blob: 194ddcb56002b582ae8c01c65f33a6c610641c7f [file] [log] [blame]
/* bigint - internal portion of large integer package
**
** Copyright © 2000 by Jef Poskanzer <jef@mail.acme.com>.
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
** IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
** ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
** FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
** DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
** OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
** HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
** OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
** SUCH DAMAGE.
*/
#include <sys/types.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include "bigint.h"
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
/* MAXINT and MININT extracted from <values.h>, which gives a warning
** message if included.
*/
#define BITSPERBYTE 8
#define BITS(type) (BITSPERBYTE * (int)sizeof(type))
#define INTBITS BITS(int)
#define MININT (1 << (INTBITS - 1))
#define MAXINT (~MININT)
/* The package represents arbitrary-precision integers as a sign and a sum
** of components multiplied by successive powers of the basic radix, i.e.:
**
** sign * ( comp0 + comp1 * radix + comp2 * radix^2 + comp3 * radix^3 )
**
** To make good use of the computer's word size, the radix is chosen
** to be a power of two. It could be chosen to be the full word size,
** however this would require a lot of finagling in the middle of the
** algorithms to get the inter-word overflows right. That would slow things
** down. Instead, the radix is chosen to be *half* the actual word size.
** With just a little care, this means the words can hold all intermediate
** values, and the overflows can be handled all at once at the end, in a
** normalization step. This simplifies the coding enormously, and is probably
** somewhat faster to run. The cost is that numbers use twice as much
** storage as they would with the most efficient representation, but storage
** is cheap.
**
** A few more notes on the representation:
**
** - The sign is always 1 or -1, never 0. The number 0 is represented
** with a sign of 1.
** - The components are signed numbers, to allow for negative intermediate
** values. After normalization, all components are >= 0 and the sign is
** updated.
*/
/* Type definition for bigints. */
typedef int64_t comp; /* should be the largest signed int type you have */
struct _real_bigint {
int refs;
struct _real_bigint* next;
int num_comps, max_comps;
int sign;
comp* comps;
};
typedef struct _real_bigint* real_bigint;
#undef DUMP
#define PERMANENT 123456789
static comp bi_radix, bi_radix_o2;
static int bi_radix_sqrt, bi_comp_bits;
static real_bigint active_list, free_list;
static int active_count, free_count;
static int check_level;
/* Forwards. */
static bigint regular_multiply( real_bigint bia, real_bigint bib );
static bigint multi_divide( bigint binumer, real_bigint bidenom );
static bigint multi_divide2( bigint binumer, real_bigint bidenom );
static void more_comps( real_bigint bi, int n );
static real_bigint alloc( int num_comps );
static real_bigint clone( real_bigint bi );
static void normalize( real_bigint bi );
static void check( real_bigint bi );
static void double_check( void );
static void triple_check( void );
#ifdef DUMP
static void dump( char* str, bigint bi );
#endif /* DUMP */
static int csqrt( comp c );
static int cbits( comp c );
void
bi_initialize( void )
{
/* Set the radix. This does not actually have to be a power of
** two, that's just the most efficient value. It does have to
** be even for bi_half() to work.
*/
bi_radix = 1;
bi_radix <<= BITS(comp) / 2 - 1;
/* Halve the radix. Only used by bi_half(). */
bi_radix_o2 = bi_radix >> 1;
