on break/loop \
doesn't refer to a loop")
}
}
None => {
// Vanilla 'break' or 'loop', so use the enclosing
// loop scope
if self.loop_scope.is_empty() {
span_bug!(sp, "break outside loop");
} else {
*self.loop_scope.last().unwrap()
}
}
}
}
#[allow(unused_must_use)]
fn ln_str(&self, ln: LiveNode) -> String {
let mut wr = Vec::new();
{
let wr = &mut wr as &mut Write;
write!(wr, "[ln({:?}) of kind {:?} reads", ln.get(), self.ir.lnk(ln));
self.write_vars(wr, ln, |idx| self.users[idx].reader);
write!(wr, " writes");
self.write_vars(wr, ln, |idx| self.users[idx].writer);
write!(wr, " precedes {:?}]", self.successors[ln.get()]);
}
String::from_utf8(wr).unwrap()
}
fn init_empty(&mut self, ln: LiveNode, succ_ln: LiveNode) {
self.successors[ln.get()] = succ_ln;
// It is not necessary to initialize the
// values to empty because this is the value
// they have when they are created, and the sets
// only grow during iterations.
//
// self.indices(ln) { |idx|
// self.users[idx] = invalid_users();
// }
}
fn init_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) {
// more efficient version of init_empty() / merge_from_succ()
self.successors[ln.get()] = succ_ln;
self.indices2(ln, succ_ln, |this, idx, succ_idx| {
this.users[idx] = this.users[succ_idx]
});
debug!("init_from_succ(ln={}, succ={})",
self.ln_str(ln), self.ln_str(succ_ln));
}
fn merge_from_succ(&mut self,
ln: LiveNode,
succ_ln: LiveNode,
first_merge: bool)
-> bool {
if ln == succ_ln { return false; }
let mut changed = false;
self.indices2(ln, succ_ln, |this, idx, succ_idx| {
changed |= copy_if_invalid(this.users[succ_idx].reader,
&mut this.users[idx].reader);
changed |= copy_if_invalid(this.users[succ_idx].writer,
&mut this.users[idx].writer);
if this.users[succ_idx].used && !this.users[idx].used {
this.users[idx].used = true;
changed = true;
}
});
debug!("merge_from_succ(ln={:?}, succ={}, first_merge={}, changed={})",
ln, self.ln_str(succ_ln), first_merge, changed);
return changed;
fn copy_if_invalid(src: LiveNode, dst: &mut LiveNode) -> bool {
if src.is_valid() && !dst.is_valid() {
*dst = src;
true
} else {
false
}
}
}
// Indicates that a local variable was *defined*; we know that no
// uses of the variable can precede the definition (resolve checks
// this) so we just clear out all the data.
fn define(&mut self, writer: LiveNode, var: Variable) {
let idx = self.idx(writer, var);
self.users[idx].reader = invalid_node();
self.users[idx].writer = invalid_node();
debug!("{:?} defines {:?} (idx={}): {}", writer, var,
idx, self.ln_str(writer));
}
// Either read, write, or both depending on the acc bitset
fn acc(&mut self, ln: LiveNode, var: Variable, acc: u32) {
debug!("{:?} accesses[{:x}] {:?}: {}",
ln, acc, var, self.ln_str(ln));
let idx = self.idx(ln, var);
let user = &mut self.users[idx];
if (acc & ACC_WRITE) != 0 {
user.reader = invalid_node();
user.writer = ln;
}
// Important: if we both read/write, must do read second
// or else the write will override.
if (acc & ACC_READ) != 0 {
user.reader = ln;
}
if (acc & ACC_USE) != 0 {
user.used = true;
}
}
// _______________________________________________________________________
fn compute(&mut self, decl: &hir::FnDecl, body: &hir::Block) -> LiveNode {
// if there is a `break` or `again` at the top level, then it's
// effectively a return---this only occurs in `for` loops,
// where the body is really a closure.
