blob: 0e5b23ca423efefda4428a407c7f934c40c59936 [file] [log] [blame]
use hir::def_id::DefId;
use rustc_hir as hir;
use rustc_index::bit_set::BitSet;
use rustc_index::{IndexSlice, IndexVec};
use rustc_middle::mir::{GeneratorLayout, GeneratorSavedLocal};
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{
IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, MAX_SIMD_LANES,
};
use rustc_middle::ty::{
self, subst::SubstsRef, AdtDef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitableExt,
};
use rustc_session::{DataTypeKind, FieldInfo, FieldKind, SizeKind, VariantInfo};
use rustc_span::symbol::Symbol;
use rustc_span::DUMMY_SP;
use rustc_target::abi::*;
use std::fmt::Debug;
use std::iter;
use crate::errors::{
MultipleArrayFieldsSimdType, NonPrimitiveSimdType, OversizedSimdType, ZeroLengthSimdType,
};
use crate::layout_sanity_check::sanity_check_layout;
pub fn provide(providers: &mut Providers) {
*providers = Providers { layout_of, ..*providers };
}
#[instrument(skip(tcx, query), level = "debug")]
fn layout_of<'tcx>(
tcx: TyCtxt<'tcx>,
query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> {
let (param_env, ty) = query.into_parts();
debug!(?ty);
let param_env = param_env.with_reveal_all_normalized(tcx);
let unnormalized_ty = ty;
// FIXME: We might want to have two different versions of `layout_of`:
// One that can be called after typecheck has completed and can use
// `normalize_erasing_regions` here and another one that can be called
// before typecheck has completed and uses `try_normalize_erasing_regions`.
let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
Ok(t) => t,
Err(normalization_error) => {
return Err(LayoutError::NormalizationFailure(ty, normalization_error));
}
};
if ty != unnormalized_ty {
// Ensure this layout is also cached for the normalized type.
return tcx.layout_of(param_env.and(ty));
}
let cx = LayoutCx { tcx, param_env };
let layout = layout_of_uncached(&cx, ty)?;
let layout = TyAndLayout { ty, layout };
record_layout_for_printing(&cx, layout);
sanity_check_layout(&cx, &layout);
Ok(layout)
}
fn univariant_uninterned<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
ty: Ty<'tcx>,
fields: &IndexSlice<FieldIdx, Layout<'_>>,
repr: &ReprOptions,
kind: StructKind,
) -> Result<LayoutS, LayoutError<'tcx>> {
let dl = cx.data_layout();
let pack = repr.pack;
if pack.is_some() && repr.align.is_some() {
cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
return Err(LayoutError::Unknown(ty));
}
cx.univariant(dl, fields, repr, kind).ok_or(LayoutError::SizeOverflow(ty))
}
fn layout_of_uncached<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
ty: Ty<'tcx>,
) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
let tcx = cx.tcx;
let param_env = cx.param_env;
let dl = cx.data_layout();
let scalar_unit = |value: Primitive| {
let size = value.size(dl);
assert!(size.bits() <= 128);
Scalar::Initialized { value, valid_range: WrappingRange::full(size) }
};
let scalar = |value: Primitive| tcx.mk_layout(LayoutS::scalar(cx, scalar_unit(value)));
let univariant = |fields: &IndexSlice<FieldIdx, Layout<'_>>, repr: &ReprOptions, kind| {
Ok(tcx.mk_layout(univariant_uninterned(cx, ty, fields, repr, kind)?))
};
debug_assert!(!ty.has_non_region_infer());
Ok(match *ty.kind() {
// Basic scalars.
ty::Bool => tcx.mk_layout(LayoutS::scalar(
cx,
Scalar::Initialized {
value: Int(I8, false),
valid_range: WrappingRange { start: 0, end: 1 },
},
)),
ty::Char => tcx.mk_layout(LayoutS::scalar(
cx,
Scalar::Initialized {
value: Int(I32, false),
valid_range: WrappingRange { start: 0, end: 0x10FFFF },
},
)),
ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
ty::Float(fty) => scalar(match fty {
ty::FloatTy::F32 => F32,
ty::FloatTy::F64 => F64,
}),
ty::FnPtr(_) => {
let mut ptr = scalar_unit(Pointer(dl.instruction_address_space));
ptr.valid_range_mut().start = 1;
tcx.mk_layout(LayoutS::scalar(cx, ptr))
}
// The never type.
ty::Never => tcx.mk_layout(cx.layout_of_never_type()),
// Potentially-wide pointers.
ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
let mut data_ptr = scalar_unit(Pointer(AddressSpace::DATA));
if !ty.is_unsafe_ptr() {
data_ptr.valid_range_mut().start = 1;
}
let pointee = tcx.normalize_erasing_regions(param_env, pointee);
if pointee.is_sized(tcx, param_env) {
return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
}
let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
let metadata = if let Some(metadata_def_id) = tcx.lang_items().metadata_type()
// Projection eagerly bails out when the pointee references errors,
// fall back to structurally deducing metadata.
&& !pointee.references_error()
{
let metadata_ty = tcx.normalize_erasing_regions(
param_env,
tcx.mk_projection(metadata_def_id, [pointee]),
);
let metadata_layout = cx.layout_of(metadata_ty)?;
// If the metadata is a 1-zst, then the pointer is thin.
if metadata_layout.is_zst() && metadata_layout.align.abi.bytes() == 1 {
return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
}
let Abi::Scalar(metadata) = metadata_layout.abi else {
return Err(LayoutError::Unknown(unsized_part));
};
metadata
} else {
match unsized_part.kind() {
ty::Foreign(..) => {
return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
}
ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)),
ty::Dynamic(..) => {
let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
vtable.valid_range_mut().start = 1;
vtable
}
_ => {
return Err(LayoutError::Unknown(unsized_part));
}
}
};
// Effectively a (ptr, meta) tuple.
tcx.mk_layout(cx.scalar_pair(data_ptr, metadata))
}
ty::Dynamic(_, _, ty::DynStar) => {
let mut data = scalar_unit(Pointer(AddressSpace::DATA));
data.valid_range_mut().start = 0;
let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
vtable.valid_range_mut().start = 1;
tcx.mk_layout(cx.scalar_pair(data, vtable))
}
// Arrays and slices.
ty::Array(element, mut count) => {
if count.has_projections() {
count = tcx.normalize_erasing_regions(param_env, count);
if count.has_projections() {
return Err(LayoutError::Unknown(ty));
}
}
let count =
count.try_eval_target_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?;
let element = cx.layout_of(element)?;
let size = element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?;
let abi = if count != 0 && ty.is_privately_uninhabited(tcx, param_env) {
Abi::Uninhabited
} else {
Abi::Aggregate { sized: true }
};
let largest_niche = if count != 0 { element.largest_niche } else { None };
tcx.mk_layout(LayoutS {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: element.size, count },
abi,
largest_niche,
align: element.align,
size,
})
}
ty::Slice(element) => {
let element = cx.layout_of(element)?;
tcx.mk_layout(LayoutS {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: element.size, count: 0 },
abi: Abi::Aggregate { sized: false },
largest_niche: None,
align: element.align,
size: Size::ZERO,
})
}
ty::Str => tcx.mk_layout(LayoutS {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
abi: Abi::Aggregate { sized: false },
largest_niche: None,
align: dl.i8_align,
size: Size::ZERO,
}),
// Odd unit types.
ty::FnDef(..) => {
univariant(IndexSlice::empty(), &ReprOptions::default(), StructKind::AlwaysSized)?
}
ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
let mut unit = univariant_uninterned(
cx,
ty,
IndexSlice::empty(),
&ReprOptions::default(),
StructKind::AlwaysSized,
)?;
match unit.abi {
Abi::Aggregate { ref mut sized } => *sized = false,
_ => bug!(),
}
tcx.mk_layout(unit)
}
ty::Generator(def_id, substs, _) => generator_layout(cx, ty, def_id, substs)?,
ty::Closure(_, ref substs) => {
let tys = substs.as_closure().upvar_tys();
univariant(
&tys.map(|ty| Ok(cx.layout_of(ty)?.layout)).try_collect::<IndexVec<_, _>>()?,
&ReprOptions::default(),
StructKind::AlwaysSized,
)?