/* Take the square root of the radix. Only used by bi_divide(). */
bi_radix_sqrt = csqrt( bi_radix );
/* Figure out how many bits in a component. Only used by bi_bits(). */
bi_comp_bits = cbits( bi_radix - 1 );
/* Init various globals. */
active_list = (real_bigint) 0;
active_count = 0;
free_list = (real_bigint) 0;
free_count = 0;
/* This can be 0 through 3. */
check_level = 3;
/* Set up some convenient bigints. */
bi_0 = int_to_bi( 0 ); bi_permanent( bi_0 );
bi_1 = int_to_bi( 1 ); bi_permanent( bi_1 );
bi_2 = int_to_bi( 2 ); bi_permanent( bi_2 );
bi_10 = int_to_bi( 10 ); bi_permanent( bi_10 );
bi_m1 = int_to_bi( -1 ); bi_permanent( bi_m1 );
bi_maxint = int_to_bi( MAXINT ); bi_permanent( bi_maxint );
bi_minint = int_to_bi( MININT ); bi_permanent( bi_minint );
}
void
bi_terminate( void )
{
real_bigint p, pn;
bi_depermanent( bi_0 ); bi_free( bi_0 );
bi_depermanent( bi_1 ); bi_free( bi_1 );
bi_depermanent( bi_2 ); bi_free( bi_2 );
bi_depermanent( bi_10 ); bi_free( bi_10 );
bi_depermanent( bi_m1 ); bi_free( bi_m1 );
bi_depermanent( bi_maxint ); bi_free( bi_maxint );
bi_depermanent( bi_minint ); bi_free( bi_minint );
if ( active_count != 0 )
(void) fprintf(
stderr, "bi_terminate: there were %d un-freed bigints\n",
active_count );
if ( check_level >= 2 )
double_check();
if ( check_level >= 3 )
{
triple_check();
for ( p = active_list; p != (bigint) 0; p = pn )
{
pn = p->next;
free( p->comps );
free( p );
}
}
for ( p = free_list; p != (bigint) 0; p = pn )
{
pn = p->next;
free( p->comps );
free( p );
}
}
void
bi_no_check( void )
{
check_level = 0;
}
bigint
bi_copy( bigint obi )
{
real_bigint bi = (real_bigint) obi;
check( bi );
if ( bi->refs != PERMANENT )
++bi->refs;
return bi;
}
void
bi_permanent( bigint obi )
{
real_bigint bi = (real_bigint) obi;
check( bi );
if ( check_level >= 1 && bi->refs != 1 )
{
(void) fprintf( stderr, "bi_permanent: refs was not 1\n" );
(void) kill( getpid(), SIGFPE );
}
bi->refs = PERMANENT;
}
void
bi_depermanent( bigint obi )
{
real_bigint bi = (real_bigint) obi;
check( bi );
if ( check_level >= 1 && bi->refs != PERMANENT )
{
(void) fprintf( stderr, "bi_depermanent: bigint was not permanent\n" );
(void) kill( getpid(), SIGFPE );
}
bi->refs = 1;
}
void
bi_free( bigint obi )
{
real_bigint bi = (real_bigint) obi;
check( bi );
if ( bi->refs == PERMANENT )
return;
--bi->refs;
if ( bi->refs > 0 )
return;
if ( check_level >= 3 )
{
/* The active list only gets maintained at check levels 3 or higher. */
real_bigint* nextP;
for ( nextP = &active_list; *nextP != (real_bigint) 0; nextP = &((*nextP)->next) )
if ( *nextP == bi )
{
*nextP = bi->next;
break;
}
}
--active_count;
bi->next = free_list;
free_list = bi;
++free_count;
if ( check_level >= 1 && active_count < 0 )
{
(void) fprintf( stderr,
"bi_free: active_count went negative - double-freed bigint?\n" );
(void) kill( getpid(), SIGFPE );
}
}
int
bi_compare( bigint obia, bigint obib )
{
real_bigint bia = (real_bigint) obia;
real_bigint bib = (real_bigint) obib;
int r, c;
check( bia );
check( bib );
/* First check for pointer equality. */
if ( bia == bib )
r = 0;
else
{
/* Compare signs. */
if ( bia->sign > bib->sign )
r = 1;
else if ( bia->sign < bib->sign )
r = -1;
/* Signs are the same. Check the number of components. */
else if ( bia->num_comps > bib->num_comps )
r = bia->sign;
else if ( bia->num_comps < bib->num_comps )
r = -bia->sign;
else
{
/* Same number of components. Compare starting from the high end
** and working down.
*/
r = 0; /* if we complete the loop, the numbers are equal */
for ( c = bia->num_comps - 1; c >= 0; --c )
{
if ( bia->comps[c] > bib->comps[c] )
{ r = bia->sign; break; }
else if ( bia->comps[c] < bib->comps[c] )
{ r = -bia->sign; break; }
}
}
}
bi_free( bia );
bi_free( bib );
return r;
}
bigint
int_to_bi( int i )
{
real_bigint biR;
biR = alloc( 1 );