debug!("compute: using id for block, {}", block_to_string(body));
let exit_ln = self.s.exit_ln;
let entry_ln: LiveNode =
self.with_loop_nodes(body.id, exit_ln, exit_ln,
|this| this.propagate_through_fn_block(decl, body));
// hack to skip the loop unless debug! is enabled:
debug!("^^ liveness computation results for body {} (entry={:?})",
{
for ln_idx in 0..self.ir.num_live_nodes {
debug!("{:?}", self.ln_str(LiveNode(ln_idx)));
}
body.id
},
entry_ln);
entry_ln
}
fn propagate_through_fn_block(&mut self, _: &hir::FnDecl, blk: &hir::Block)
-> LiveNode {
// the fallthrough exit is only for those cases where we do not
// explicitly return:
let s = self.s;
self.init_from_succ(s.fallthrough_ln, s.exit_ln);
if blk.expr.is_none() {
self.acc(s.fallthrough_ln, s.no_ret_var, ACC_READ)
}
self.acc(s.fallthrough_ln, s.clean_exit_var, ACC_READ);
self.propagate_through_block(blk, s.fallthrough_ln)
}
fn propagate_through_block(&mut self, blk: &hir::Block, succ: LiveNode)
-> LiveNode {
let succ = self.propagate_through_opt_expr(blk.expr.as_ref().map(|e| &**e), succ);
blk.stmts.iter().rev().fold(succ, |succ, stmt| {
self.propagate_through_stmt(stmt, succ)
})
}
fn propagate_through_stmt(&mut self, stmt: &hir::Stmt, succ: LiveNode)
-> LiveNode {
match stmt.node {
hir::StmtDecl(ref decl, _) => {
self.propagate_through_decl(&decl, succ)
}
hir::StmtExpr(ref expr, _) | hir::StmtSemi(ref expr, _) => {
self.propagate_through_expr(&expr, succ)
}
}
}
fn propagate_through_decl(&mut self, decl: &hir::Decl, succ: LiveNode)
-> LiveNode {
match decl.node {
hir::DeclLocal(ref local) => {
self.propagate_through_local(&local, succ)
}
hir::DeclItem(_) => succ,
}
}
fn propagate_through_local(&mut self, local: &hir::Local, succ: LiveNode)
-> LiveNode {
// Note: we mark the variable as defined regardless of whether
// there is an initializer. Initially I had thought to only mark
// the live variable as defined if it was initialized, and then we
// could check for uninit variables just by scanning what is live
// at the start of the function. But that doesn't work so well for
// immutable variables defined in a loop:
// loop { let x; x = 5; }
// because the "assignment" loops back around and generates an error.
//
// So now we just check that variables defined w/o an
// initializer are not live at the point of their
// initialization, which is mildly more complex than checking
// once at the func header but otherwise equivalent.
let succ = self.propagate_through_opt_expr(local.init.as_ref().map(|e| &**e), succ);
self.define_bindings_in_pat(&local.pat, succ)
}
fn propagate_through_exprs(&mut self, exprs: &[P<Expr>], succ: LiveNode)
-> LiveNode {
exprs.iter().rev().fold(succ, |succ, expr| {
self.propagate_through_expr(&expr, succ)
})
}
fn propagate_through_opt_expr(&mut self,
opt_expr: Option<&Expr>,
succ: LiveNode)
-> LiveNode {
opt_expr.map_or(succ, |expr| self.propagate_through_expr(expr, succ))
}
fn propagate_through_expr(&mut self, expr: &Expr, succ: LiveNode)
-> LiveNode {
debug!("propagate_through_expr: {}", expr_to_string(expr));
match expr.node {
// Interesting cases with control flow or which gen/kill
hir::ExprPath(..) => {
self.access_path(expr, succ, ACC_READ | ACC_USE)
}
hir::ExprField(ref e, _) => {
self.propagate_through_expr(&e, succ)
}
hir::ExprTupField(ref e, _) => {
self.propagate_through_expr(&e, succ)
}
hir::ExprClosure(_, _, ref blk, _) => {
debug!("{} is an ExprClosure",
expr_to_string(expr));
/*
The next-node for a break is the successor of the entire
loop. The next-node for a continue is the top of this loop.