}
ty::Tuple(tys) => {
let kind =
if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
univariant(
&tys.iter().map(|k| Ok(cx.layout_of(k)?.layout)).try_collect::<IndexVec<_, _>>()?,
&ReprOptions::default(),
kind,
)?
}
// SIMD vector types.
ty::Adt(def, substs) if def.repr().simd() => {
if !def.is_struct() {
// Should have yielded E0517 by now.
tcx.sess.delay_span_bug(
DUMMY_SP,
"#[repr(simd)] was applied to an ADT that is not a struct",
);
return Err(LayoutError::Unknown(ty));
}
let fields = &def.non_enum_variant().fields;
// Supported SIMD vectors are homogeneous ADTs with at least one field:
//
// * #[repr(simd)] struct S(T, T, T, T);
// * #[repr(simd)] struct S { x: T, y: T, z: T, w: T }
// * #[repr(simd)] struct S([T; 4])
//
// where T is a primitive scalar (integer/float/pointer).
// SIMD vectors with zero fields are not supported.
// (should be caught by typeck)
if fields.is_empty() {
tcx.sess.emit_fatal(ZeroLengthSimdType { ty })
}
// Type of the first ADT field:
let f0_ty = fields[FieldIdx::from_u32(0)].ty(tcx, substs);
// Heterogeneous SIMD vectors are not supported:
// (should be caught by typeck)
for fi in fields {
if fi.ty(tcx, substs) != f0_ty {
tcx.sess.delay_span_bug(
DUMMY_SP,
"#[repr(simd)] was applied to an ADT with heterogeneous field type",
);
return Err(LayoutError::Unknown(ty));
}
}
// The element type and number of elements of the SIMD vector
// are obtained from:
//
// * the element type and length of the single array field, if
// the first field is of array type, or
//
// * the homogeneous field type and the number of fields.
let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() {
// First ADT field is an array:
// SIMD vectors with multiple array fields are not supported:
// Can't be caught by typeck with a generic simd type.
if def.non_enum_variant().fields.len() != 1 {
tcx.sess.emit_fatal(MultipleArrayFieldsSimdType { ty });
}
// Extract the number of elements from the layout of the array field:
let FieldsShape::Array { count, .. } = cx.layout_of(f0_ty)?.layout.fields() else {
return Err(LayoutError::Unknown(ty));
};
(*e_ty, *count, true)
} else {
// First ADT field is not an array:
(f0_ty, def.non_enum_variant().fields.len() as _, false)
};
// SIMD vectors of zero length are not supported.
// Additionally, lengths are capped at 2^16 as a fixed maximum backends must
// support.
//
// Can't be caught in typeck if the array length is generic.
if e_len == 0 {
tcx.sess.emit_fatal(ZeroLengthSimdType { ty });
} else if e_len > MAX_SIMD_LANES {
tcx.sess.emit_fatal(OversizedSimdType { ty, max_lanes: MAX_SIMD_LANES });
}
// Compute the ABI of the element type:
let e_ly = cx.layout_of(e_ty)?;
let Abi::Scalar(e_abi) = e_ly.abi else {
// This error isn't caught in typeck, e.g., if
// the element type of the vector is generic.
tcx.sess.emit_fatal(NonPrimitiveSimdType { ty, e_ty });
};
// Compute the size and alignment of the vector:
let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?;
let align = dl.vector_align(size);
let size = size.align_to(align.abi);
// Compute the placement of the vector fields:
let fields = if is_array {
FieldsShape::Arbitrary { offsets: [Size::ZERO].into(), memory_index: [0].into() }
} else {
FieldsShape::Array { stride: e_ly.size, count: e_len }
};
tcx.mk_layout(LayoutS {
variants: Variants::Single { index: FIRST_VARIANT },
fields,
abi: Abi::Vector { element: e_abi, count: e_len },
largest_niche: e_ly.largest_niche,
size,
align,
})
}
// ADTs.
ty::Adt(def, substs) => {
// Cache the field layouts.