biR->sign = 1;
biR->comps[0] = i;
normalize( biR );
check( biR );
return biR;
}
int
bi_to_int( bigint obi )
{
real_bigint bi = (real_bigint) obi;
comp v, m;
int c, r;
check( bi );
if ( bi_compare( bi_copy( bi ), bi_maxint ) > 0 ||
bi_compare( bi_copy( bi ), bi_minint ) < 0 )
{
(void) fprintf( stderr, "bi_to_int: overflow\n" );
(void) kill( getpid(), SIGFPE );
}
v = 0;
m = 1;
for ( c = 0; c < bi->num_comps; ++c )
{
v += bi->comps[c] * m;
m *= bi_radix;
}
r = (int) ( bi->sign * v );
bi_free( bi );
return r;
}
bigint
bi_int_add( bigint obi, int i )
{
real_bigint bi = (real_bigint) obi;
real_bigint biR;
check( bi );
biR = clone( bi );
if ( biR->sign == 1 )
biR->comps[0] += i;
else
biR->comps[0] -= i;
normalize( biR );
check( biR );
return biR;
}
bigint
bi_int_subtract( bigint obi, int i )
{
real_bigint bi = (real_bigint) obi;
real_bigint biR;
check( bi );
biR = clone( bi );
if ( biR->sign == 1 )
biR->comps[0] -= i;
else
biR->comps[0] += i;
normalize( biR );
check( biR );
return biR;
}
bigint
bi_int_multiply( bigint obi, int i )
{
real_bigint bi = (real_bigint) obi;
real_bigint biR;
int c;
check( bi );
biR = clone( bi );
if ( i < 0 )
{
i = -i;
biR->sign = -biR->sign;
}
for ( c = 0; c < biR->num_comps; ++c )
biR->comps[c] *= i;
normalize( biR );
check( biR );
return biR;
}
bigint
bi_int_divide( bigint obinumer, int denom )
{
real_bigint binumer = (real_bigint) obinumer;
real_bigint biR;
int c;
comp r;
check( binumer );
if ( denom == 0 )
{
(void) fprintf( stderr, "bi_int_divide: divide by zero\n" );
(void) kill( getpid(), SIGFPE );
}
biR = clone( binumer );
if ( denom < 0 )
{
denom = -denom;
biR->sign = -biR->sign;
}
r = 0;
for ( c = biR->num_comps - 1; c >= 0; --c )
{
r = r * bi_radix + biR->comps[c];
biR->comps[c] = r / denom;
r = r % denom;
}
normalize( biR );
check( biR );
return biR;
}
int
bi_int_rem( bigint obi, int m )
{
real_bigint bi = (real_bigint) obi;
comp rad_r, r;
int c;
check( bi );
if ( m == 0 )
{
(void) fprintf( stderr, "bi_int_rem: divide by zero\n" );
(void) kill( getpid(), SIGFPE );
}
if ( m < 0 )
m = -m;
rad_r = 1;
r = 0;
for ( c = 0; c < bi->num_comps; ++c )
{
r = ( r + bi->comps[c] * rad_r ) % m;
rad_r = ( rad_r * bi_radix ) % m;
}
if ( bi->sign < 1 )
r = -r;
bi_free( bi );
return (int) r;
}
bigint
bi_add( bigint obia, bigint obib )
{
real_bigint bia = (real_bigint) obia;
real_bigint bib = (real_bigint) obib;
real_bigint biR;
int c;
check( bia );
check( bib );
biR = clone( bia );
more_comps( biR, max( biR->num_comps, bib->num_comps ) );
for ( c = 0; c < bib->num_comps; ++c )
if ( biR->sign == bib->sign )
biR->comps[c] += bib->comps[c];
else
biR->comps[c] -= bib->comps[c];
bi_free( bib );
normalize( biR );
check( biR );
return biR;
}
bigint
bi_subtract( bigint obia, bigint obib )
{
real_bigint bia = (real_bigint) obia;
real_bigint bib = (real_bigint) obib;
real_bigint biR;
int c;
check( bia );
check( bib );
biR = clone( bia );
more_comps( biR, max( biR->num_comps, bib->num_comps ) );
for ( c = 0; c < bib->num_comps; ++c )
if ( biR->sign == bib->sign )
biR->comps[c] -= bib->comps[c];
else
biR->comps[c] += bib->comps[c];
bi_free( bib );
normalize( biR );
check( biR );
return biR;
}
/* Karatsuba multiplication. This is supposedly O(n^1.59), better than
** regular multiplication for large n. The define below sets the crossover
** point - below that we use regular multiplication, above it we
** use Karatsuba. Note that Karatsuba is a recursive algorithm, so
** all Karatsuba calls involve regular multiplications as the base
** steps.
*/
#define KARATSUBA_THRESH 12
bigint
bi_multiply( bigint obia, bigint obib )
{
real_bigint bia = (real_bigint) obia;
real_bigint bib = (real_bigint) obib;
check( bia );
check( bib );
if ( min( bia->num_comps, bib->num_comps ) < KARATSUBA_THRESH )
return regular_multiply( bia, bib );