*/
let node = self.live_node(expr.id, expr.span);
self.with_loop_nodes(blk.id, succ, node, |this| {
// the construction of a closure itself is not important,
// but we have to consider the closed over variables.
let caps = match this.ir.capture_info_map.get(&expr.id) {
Some(caps) => caps.clone(),
None => {
span_bug!(expr.span, "no registered caps");
}
};
caps.iter().rev().fold(succ, |succ, cap| {
this.init_from_succ(cap.ln, succ);
let var = this.variable(cap.var_nid, expr.span);
this.acc(cap.ln, var, ACC_READ | ACC_USE);
cap.ln
})
})
}
hir::ExprIf(ref cond, ref then, ref els) => {
//
// (cond)
// |
// v
// (expr)
// / \
// | |
// v v
// (then)(els)
// | |
// v v
// ( succ )
//
let else_ln = self.propagate_through_opt_expr(els.as_ref().map(|e| &**e), succ);
let then_ln = self.propagate_through_block(&then, succ);
let ln = self.live_node(expr.id, expr.span);
self.init_from_succ(ln, else_ln);
self.merge_from_succ(ln, then_ln, false);
self.propagate_through_expr(&cond, ln)
}
hir::ExprWhile(ref cond, ref blk, _) => {
self.propagate_through_loop(expr, WhileLoop(&cond), &blk, succ)
}
// Note that labels have been resolved, so we don't need to look
// at the label ident
hir::ExprLoop(ref blk, _) => {
self.propagate_through_loop(expr, LoopLoop, &blk, succ)
}
hir::ExprMatch(ref e, ref arms, _) => {
//
// (e)
// |
// v
// (expr)
// / | \
// | | |
// v v v
// (..arms..)
// | | |
// v v v
// ( succ )
//
//
let ln = self.live_node(expr.id, expr.span);
self.init_empty(ln, succ);
let mut first_merge = true;
for arm in arms {
let body_succ =
self.propagate_through_expr(&arm.body, succ);
let guard_succ =
self.propagate_through_opt_expr(arm.guard.as_ref().map(|e| &**e), body_succ);
// only consider the first pattern; any later patterns must have
// the same bindings, and we also consider the first pattern to be
// the "authoritative" set of ids
let arm_succ =
self.define_bindings_in_arm_pats(arm.pats.first().map(|p| &**p),
guard_succ);
self.merge_from_succ(ln, arm_succ, first_merge);
first_merge = false;
};
self.propagate_through_expr(&e, ln)
}
hir::ExprRet(ref o_e) => {
// ignore succ and subst exit_ln:
let exit_ln = self.s.exit_ln;
self.propagate_through_opt_expr(o_e.as_ref().map(|e| &**e), exit_ln)
}
hir::ExprBreak(opt_label) => {
// Find which label this break jumps to
let sc = self.find_loop_scope(opt_label.map(|l| l.node), expr.id, expr.span);
// Now that we know the label we're going to,
// look it up in the break loop nodes table
match self.break_ln.get(&sc) {
Some(&b) => b,
None => span_bug!(expr.span, "break to unknown label")
}
}
hir::ExprAgain(opt_label) => {
// Find which label this expr continues to
let sc = self.find_loop_scope(opt_label.map(|l| l.node), expr.id, expr.span);
// Now that we know the label we're going to,
// look it up in the continue loop nodes table
match self.cont_ln.get(&sc) {
Some(&b) => b,
None => span_bug!(expr.span, "loop to unknown label")
}
}
hir::ExprAssign(ref l, ref r) => {
// see comment on lvalues in
// propagate_through_lvalue_components()
let succ = self.write_lvalue(&l, succ, ACC_WRITE);
let succ = self.propagate_through_lvalue_components(&l, succ);
self.propagate_through_expr(&r, succ)
}
hir::ExprAssignOp(_, ref l, ref r) => {
// an overloaded assign op is like a method call
if self.ir.tcx.is_method_call(expr.id) {
let succ = self.propagate_through_expr(&l, succ);
self.propagate_through_expr(&r, succ)
} else {
// see comment on lvalues in
// propagate_through_lvalue_components()
let succ = self.write_lvalue(&l, succ, ACC_WRITE|ACC_READ);