let variants = def
.variants()
.iter()
.map(|v| {
v.fields
.iter()
.map(|field| Ok(cx.layout_of(field.ty(tcx, substs))?.layout))
.try_collect::<IndexVec<_, _>>()
})
.try_collect::<IndexVec<VariantIdx, _>>()?;
if def.is_union() {
if def.repr().pack.is_some() && def.repr().align.is_some() {
cx.tcx.sess.delay_span_bug(
tcx.def_span(def.did()),
"union cannot be packed and aligned",
);
return Err(LayoutError::Unknown(ty));
}
return Ok(tcx.mk_layout(
cx.layout_of_union(&def.repr(), &variants).ok_or(LayoutError::Unknown(ty))?,
));
}
tcx.mk_layout(
cx.layout_of_struct_or_enum(
&def.repr(),
&variants,
def.is_enum(),
def.is_unsafe_cell(),
tcx.layout_scalar_valid_range(def.did()),
|min, max| Integer::repr_discr(tcx, ty, &def.repr(), min, max),
def.is_enum()
.then(|| def.discriminants(tcx).map(|(v, d)| (v, d.val as i128)))
.into_iter()
.flatten(),
def.repr().inhibit_enum_layout_opt()
|| def
.variants()
.iter_enumerated()
.any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32())),
{
let param_env = tcx.param_env(def.did());
def.is_struct()
&& match def.variants().iter().next().and_then(|x| x.fields.raw.last())
{
Some(last_field) => tcx
.type_of(last_field.did)
.subst_identity()
.is_sized(tcx, param_env),
None => false,
}
},
)
.ok_or(LayoutError::SizeOverflow(ty))?,
)
}
// Types with no meaningful known layout.
ty::Alias(..) => {
// NOTE(eddyb) `layout_of` query should've normalized these away,
// if that was possible, so there's no reason to try again here.
return Err(LayoutError::Unknown(ty));
}
ty::Bound(..) | ty::GeneratorWitness(..) | ty::GeneratorWitnessMIR(..) | ty::Infer(_) => {
bug!("Layout::compute: unexpected type `{}`", ty)
}
ty::Placeholder(..) | ty::Param(_) | ty::Error(_) => {
return Err(LayoutError::Unknown(ty));
}
})
}
/// Overlap eligibility and variant assignment for each GeneratorSavedLocal.
#[derive(Clone, Debug, PartialEq)]
enum SavedLocalEligibility {
Unassigned,
Assigned(VariantIdx),
Ineligible(Option<FieldIdx>),
}
// When laying out generators, we divide our saved local fields into two
// categories: overlap-eligible and overlap-ineligible.
//
// Those fields which are ineligible for overlap go in a "prefix" at the
// beginning of the layout, and always have space reserved for them.
//
// Overlap-eligible fields are only assigned to one variant, so we lay
// those fields out for each variant and put them right after the
// prefix.
//
// Finally, in the layout details, we point to the fields from the
// variants they are assigned to. It is possible for some fields to be
// included in multiple variants. No field ever "moves around" in the
// layout; its offset is always the same.
//
// Also included in the layout are the upvars and the discriminant.
// These are included as fields on the "outer" layout; they are not part
// of any variant.
/// Compute the eligibility and assignment of each local.
fn generator_saved_local_eligibility(
info: &GeneratorLayout<'_>,
) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) {
use SavedLocalEligibility::*;
let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> =
IndexVec::from_elem(Unassigned, &info.field_tys);
// The saved locals not eligible for overlap. These will get
// "promoted" to the prefix of our generator.
let mut ineligible_locals = BitSet::new_empty(info.field_tys.len());
// Figure out which of our saved locals are fields in only
// one variant. The rest are deemed ineligible for overlap.
for (variant_index, fields) in info.variant_fields.iter_enumerated() {
for local in fields {
match assignments[*local] {
Unassigned => {
assignments[*local] = Assigned(variant_index);
}
Assigned(idx) => {
// We've already seen this local at another suspension
// point, so it is no longer a candidate.
trace!(
"removing local {:?} in >1 variant ({:?}, {:?})",
local,
variant_index,
idx
);
ineligible_locals.insert(*local);
assignments[*local] = Ineligible(None);
}
Ineligible(_) => {}
}
}
}
// Next, check every pair of eligible locals to see if they
// conflict.
for local_a in info.storage_conflicts.rows() {
let conflicts_a = info.storage_conflicts.count(local_a);
if ineligible_locals.contains(local_a) {
continue;
}
for local_b in info.storage_conflicts.iter(local_a) {
// local_a and local_b are storage live at the same time, therefore they
// cannot overlap in the generator layout. The only way to guarantee
// this is if they are in the same variant, or one is ineligible
// (which means it is stored in every variant).
if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] {
continue;
}
// If they conflict, we will choose one to make ineligible.