else
{
/* The factors are large enough that Karatsuba multiplication
** is a win. The basic idea here is you break each factor up
** into two parts, like so:
** i * r^n + j k * r^n + l
** r is the radix we're representing numbers with, so this
** breaking up just means shuffling components around, no
** math required. With regular multiplication the product
** would be:
** ik * r^(n*2) + ( il + jk ) * r^n + jl
** That's four sub-multiplies and one addition, not counting the
** radix-shifting. With Karatsuba, you instead do:
** ik * r^(n*2) + ( (i+j)(k+l) - ik - jl ) * r^n + jl
** This is only three sub-multiplies. The number of adds
** (and subtracts) increases to four, but those run in linear time
** so they are cheap. The sub-multiplies are accomplished by
** recursive calls, eventually reducing to regular multiplication.
*/
int n, c;
real_bigint bi_i, bi_j, bi_k, bi_l;
real_bigint bi_ik, bi_mid, bi_jl;
n = ( max( bia->num_comps, bib->num_comps ) + 1 ) / 2;
bi_i = alloc( n );
bi_j = alloc( n );
bi_k = alloc( n );
bi_l = alloc( n );
for ( c = 0; c < n; ++c )
{
if ( c + n < bia->num_comps )
bi_i->comps[c] = bia->comps[c + n];
else
bi_i->comps[c] = 0;
if ( c < bia->num_comps )
bi_j->comps[c] = bia->comps[c];
else
bi_j->comps[c] = 0;
if ( c + n < bib->num_comps )
bi_k->comps[c] = bib->comps[c + n];
else
bi_k->comps[c] = 0;
if ( c < bib->num_comps )
bi_l->comps[c] = bib->comps[c];
else
bi_l->comps[c] = 0;
}
bi_i->sign = bi_j->sign = bi_k->sign = bi_l->sign = 1;
normalize( bi_i );
normalize( bi_j );
normalize( bi_k );
normalize( bi_l );
bi_ik = bi_multiply( bi_copy( bi_i ), bi_copy( bi_k ) );
bi_jl = bi_multiply( bi_copy( bi_j ), bi_copy( bi_l ) );
bi_mid = bi_subtract(
bi_subtract(
bi_multiply( bi_add( bi_i, bi_j ), bi_add( bi_k, bi_l ) ),
bi_copy( bi_ik ) ),
bi_copy( bi_jl ) );
more_comps(
bi_jl, max( bi_mid->num_comps + n, bi_ik->num_comps + n * 2 ) );
for ( c = 0; c < bi_mid->num_comps; ++c )
bi_jl->comps[c + n] += bi_mid->comps[c];
for ( c = 0; c < bi_ik->num_comps; ++c )
bi_jl->comps[c + n * 2] += bi_ik->comps[c];
bi_free( bi_ik );
bi_free( bi_mid );
bi_jl->sign = bia->sign * bib->sign;
bi_free( bia );
bi_free( bib );
normalize( bi_jl );
check( bi_jl );
return bi_jl;
}
}
/* Regular O(n^2) multiplication. */
static bigint
regular_multiply( real_bigint bia, real_bigint bib )
{
real_bigint biR;
int new_comps, c1, c2;
check( bia );
check( bib );
biR = clone( bi_0 );
new_comps = bia->num_comps + bib->num_comps;
more_comps( biR, new_comps );
for ( c1 = 0; c1 < bia->num_comps; ++c1 )
{
for ( c2 = 0; c2 < bib->num_comps; ++c2 )
biR->comps[c1 + c2] += bia->comps[c1] * bib->comps[c2];
/* Normalize after each inner loop to avoid overflowing any
** components. But be sure to reset biR's components count,
** in case a previous normalization lowered it.
*/
biR->num_comps = new_comps;
normalize( biR );
}
check( biR );
if ( ! bi_is_zero( bi_copy( biR ) ) )
biR->sign = bia->sign * bib->sign;
bi_free( bia );
bi_free( bib );
return biR;
}
/* The following three routines implement a multi-precision divide method
** that I haven't seen used anywhere else. It is not quite as fast as
** the standard divide method, but it is a lot simpler. In fact it's
** about as simple as the binary shift-and-subtract method, which goes
** about five times slower than this.
**
** The method assumes you already have multi-precision multiply and subtract
** routines, and also a multi-by-single precision divide routine. The latter
** is used to generate approximations, which are then checked and corrected
** using the former. The result converges to the correct value by about
** 16 bits per loop.
*/
/* Public routine to divide two arbitrary numbers. */
bigint
bi_divide( bigint binumer, bigint obidenom )
{
real_bigint bidenom = (real_bigint) obidenom;
int sign;
bigint biquotient;
/* Check signs and trivial cases. */
sign = 1;
switch ( bi_compare( bi_copy( bidenom ), bi_0 ) )
{
case 0:
(void) fprintf( stderr, "bi_divide: divide by zero\n" );
(void) kill( getpid(), SIGFPE );
case -1:
sign *= -1;
bidenom = bi_negate( bidenom );
break;
}
switch ( bi_compare( bi_copy( binumer ), bi_0 ) )
{
case 0:
bi_free( binumer );
bi_free( bidenom );
return bi_0;
case -1:
sign *= -1;
binumer = bi_negate( binumer );
break;
}
switch ( bi_compare( bi_copy( binumer ), bi_copy( bidenom ) ) )
{
case -1:
bi_free( binumer );
bi_free( bidenom );
return bi_0;
case 0:
bi_free( binumer );
bi_free( bidenom );
if ( sign == 1 )
return bi_1;
else
return bi_m1;
}
/* Is the denominator small enough to do an int divide? */
if ( bidenom->num_comps == 1 )
{
/* Win! */
biquotient = bi_int_divide( binumer, bidenom->comps[0] );
bi_free( bidenom );
}
else
{
/* No, we have to do a full multi-by-multi divide. */
biquotient = multi_divide( binumer, bidenom );
}
if ( sign == -1 )
biquotient = bi_negate( biquotient );
return biquotient;
}
/* Divide two multi-precision positive numbers. */
static bigint
multi_divide( bigint binumer, real_bigint bidenom )