let succ = self.propagate_through_expr(&r, succ);
self.propagate_through_lvalue_components(&l, succ)
}
}
// Uninteresting cases: just propagate in rev exec order
hir::ExprVec(ref exprs) => {
self.propagate_through_exprs(&exprs[..], succ)
}
hir::ExprRepeat(ref element, ref count) => {
let succ = self.propagate_through_expr(&count, succ);
self.propagate_through_expr(&element, succ)
}
hir::ExprStruct(_, ref fields, ref with_expr) => {
let succ = self.propagate_through_opt_expr(with_expr.as_ref().map(|e| &**e), succ);
fields.iter().rev().fold(succ, |succ, field| {
self.propagate_through_expr(&field.expr, succ)
})
}
hir::ExprCall(ref f, ref args) => {
let diverges = !self.ir.tcx.is_method_call(expr.id) &&
self.ir.tcx.expr_ty_adjusted(&f).fn_ret().diverges();
let succ = if diverges {
self.s.exit_ln
} else {
succ
};
let succ = self.propagate_through_exprs(&args[..], succ);
self.propagate_through_expr(&f, succ)
}
hir::ExprMethodCall(_, _, ref args) => {
let method_call = ty::MethodCall::expr(expr.id);
let method_ty = self.ir.tcx.tables.borrow().method_map[&method_call].ty;
let succ = if method_ty.fn_ret().diverges() {
self.s.exit_ln
} else {
succ
};
self.propagate_through_exprs(&args[..], succ)
}
hir::ExprTup(ref exprs) => {
self.propagate_through_exprs(&exprs[..], succ)
}
hir::ExprBinary(op, ref l, ref r) if op.node.is_lazy() => {
let r_succ = self.propagate_through_expr(&r, succ);
let ln = self.live_node(expr.id, expr.span);
self.init_from_succ(ln, succ);
self.merge_from_succ(ln, r_succ, false);
self.propagate_through_expr(&l, ln)
}
hir::ExprIndex(ref l, ref r) |
hir::ExprBinary(_, ref l, ref r) => {
let r_succ = self.propagate_through_expr(&r, succ);
self.propagate_through_expr(&l, r_succ)
}
hir::ExprBox(ref e) |
hir::ExprAddrOf(_, ref e) |
hir::ExprCast(ref e, _) |
hir::ExprType(ref e, _) |
hir::ExprUnary(_, ref e) => {
self.propagate_through_expr(&e, succ)
}
hir::ExprInlineAsm(ref ia, ref outputs, ref inputs) => {
let succ = ia.outputs.iter().zip(outputs).rev().fold(succ, |succ, (o, output)| {
// see comment on lvalues
// in propagate_through_lvalue_components()
if o.is_indirect {
self.propagate_through_expr(output, succ)
} else {
let acc = if o.is_rw { ACC_WRITE|ACC_READ } else { ACC_WRITE };
let succ = self.write_lvalue(output, succ, acc);
self.propagate_through_lvalue_components(output, succ)
}
});
// Inputs are executed first. Propagate last because of rev order
self.propagate_through_exprs(inputs, succ)
}
hir::ExprLit(..) => {
succ
}
hir::ExprBlock(ref blk) => {
self.propagate_through_block(&blk, succ)
}
}
}
fn propagate_through_lvalue_components(&mut self,
expr: &Expr,
succ: LiveNode)
-> LiveNode {
// # Lvalues
//
// In general, the full flow graph structure for an
// assignment/move/etc can be handled in one of two ways,
// depending on whether what is being assigned is a "tracked
// value" or not. A tracked value is basically a local
// variable or argument.
//
// The two kinds of graphs are:
//
// Tracked lvalue Untracked lvalue
// ----------------------++-----------------------
// ||
// | || |
// v || v
// (rvalue) || (rvalue)
// | || |
// v || v
// (write of lvalue) || (lvalue components)
// | || |
// v || v
// (succ) || (succ)
// ||
// ----------------------++-----------------------
//
// I will cover the two cases in turn:
//
// # Tracked lvalues
//
// A tracked lvalue is a local variable/argument `x`. In
// these cases, the link_node where the write occurs is linked
// to node id of `x`. The `write_lvalue()` routine generates
// the contents of this node. There are no subcomponents to
// consider.