// This is not always optimal; it's just a greedy heuristic that
// seems to produce good results most of the time.
let conflicts_b = info.storage_conflicts.count(local_b);
let (remove, other) =
if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
ineligible_locals.insert(remove);
assignments[remove] = Ineligible(None);
trace!("removing local {:?} due to conflict with {:?}", remove, other);
}
}
// Count the number of variants in use. If only one of them, then it is
// impossible to overlap any locals in our layout. In this case it's
// always better to make the remaining locals ineligible, so we can
// lay them out with the other locals in the prefix and eliminate
// unnecessary padding bytes.
{
let mut used_variants = BitSet::new_empty(info.variant_fields.len());
for assignment in &assignments {
if let Assigned(idx) = assignment {
used_variants.insert(*idx);
}
}
if used_variants.count() < 2 {
for assignment in assignments.iter_mut() {
*assignment = Ineligible(None);
}
ineligible_locals.insert_all();
}
}
// Write down the order of our locals that will be promoted to the prefix.
{
for (idx, local) in ineligible_locals.iter().enumerate() {
assignments[local] = Ineligible(Some(FieldIdx::from_usize(idx)));
}
}
debug!("generator saved local assignments: {:?}", assignments);
(ineligible_locals, assignments)
}
/// Compute the full generator layout.
fn generator_layout<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
ty: Ty<'tcx>,
def_id: hir::def_id::DefId,
substs: SubstsRef<'tcx>,
) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
use SavedLocalEligibility::*;
let tcx = cx.tcx;
let subst_field = |ty: Ty<'tcx>| EarlyBinder::new(ty).subst(tcx, substs);
let Some(info) = tcx.generator_layout(def_id) else {
return Err(LayoutError::Unknown(ty));
};
let (ineligible_locals, assignments) = generator_saved_local_eligibility(&info);
// Build a prefix layout, including "promoting" all ineligible
// locals as part of the prefix. We compute the layout of all of
// these fields at once to get optimal packing.
let tag_index = substs.as_generator().prefix_tys().count();
// `info.variant_fields` already accounts for the reserved variants, so no need to add them.
let max_discr = (info.variant_fields.len() - 1) as u128;
let discr_int = Integer::fit_unsigned(max_discr);
let tag = Scalar::Initialized {
value: Primitive::Int(discr_int, false),
valid_range: WrappingRange { start: 0, end: max_discr },
};
let tag_layout = cx.tcx.mk_layout(LayoutS::scalar(cx, tag));
let promoted_layouts = ineligible_locals
.iter()
.map(|local| subst_field(info.field_tys[local].ty))
.map(|ty| tcx.mk_maybe_uninit(ty))
.map(|ty| Ok(cx.layout_of(ty)?.layout));
let prefix_layouts = substs
.as_generator()
.prefix_tys()
.map(|ty| Ok(cx.layout_of(ty)?.layout))
.chain(iter::once(Ok(tag_layout)))
.chain(promoted_layouts)
.try_collect::<IndexVec<_, _>>()?;
let prefix = univariant_uninterned(
cx,
ty,
&prefix_layouts,
&ReprOptions::default(),
StructKind::AlwaysSized,
)?;
let (prefix_size, prefix_align) = (prefix.size, prefix.align);
// Split the prefix layout into the "outer" fields (upvars and
// discriminant) and the "promoted" fields. Promoted fields will
// get included in each variant that requested them in
// GeneratorLayout.
debug!("prefix = {:#?}", prefix);
let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
FieldsShape::Arbitrary { mut offsets, memory_index } => {
let mut inverse_memory_index = memory_index.invert_bijective_mapping();
// "a" (`0..b_start`) and "b" (`b_start..`) correspond to
// "outer" and "promoted" fields respectively.
let b_start = FieldIdx::from_usize(tag_index + 1);
let offsets_b = IndexVec::from_raw(offsets.raw.split_off(b_start.as_usize()));
let offsets_a = offsets;
// Disentangle the "a" and "b" components of `inverse_memory_index`
// by preserving the order but keeping only one disjoint "half" each.