{
/* We use a successive approximation method that is kind of like a
** continued fraction. The basic approximation is to do an int divide
** by the high-order component of the denominator. Then we correct
** based on the remainder from that.
**
** However, if the high-order component is too small, this doesn't
** work well. In particular, if the high-order component is 1 it
** doesn't work at all. Easily fixed, though - if the component
** is too small, increase it!
*/
if ( bidenom->comps[bidenom->num_comps-1] < bi_radix_sqrt )
{
/* We use the square root of the radix as the threshhold here
** because that's the largest value guaranteed to not make the
** high-order component overflow and become too small again.
**
** We increase binumer along with bidenom to keep the end result
** the same.
*/
binumer = bi_int_multiply( binumer, bi_radix_sqrt );
bidenom = bi_int_multiply( bidenom, bi_radix_sqrt );
}
/* Now start the recursion. */
return multi_divide2( binumer, bidenom );
}
/* Divide two multi-precision positive conditioned numbers. */
static bigint
multi_divide2( bigint binumer, real_bigint bidenom )
{
real_bigint biapprox;
bigint birem, biquotient;
int c, o;
/* Figure out the approximate quotient. Since we're dividing by only
** the top component of the denominator, which is less than or equal to
** the full denominator, the result is guaranteed to be greater than or
** equal to the correct quotient.
*/
o = bidenom->num_comps - 1;
biapprox = bi_int_divide( bi_copy( binumer ), bidenom->comps[o] );
/* And downshift the result to get the approximate quotient. */
for ( c = o; c < biapprox->num_comps; ++c )
biapprox->comps[c - o] = biapprox->comps[c];
biapprox->num_comps -= o;
/* Find the remainder from the approximate quotient. */
birem = bi_subtract(
bi_multiply( bi_copy( biapprox ), bi_copy( bidenom ) ), binumer );
/* If the remainder is negative, zero, or in fact any value less
** than bidenom, then we have the correct quotient and we're done.
*/
if ( bi_compare( bi_copy( birem ), bi_copy( bidenom ) ) < 0 )
{
biquotient = biapprox;
bi_free( birem );
bi_free( bidenom );
}
else
{
/* The real quotient is now biapprox - birem / bidenom. We still
** have to do a divide. However, birem is smaller than binumer,
** so the next divide will go faster. We do the divide by
** recursion. Since this is tail-recursion or close to it, we
** could probably re-arrange things and make it a non-recursive
** loop, but the overhead of recursion is small and the bookkeeping
** is simpler this way.
**
** Note that since the sub-divide uses the same denominator, it
** doesn't have to adjust the values again - the high-order component
** will still be good.
*/
biquotient = bi_subtract( biapprox, multi_divide2( birem, bidenom ) );
}
return biquotient;
}
/* Binary division - about five times slower than the above. */
bigint
bi_binary_divide( bigint binumer, bigint obidenom )
{
real_bigint bidenom = (real_bigint) obidenom;
int sign;
bigint biquotient;
/* Check signs and trivial cases. */
sign = 1;
switch ( bi_compare( bi_copy( bidenom ), bi_0 ) )
{
case 0:
(void) fprintf( stderr, "bi_divide: divide by zero\n" );
(void) kill( getpid(), SIGFPE );
case -1:
sign *= -1;
bidenom = bi_negate( bidenom );
break;
}
switch ( bi_compare( bi_copy( binumer ), bi_0 ) )
{
case 0:
bi_free( binumer );
bi_free( bidenom );
return bi_0;
case -1:
sign *= -1;
binumer = bi_negate( binumer );
break;
}
switch ( bi_compare( bi_copy( binumer ), bi_copy( bidenom ) ) )
{
case -1:
bi_free( binumer );
bi_free( bidenom );
return bi_0;
case 0:
bi_free( binumer );
bi_free( bidenom );
if ( sign == 1 )
return bi_1;
else
return bi_m1;
}
/* Is the denominator small enough to do an int divide? */
if ( bidenom->num_comps == 1 )
{
/* Win! */
biquotient = bi_int_divide( binumer, bidenom->comps[0] );
bi_free( bidenom );
}
else
{
/* No, we have to do a full multi-by-multi divide. */
int num_bits, den_bits, i;
num_bits = bi_bits( bi_copy( binumer ) );
den_bits = bi_bits( bi_copy( bidenom ) );
bidenom = bi_multiply( bidenom, bi_power( bi_2, int_to_bi( num_bits - den_bits ) ) );
biquotient = bi_0;
for ( i = den_bits; i <= num_bits; ++i )
{
biquotient = bi_double( biquotient );
if ( bi_compare( bi_copy( binumer ), bi_copy( bidenom ) ) >= 0 )
{
biquotient = bi_int_add( biquotient, 1 );
binumer = bi_subtract( binumer, bi_copy( bidenom ) );
}
bidenom = bi_half( bidenom );
}
bi_free( binumer );
bi_free( bidenom );
}
if ( sign == -1 )
biquotient = bi_negate( biquotient );
return biquotient;
}
bigint
bi_negate( bigint obi )
{
real_bigint bi = (real_bigint) obi;
real_bigint biR;
check( bi );
biR = clone( bi );
biR->sign = -biR->sign;
check( biR );
return biR;
}
bigint
bi_abs( bigint obi )
{
real_bigint bi = (real_bigint) obi;
real_bigint biR;
check( bi );
biR = clone( bi );
biR->sign = 1;
check( biR );
return biR;
}
bigint
bi_half( bigint obi )
{
real_bigint bi = (real_bigint) obi;
real_bigint biR;
int c;
check( bi );
/* This depends on the radix being even. */
biR = clone( bi );
for ( c = 0; c < biR->num_comps; ++c )
{
if ( biR->comps[c] & 1 )
if ( c > 0 )
biR->comps[c - 1] += bi_radix_o2;
biR->comps[c] = biR->comps[c] >> 1;
}
/* Avoid normalization. */
if ( biR->num_comps > 1 && biR->comps[biR->num_comps-1] == 0 )
--biR->num_comps;
check( biR );
return biR;
}
bigint
bi_double( bigint obi )
{
real_bigint bi = (real_bigint) obi;
real_bigint biR;
int c;
check( bi );
biR = clone( bi );
for ( c = biR->num_comps - 1; c >= 0; --c )
{
biR->comps[c] = biR->comps[c] << 1;
if ( biR->comps[c] >= bi_radix )
{
if ( c + 1 >= biR->num_comps )
more_comps( biR, biR->num_comps + 1 );
biR->comps[c] -= bi_radix;
biR->comps[c + 1] += 1;
}
}
check( biR );
return biR;
}
/* Find integer square root by Newton's method. */
bigint
bi_sqrt( bigint obi )
{
real_bigint bi = (real_bigint) obi;
bigint biR, biR2, bidiff;
switch ( bi_compare( bi_copy( bi ), bi_0 ) )
{
case -1:
(void) fprintf( stderr, "bi_sqrt: imaginary result\n" );
(void) kill( getpid(), SIGFPE );
case 0:
return bi;
}
if ( bi_is_one( bi_copy( bi ) ) )
return bi;
/* Newton's method converges reasonably fast, but it helps to have
** a good initial guess. We can make a *very* good initial guess
** by taking the square root of the top component times the square
** root of the radix part. Both of those are easy to compute.
*/
biR = bi_int_multiply(
bi_power( int_to_bi( bi_radix_sqrt ), int_to_bi( bi->num_comps - 1 ) ),
csqrt( bi->comps[bi->num_comps - 1] ) );
/* Now do the Newton loop until we have the answer. */
for (;;)
{
biR2 = bi_divide( bi_copy( bi ), bi_copy( biR ) );
bidiff = bi_subtract( bi_copy( biR ), bi_copy( biR2 ) );