//
// # Non-tracked lvalues
//
// These are lvalues like `x[5]` or `x.f`. In that case, we
// basically ignore the value which is written to but generate
// reads for the components---`x` in these two examples. The
// components reads are generated by
// `propagate_through_lvalue_components()` (this fn).
//
// # Illegal lvalues
//
// It is still possible to observe assignments to non-lvalues;
// these errors are detected in the later pass borrowck. We
// just ignore such cases and treat them as reads.
match expr.node {
hir::ExprPath(..) => succ,
hir::ExprField(ref e, _) => self.propagate_through_expr(&e, succ),
hir::ExprTupField(ref e, _) => self.propagate_through_expr(&e, succ),
_ => self.propagate_through_expr(expr, succ)
}
}
// see comment on propagate_through_lvalue()
fn write_lvalue(&mut self, expr: &Expr, succ: LiveNode, acc: u32)
-> LiveNode {
match expr.node {
hir::ExprPath(..) => {
self.access_path(expr, succ, acc)
}
// We do not track other lvalues, so just propagate through
// to their subcomponents. Also, it may happen that
// non-lvalues occur here, because those are detected in the
// later pass borrowck.
_ => succ
}
}
fn access_path(&mut self, expr: &Expr, succ: LiveNode, acc: u32)
-> LiveNode {
match self.ir.tcx.expect_def(expr.id) {
Def::Local(_, nid) => {
let ln = self.live_node(expr.id, expr.span);
if acc != 0 {
self.init_from_succ(ln, succ);
let var = self.variable(nid, expr.span);
self.acc(ln, var, acc);
}
ln
}
_ => succ
}
}
fn propagate_through_loop(&mut self,
expr: &Expr,
kind: LoopKind,
body: &hir::Block,
succ: LiveNode)
-> LiveNode {
/*
We model control flow like this:
(cond) <--+
| |
v |
+-- (expr) |
| | |
| v |
| (body) ---+
|
|
v
(succ)
*/
// first iteration:
let mut first_merge = true;
let ln = self.live_node(expr.id, expr.span);
self.init_empty(ln, succ);
match kind {
LoopLoop => {}
_ => {
// If this is not a `loop` loop, then it's possible we bypass
// the body altogether. Otherwise, the only way is via a `break`
// in the loop body.
self.merge_from_succ(ln, succ, first_merge);
first_merge = false;
}
}
debug!("propagate_through_loop: using id for loop body {} {}",
expr.id, block_to_string(body));
let cond_ln = match kind {
LoopLoop => ln,
WhileLoop(ref cond) => self.propagate_through_expr(&cond, ln),
};
let body_ln = self.with_loop_nodes(expr.id, succ, ln, |this| {
this.propagate_through_block(body, cond_ln)
});
// repeat until fixed point is reached:
while self.merge_from_succ(ln, body_ln, first_merge) {
first_merge = false;
let new_cond_ln = match kind {
LoopLoop => ln,
WhileLoop(ref cond) => {
self.propagate_through_expr(&cond, ln)
}
};
assert!(cond_ln == new_cond_ln);
assert!(body_ln == self.with_loop_nodes(expr.id, succ, ln,
|this| this.propagate_through_block(body, cond_ln)));
}
cond_ln
}
fn with_loop_nodes<R, F>(&mut self,
loop_node_id: NodeId,
break_ln: LiveNode,
cont_ln: LiveNode,
f: F)
-> R where
F: FnOnce(&mut Liveness<'a, 'tcx>) -> R,
{
debug!("with_loop_nodes: {} {}", loop_node_id, break_ln.get());
self.loop_scope.push(loop_node_id);
self.break_ln.insert(loop_node_id, break_ln);
self.cont_ln.insert(loop_node_id, cont_ln);
let r = f(self);
self.loop_scope.pop();
r
}
}
// _______________________________________________________________________