// FIXME(eddyb) build a better abstraction for permutations, if possible.
let inverse_memory_index_b: IndexVec<u32, FieldIdx> = inverse_memory_index
.iter()
.filter_map(|&i| i.as_u32().checked_sub(b_start.as_u32()).map(FieldIdx::from_u32))
.collect();
inverse_memory_index.raw.retain(|&i| i < b_start);
let inverse_memory_index_a = inverse_memory_index;
// Since `inverse_memory_index_{a,b}` each only refer to their
// respective fields, they can be safely inverted
let memory_index_a = inverse_memory_index_a.invert_bijective_mapping();
let memory_index_b = inverse_memory_index_b.invert_bijective_mapping();
let outer_fields =
FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
(outer_fields, offsets_b, memory_index_b)
}
_ => bug!(),
};
let mut size = prefix.size;
let mut align = prefix.align;
let variants = info
.variant_fields
.iter_enumerated()
.map(|(index, variant_fields)| {
// Only include overlap-eligible fields when we compute our variant layout.
let variant_only_tys = variant_fields
.iter()
.filter(|local| match assignments[**local] {
Unassigned => bug!(),
Assigned(v) if v == index => true,
Assigned(_) => bug!("assignment does not match variant"),
Ineligible(_) => false,
})
.map(|local| subst_field(info.field_tys[*local].ty));
let mut variant = univariant_uninterned(
cx,
ty,
&variant_only_tys
.map(|ty| Ok(cx.layout_of(ty)?.layout))
.try_collect::<IndexVec<_, _>>()?,
&ReprOptions::default(),
StructKind::Prefixed(prefix_size, prefix_align.abi),
)?;
variant.variants = Variants::Single { index };
let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
bug!();
};
// Now, stitch the promoted and variant-only fields back together in
// the order they are mentioned by our GeneratorLayout.
// Because we only use some subset (that can differ between variants)
// of the promoted fields, we can't just pick those elements of the
// `promoted_memory_index` (as we'd end up with gaps).
// So instead, we build an "inverse memory_index", as if all of the
// promoted fields were being used, but leave the elements not in the
// subset as `INVALID_FIELD_IDX`, which we can filter out later to
// obtain a valid (bijective) mapping.
const INVALID_FIELD_IDX: FieldIdx = FieldIdx::MAX;
debug_assert!(variant_fields.next_index() <= INVALID_FIELD_IDX);
let mut combined_inverse_memory_index = IndexVec::from_elem_n(
INVALID_FIELD_IDX,
promoted_memory_index.len() + memory_index.len(),
);
let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
let combined_offsets = variant_fields
.iter_enumerated()
.map(|(i, local)| {
let (offset, memory_index) = match assignments[*local] {
Unassigned => bug!(),
Assigned(_) => {
let (offset, memory_index) = offsets_and_memory_index.next().unwrap();
(offset, promoted_memory_index.len() as u32 + memory_index)
}
Ineligible(field_idx) => {
let field_idx = field_idx.unwrap();
(promoted_offsets[field_idx], promoted_memory_index[field_idx])
}
};
combined_inverse_memory_index[memory_index] = i;
offset
})
.collect();
// Remove the unused slots and invert the mapping to obtain the
// combined `memory_index` (also see previous comment).