if ( bi_is_zero( bi_copy( bidiff ) ) ||
bi_compare( bi_copy( bidiff ), bi_m1 ) == 0 )
{
bi_free( bi );
bi_free( bidiff );
bi_free( biR2 );
return biR;
}
if ( bi_is_one( bi_copy( bidiff ) ) )
{
bi_free( bi );
bi_free( bidiff );
bi_free( biR );
return biR2;
}
bi_free( bidiff );
biR = bi_half( bi_add( biR, biR2 ) );
}
}
int
bi_is_odd( bigint obi )
{
real_bigint bi = (real_bigint) obi;
int r;
check( bi );
r = bi->comps[0] & 1;
bi_free( bi );
return r;
}
int
bi_is_zero( bigint obi )
{
real_bigint bi = (real_bigint) obi;
int r;
check( bi );
r = ( bi->sign == 1 && bi->num_comps == 1 && bi->comps[0] == 0 );
bi_free( bi );
return r;
}
int
bi_is_one( bigint obi )
{
real_bigint bi = (real_bigint) obi;
int r;
check( bi );
r = ( bi->sign == 1 && bi->num_comps == 1 && bi->comps[0] == 1 );
bi_free( bi );
return r;
}
int
bi_is_negative( bigint obi )
{
real_bigint bi = (real_bigint) obi;
int r;
check( bi );
r = ( bi->sign == -1 );
bi_free( bi );
return r;
}
bigint
bi_random( bigint bi )
{
real_bigint biR;
int c;
biR = bi_multiply( bi_copy( bi ), bi_copy( bi ) );
for ( c = 0; c < biR->num_comps; ++c )
biR->comps[c] = random();
normalize( biR );
biR = bi_mod( biR, bi );
return biR;
}
int
bi_bits( bigint obi )
{
real_bigint bi = (real_bigint) obi;
int bits;
bits =
bi_comp_bits * ( bi->num_comps - 1 ) +
cbits( bi->comps[bi->num_comps - 1] );
bi_free( bi );
return bits;
}
/* Allocate and zero more components. Does not consume bi, of course. */
static void
more_comps( real_bigint bi, int n )
{
if ( n > bi->max_comps )
{
bi->max_comps = max( bi->max_comps * 2, n );
bi->comps = (comp*) realloc(
(void*) bi->comps, bi->max_comps * sizeof(comp) );
if ( bi->comps == (comp*) 0 )
{
(void) fprintf( stderr, "out of memory\n" );
exit( 1 );
}
}
for ( ; bi->num_comps < n; ++bi->num_comps )
bi->comps[bi->num_comps] = 0;
}
/* Make a new empty bigint. Fills in everything except sign and the
** components.
*/
static real_bigint
alloc( int num_comps )
{
real_bigint biR;
/* Can we recycle an old bigint? */
if ( free_list != (real_bigint) 0 )
{
biR = free_list;
free_list = biR->next;
--free_count;
if ( check_level >= 1 && biR->refs != 0 )
{
(void) fprintf( stderr, "alloc: refs was not 0\n" );
(void) kill( getpid(), SIGFPE );
}
more_comps( biR, num_comps );
}
else
{
/* No free bigints available - create a new one. */
biR = (real_bigint) malloc( sizeof(struct _real_bigint) );
if ( biR == (real_bigint) 0 )
{
(void) fprintf( stderr, "out of memory\n" );
exit( 1 );
}
biR->comps = (comp*) malloc( num_comps * sizeof(comp) );
if ( biR->comps == (comp*) 0 )
{
(void) fprintf( stderr, "out of memory\n" );
exit( 1 );
}
biR->max_comps = num_comps;
}
biR->num_comps = num_comps;
biR->refs = 1;
if ( check_level >= 3 )
{
/* The active list only gets maintained at check levels 3 or higher. */
biR->next = active_list;
active_list = biR;
}
else
biR->next = (real_bigint) 0;
++active_count;
return biR;
}
/* Make a modifiable copy of bi. DOES consume bi. */
static real_bigint
clone( real_bigint bi )
{
real_bigint biR;
int c;
/* Very clever optimization. */
if ( bi->refs != PERMANENT && bi->refs == 1 )
return bi;
biR = alloc( bi->num_comps );
biR->sign = bi->sign;
for ( c = 0; c < bi->num_comps; ++c )
biR->comps[c] = bi->comps[c];
bi_free( bi );
return biR;
}
/* Put bi into normal form. Does not consume bi, of course.