// Checking for error conditions
fn check_local(this: &mut Liveness, local: &hir::Local) {
match local.init {
Some(_) => {
this.warn_about_unused_or_dead_vars_in_pat(&local.pat);
},
None => {
this.pat_bindings(&local.pat, |this, ln, var, sp, id| {
this.warn_about_unused(sp, id, ln, var);
})
}
}
intravisit::walk_local(this, local);
}
fn check_arm(this: &mut Liveness, arm: &hir::Arm) {
// only consider the first pattern; any later patterns must have
// the same bindings, and we also consider the first pattern to be
// the "authoritative" set of ids
this.arm_pats_bindings(arm.pats.first().map(|p| &**p), |this, ln, var, sp, id| {
this.warn_about_unused(sp, id, ln, var);
});
intravisit::walk_arm(this, arm);
}
fn check_expr(this: &mut Liveness, expr: &Expr) {
match expr.node {
hir::ExprAssign(ref l, _) => {
this.check_lvalue(&l);
intravisit::walk_expr(this, expr);
}
hir::ExprAssignOp(_, ref l, _) => {
if !this.ir.tcx.is_method_call(expr.id) {
this.check_lvalue(&l);
}
intravisit::walk_expr(this, expr);
}
hir::ExprInlineAsm(ref ia, ref outputs, ref inputs) => {
for input in inputs {
this.visit_expr(input);
}
// Output operands must be lvalues
for (o, output) in ia.outputs.iter().zip(outputs) {
if !o.is_indirect {
this.check_lvalue(output);
}
this.visit_expr(output);
}
intravisit::walk_expr(this, expr);
}
// no correctness conditions related to liveness
hir::ExprCall(..) | hir::ExprMethodCall(..) | hir::ExprIf(..) |
hir::ExprMatch(..) | hir::ExprWhile(..) | hir::ExprLoop(..) |
hir::ExprIndex(..) | hir::ExprField(..) | hir::ExprTupField(..) |
hir::ExprVec(..) | hir::ExprTup(..) | hir::ExprBinary(..) |
hir::ExprCast(..) | hir::ExprUnary(..) | hir::ExprRet(..) |
hir::ExprBreak(..) | hir::ExprAgain(..) | hir::ExprLit(_) |
hir::ExprBlock(..) | hir::ExprAddrOf(..) |
hir::ExprStruct(..) | hir::ExprRepeat(..) |
hir::ExprClosure(..) | hir::ExprPath(..) | hir::ExprBox(..) |
hir::ExprType(..) => {
intravisit::walk_expr(this, expr);
}
}
}
fn check_fn(_v: &Liveness,
_fk: FnKind,
_decl: &hir::FnDecl,
_body: &hir::Block,
_sp: Span,
_id: NodeId) {
// do not check contents of nested fns
}
impl<'a, 'tcx> Liveness<'a, 'tcx> {
fn fn_ret(&self, id: NodeId) -> ty::PolyFnOutput<'tcx> {
let fn_ty = self.ir.tcx.node_id_to_type(id);
match fn_ty.sty {
ty::TyClosure(closure_def_id, substs) =>
self.ir.tcx.closure_type(closure_def_id, substs).sig.output(),
_ => fn_ty.fn_ret()
}
}
fn check_ret(&self,
id: NodeId,
sp: Span,
_fk: FnKind,
entry_ln: LiveNode,
body: &hir::Block)
{
// within the fn body, late-bound regions are liberated
// and must outlive the *call-site* of the function.
let fn_ret =
self.ir.tcx.liberate_late_bound_regions(
self.ir.tcx.region_maps.call_site_extent(id, body.id),
&self.fn_ret(id));
match fn_ret {
ty::FnConverging(t_ret)
if self.live_on_entry(entry_ln, self.s.no_ret_var).is_some() => {
let param_env = ParameterEnvironment::for_item(self.ir.tcx, id);
let t_ret_subst = t_ret.subst(self.ir.tcx, &param_env.free_substs);
let is_nil = self.ir.tcx.infer_ctxt(None, Some(param_env),
ProjectionMode::Any).enter(|infcx| {
let cause = traits::ObligationCause::dummy();
traits::fully_normalize(&infcx, cause, &t_ret_subst).unwrap().is_nil()
});
// for nil return types, it is ok to not return a value expl.