combined_inverse_memory_index.raw.retain(|&i| i != INVALID_FIELD_IDX);
let combined_memory_index = combined_inverse_memory_index.invert_bijective_mapping();
variant.fields = FieldsShape::Arbitrary {
offsets: combined_offsets,
memory_index: combined_memory_index,
};
size = size.max(variant.size);
align = align.max(variant.align);
Ok(variant)
})
.try_collect::<IndexVec<VariantIdx, _>>()?;
size = size.align_to(align.abi);
let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi.is_uninhabited()) {
Abi::Uninhabited
} else {
Abi::Aggregate { sized: true }
};
let layout = tcx.mk_layout(LayoutS {
variants: Variants::Multiple {
tag,
tag_encoding: TagEncoding::Direct,
tag_field: tag_index,
variants,
},
fields: outer_fields,
abi,
largest_niche: prefix.largest_niche,
size,
align,
});
debug!("generator layout ({:?}): {:#?}", ty, layout);
Ok(layout)
}
/// This is invoked by the `layout_of` query to record the final
/// layout of each type.
#[inline(always)]
fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>) {
// If we are running with `-Zprint-type-sizes`, maybe record layouts
// for dumping later.
if cx.tcx.sess.opts.unstable_opts.print_type_sizes {
record_layout_for_printing_outlined(cx, layout)
}
}
fn record_layout_for_printing_outlined<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
layout: TyAndLayout<'tcx>,
) {
// Ignore layouts that are done with non-empty environments or
// non-monomorphic layouts, as the user only wants to see the stuff
// resulting from the final codegen session.
if layout.ty.has_non_region_param() || !cx.param_env.caller_bounds().is_empty() {
return;
}
// (delay format until we actually need it)
let record = |kind, packed, opt_discr_size, variants| {
let type_desc = format!("{:?}", layout.ty);
cx.tcx.sess.code_stats.record_type_size(
kind,
type_desc,
layout.align.abi,
layout.size,
packed,
opt_discr_size,
variants,
);
};
match *layout.ty.kind() {
ty::Adt(adt_def, _) => {
debug!("print-type-size t: `{:?}` process adt", layout.ty);
let adt_kind = adt_def.adt_kind();
let adt_packed = adt_def.repr().pack.is_some();
let (variant_infos, opt_discr_size) = variant_info_for_adt(cx, layout, adt_def);
record(adt_kind.into(), adt_packed, opt_discr_size, variant_infos);
}
ty::Generator(def_id, substs, _) => {
debug!("print-type-size t: `{:?}` record generator", layout.ty);
// Generators always have a begin/poisoned/end state with additional suspend points
let (variant_infos, opt_discr_size) =
variant_info_for_generator(cx, layout, def_id, substs);
record(DataTypeKind::Generator, false, opt_discr_size, variant_infos);
}
ty::Closure(..) => {
debug!("print-type-size t: `{:?}` record closure", layout.ty);
record(DataTypeKind::Closure, false, None, vec![]);
}
_ => {
debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty);
}
};
}
fn variant_info_for_adt<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
layout: TyAndLayout<'tcx>,
adt_def: AdtDef<'tcx>,
) -> (Vec<VariantInfo>, Option<Size>) {
let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| {
let mut min_size = Size::ZERO;
let field_info: Vec<_> = flds
.iter()
.enumerate()
.map(|(i, &name)| {
let field_layout = layout.field(cx, i);
let offset = layout.fields.offset(i);
min_size = min_size.max(offset + field_layout.size);
FieldInfo {
kind: FieldKind::AdtField,
name,
offset: offset.bytes(),
size: field_layout.size.bytes(),
align: field_layout.align.abi.bytes(),
}
})
.collect();
VariantInfo {
name: n,
kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact },
align: layout.align.abi.bytes(),
size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() },
fields: field_info,
}
};
match layout.variants {
Variants::Single { index } => {
if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive {
debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variant(index).name);
let variant_def = &adt_def.variant(index);
let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
(vec![build_variant_info(Some(variant_def.name), &fields, layout)], None)
} else {
(vec![], None)
}
}
Variants::Multiple { tag, ref tag_encoding, .. } => {
debug!(
"print-type-size `{:#?}` adt general variants def {}",
layout.ty,