**
** Normal form is:
** - All components >= 0 and < bi_radix.
** - Leading 0 components removed.
** - Sign either 1 or -1.
** - The number zero represented by a single 0 component and a sign of 1.
*/
static void
normalize( real_bigint bi )
{
int c;
/* Borrow for negative components. Got to be careful with the math here:
** -9 / 10 == 0 -9 % 10 == -9
** -10 / 10 == -1 -10 % 10 == 0
** -11 / 10 == -1 -11 % 10 == -1
*/
for ( c = 0; c < bi->num_comps - 1; ++c )
if ( bi->comps[c] < 0 )
{
bi->comps[c+1] += bi->comps[c] / bi_radix - 1;
bi->comps[c] = bi->comps[c] % bi_radix;
if ( bi->comps[c] != 0 )
bi->comps[c] += bi_radix;
else
bi->comps[c+1] += 1;
}
/* Is the top component negative? */
if ( bi->comps[bi->num_comps - 1] < 0 )
{
/* Switch the sign of the number, and fix up the components. */
bi->sign = -bi->sign;
for ( c = 0; c < bi->num_comps - 1; ++c )
{
bi->comps[c] = bi_radix - bi->comps[c];
bi->comps[c + 1] += 1;
}
bi->comps[bi->num_comps - 1] = -bi->comps[bi->num_comps - 1];
}
/* Carry for components larger than the radix. */
for ( c = 0; c < bi->num_comps; ++c )
if ( bi->comps[c] >= bi_radix )
{
if ( c + 1 >= bi->num_comps )
more_comps( bi, bi->num_comps + 1 );
bi->comps[c+1] += bi->comps[c] / bi_radix;
bi->comps[c] = bi->comps[c] % bi_radix;
}
/* Trim off any leading zero components. */
for ( ; bi->num_comps > 1 && bi->comps[bi->num_comps-1] == 0; --bi->num_comps )
;
/* Check for -0. */
if ( bi->num_comps == 1 && bi->comps[0] == 0 && bi->sign == -1 )
bi->sign = 1;
}
static void
check( real_bigint bi )
{
if ( check_level == 0 )
return;
if ( bi->refs == 0 )
{
(void) fprintf( stderr, "check: zero refs in bigint\n" );
(void) kill( getpid(), SIGFPE );
}
if ( bi->refs < 0 )
{
(void) fprintf( stderr, "check: negative refs in bigint\n" );
(void) kill( getpid(), SIGFPE );
}
if ( check_level < 3 )
{
/* At check levels less than 3, active bigints have a zero next. */
if ( bi->next != (real_bigint) 0 )
{
(void) fprintf(
stderr, "check: attempt to use a bigint from the free list\n" );
(void) kill( getpid(), SIGFPE );
}
}
else
{
/* At check levels 3 or higher, active bigints must be on the active
** list.
*/
real_bigint p;
for ( p = active_list; p != (real_bigint) 0; p = p->next )
if ( p == bi )
break;
if ( p == (real_bigint) 0 )
{
(void) fprintf( stderr,
"check: attempt to use a bigint not on the active list\n" );
(void) kill( getpid(), SIGFPE );
}
}
if ( check_level >= 2 )
double_check();
if ( check_level >= 3 )
triple_check();
}
static void
double_check( void )
{
real_bigint p;
int c;
for ( p = free_list, c = 0; p != (real_bigint) 0; p = p->next, ++c )
if ( p->refs != 0 )
{
(void) fprintf( stderr,
"double_check: found a non-zero ref on the free list\n" );
(void) kill( getpid(), SIGFPE );
}
if ( c != free_count )
{
(void) fprintf( stderr,
"double_check: free_count is %d but the free list has %d items\n",
free_count, c );
(void) kill( getpid(), SIGFPE );
}
}
static void
triple_check( void )
{
real_bigint p;
int c;
for ( p = active_list, c = 0; p != (real_bigint) 0; p = p->next, ++c )
if ( p->refs == 0 )
{
(void) fprintf( stderr,
"triple_check: found a zero ref on the active list\n" );
(void) kill( getpid(), SIGFPE );
}
if ( c != active_count )
{
(void) fprintf( stderr,
"triple_check: active_count is %d but active_list has %d items\n",
free_count, c );
(void) kill( getpid(), SIGFPE );
}
}
#ifdef DUMP
/* Debug routine to dump out a complete bigint. Does not consume bi. */
static void
dump( char* str, bigint obi )
{
int c;
real_bigint bi = (real_bigint) obi;
(void) fprintf( stdout, "dump %s at 0x%08x:\n", str, (unsigned int) bi );
(void) fprintf( stdout, " refs: %d\n", bi->refs );
(void) fprintf( stdout, " next: 0x%08x\n", (unsigned int) bi->next );
(void) fprintf( stdout, " num_comps: %d\n", bi->num_comps );
(void) fprintf( stdout, " max_comps: %d\n", bi->max_comps );
(void) fprintf( stdout, " sign: %d\n", bi->sign );
for ( c = bi->num_comps - 1; c >= 0; --c )
(void) fprintf( stdout, " comps[%d]: %11lld (0x%016llx)\n", c, (long long) bi->comps[c], (long long) bi->comps[c] );
(void) fprintf( stdout, " print: " );
bi_print( stdout, bi_copy( bi ) );
(void) fprintf( stdout, "\n" );
}
#endif /* DUMP */
/* Trivial square-root routine so that we don't have to link in the math lib. */
static int
csqrt( comp c )
{
comp r, r2, diff;
if ( c < 0 )
{
(void) fprintf( stderr, "csqrt: imaginary result\n" );
(void) kill( getpid(), SIGFPE );
}
r = c / 2;
for (;;)
{
r2 = c / r;
diff = r - r2;
if ( diff == 0 || diff == -1 )
return (int) r;
if ( diff == 1 )
return (int) r2;
r = ( r + r2 ) / 2;
}
}
/* Figure out how many bits are in a number. */
static int
cbits( comp c )
{
int b;
for ( b = 0; c != 0; ++b )
c >>= 1;
return b;
}