if !is_nil {
let ends_with_stmt = match body.expr {
None if !body.stmts.is_empty() =>
match body.stmts.last().unwrap().node {
hir::StmtSemi(ref e, _) => {
self.ir.tcx.expr_ty(&e) == t_ret
},
_ => false
},
_ => false
};
let mut err = struct_span_err!(self.ir.tcx.sess,
sp,
E0269,
"not all control paths return a value");
if ends_with_stmt {
let last_stmt = body.stmts.last().unwrap();
let original_span = original_sp(self.ir.tcx.sess.codemap(),
last_stmt.span, sp);
let span_semicolon = Span {
lo: original_span.hi - BytePos(1),
hi: original_span.hi,
expn_id: original_span.expn_id
};
err.span_help(span_semicolon, "consider removing this semicolon:");
}
err.emit();
}
}
ty::FnDiverging
if self.live_on_entry(entry_ln, self.s.clean_exit_var).is_some() => {
span_err!(self.ir.tcx.sess, sp, E0270,
"computation may converge in a function marked as diverging");
}
_ => {}
}
}
fn check_lvalue(&mut self, expr: &Expr) {
match expr.node {
hir::ExprPath(..) => {
if let Def::Local(_, nid) = self.ir.tcx.expect_def(expr.id) {
// Assignment to an immutable variable or argument: only legal
// if there is no later assignment. If this local is actually
// mutable, then check for a reassignment to flag the mutability
// as being used.
let ln = self.live_node(expr.id, expr.span);
let var = self.variable(nid, expr.span);
self.warn_about_dead_assign(expr.span, expr.id, ln, var);
}
}
_ => {
// For other kinds of lvalues, no checks are required,
// and any embedded expressions are actually rvalues
intravisit::walk_expr(self, expr);
}
}
}
fn should_warn(&self, var: Variable) -> Option<String> {
let name = self.ir.variable_name(var);
if name.is_empty() || name.as_bytes()[0] == ('_' as u8) {
None
} else {
Some(name)
}
}
fn warn_about_unused_args(&self, decl: &hir::FnDecl, entry_ln: LiveNode) {
for arg in &decl.inputs {
pat_util::pat_bindings(&arg.pat, |_bm, p_id, sp, path1| {
let var = self.variable(p_id, sp);
// Ignore unused self.
let name = path1.node;
if name != keywords::SelfValue.name() {
if !self.warn_about_unused(sp, p_id, entry_ln, var) {
if self.live_on_entry(entry_ln, var).is_none() {
self.report_dead_assign(p_id, sp, var, true);
}
}
}
})
}
}
fn warn_about_unused_or_dead_vars_in_pat(&mut self, pat: &hir::Pat) {
self.pat_bindings(pat, |this, ln, var, sp, id| {
if !this.warn_about_unused(sp, id, ln, var) {
this.warn_about_dead_assign(sp, id, ln, var);
}
})
}
fn warn_about_unused(&self,
sp: Span,
id: NodeId,
ln: LiveNode,
var: Variable)
-> bool {
if !self.used_on_entry(ln, var) {
let r = self.should_warn(var);
if let Some(name) = r {
// annoying: for parameters in funcs like `fn(x: i32)
// {ret}`, there is only one node, so asking about
// assigned_on_exit() is not meaningful.
let is_assigned = if ln == self.s.exit_ln {
false
} else {
self.assigned_on_exit(ln, var).is_some()
};
if is_assigned {
self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_VARIABLES, id, sp,
format!("variable `{}` is assigned to, but never used",
name));
} else if name != "self" {
self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_VARIABLES, id, sp,
format!("unused variable: `{}`", name));
}
}
true
} else {
false
}
}
fn warn_about_dead_assign(&self,
sp: Span,
id: NodeId,
ln: LiveNode,
var: Variable) {
if self.live_on_exit(ln, var).is_none() {
self.report_dead_assign(id, sp, var, false);
}
}
fn report_dead_assign(&self, id: NodeId, sp: Span, var: Variable, is_argument: bool) {
if let Some(name) = self.should_warn(var) {
if is_argument {
self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_ASSIGNMENTS, id, sp,
format!("value passed to `{}` is never read", name));
} else {
self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_ASSIGNMENTS, id, sp,
format!("value assigned to `{}` is never read", name));
}
}
}
}