adt_def.variants().len()
);
let variant_infos: Vec<_> = adt_def
.variants()
.iter_enumerated()
.map(|(i, variant_def)| {
let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
build_variant_info(Some(variant_def.name), &fields, layout.for_variant(cx, i))
})
.collect();
(
variant_infos,
match tag_encoding {
TagEncoding::Direct => Some(tag.size(cx)),
_ => None,
},
)
}
}
}
fn variant_info_for_generator<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
layout: TyAndLayout<'tcx>,
def_id: DefId,
substs: ty::SubstsRef<'tcx>,
) -> (Vec<VariantInfo>, Option<Size>) {
let Variants::Multiple { tag, ref tag_encoding, tag_field, .. } = layout.variants else {
return (vec![], None);
};
let (generator, state_specific_names) = cx.tcx.generator_layout_and_saved_local_names(def_id);
let upvar_names = cx.tcx.closure_saved_names_of_captured_variables(def_id);
let mut upvars_size = Size::ZERO;
let upvar_fields: Vec<_> = substs
.as_generator()
.upvar_tys()
.zip(upvar_names)
.enumerate()
.map(|(field_idx, (_, name))| {
let field_layout = layout.field(cx, field_idx);
let offset = layout.fields.offset(field_idx);
upvars_size = upvars_size.max(offset + field_layout.size);
FieldInfo {
kind: FieldKind::Upvar,
name: Symbol::intern(&name),
offset: offset.bytes(),
size: field_layout.size.bytes(),
align: field_layout.align.abi.bytes(),
}
})
.collect();
let mut variant_infos: Vec<_> = generator
.variant_fields
.iter_enumerated()
.map(|(variant_idx, variant_def)| {
let variant_layout = layout.for_variant(cx, variant_idx);
let mut variant_size = Size::ZERO;
let fields = variant_def
.iter()
.enumerate()
.map(|(field_idx, local)| {
let field_layout = variant_layout.field(cx, field_idx);
let offset = variant_layout.fields.offset(field_idx);
// The struct is as large as the last field's end
variant_size = variant_size.max(offset + field_layout.size);
FieldInfo {
kind: FieldKind::GeneratorLocal,
name: state_specific_names.get(*local).copied().flatten().unwrap_or(
Symbol::intern(&format!(".generator_field{}", local.as_usize())),
),
offset: offset.bytes(),
size: field_layout.size.bytes(),
align: field_layout.align.abi.bytes(),
}
})
.chain(upvar_fields.iter().copied())
.collect();
// If the variant has no state-specific fields, then it's the size of the upvars.
if variant_size == Size::ZERO {
variant_size = upvars_size;
}
// This `if` deserves some explanation.
//
// The layout code has a choice of where to place the discriminant of this generator.
// If the discriminant of the generator is placed early in the layout (before the
// variant's own fields), then it'll implicitly be counted towards the size of the
// variant, since we use the maximum offset to calculate size.
// (side-note: I know this is a bit problematic given upvars placement, etc).
//
// This is important, since the layout printing code always subtracts this discriminant
// size from the variant size if the struct is "enum"-like, so failing to account for it
// will either lead to numerical underflow, or an underreported variant size...
//
// However, if the discriminant is placed past the end of the variant, then we need
// to factor in the size of the discriminant manually. This really should be refactored
// better, but this "works" for now.
if layout.fields.offset(tag_field) >= variant_size {
variant_size += match tag_encoding {
TagEncoding::Direct => tag.size(cx),
_ => Size::ZERO,
};
}
VariantInfo {
name: Some(Symbol::intern(&ty::GeneratorSubsts::variant_name(variant_idx))),
kind: SizeKind::Exact,
size: variant_size.bytes(),
align: variant_layout.align.abi.bytes(),
fields,
}
})
.collect();
// The first three variants are hardcoded to be `UNRESUMED`, `RETURNED` and `POISONED`.
// We will move the `RETURNED` and `POISONED` elements to the end so we
// are left with a sorting order according to the generators yield points:
// First `Unresumed`, then the `SuspendN` followed by `Returned` and `Panicked` (POISONED).
let end_states = variant_infos.drain(1..=2);
let end_states: Vec<_> = end_states.collect();
variant_infos.extend(end_states);
(
variant_infos,
match tag_encoding {
TagEncoding::Direct => Some(tag.size(cx)),
_ => None,
},
)
}