| pub type T = uint; |
| |
| #[cfg(target_arch = "x86")] |
| #[cfg(target_arch = "arm")] |
| pub const bits: uint = 32; |
| |
| #[cfg(target_arch = "x86_64")] |
| pub const bits: uint = 64; |
| |
| /** |
| * Divide two numbers, return the result, rounded up. |
| * |
| * # Arguments |
| * |
| * * x - an integer |
| * * y - an integer distinct from 0u |
| * |
| * # Return value |
| * |
| * The smallest integer `q` such that `x/y <= q`. |
| */ |
| pub pure fn div_ceil(x: uint, y: uint) -> uint { |
| let div = x / y; |
| if x % y == 0u { div } |
| else { div + 1u } |
| } |
| |
| /** |
| * Divide two numbers, return the result, rounded to the closest integer. |
| * |
| * # Arguments |
| * |
| * * x - an integer |
| * * y - an integer distinct from 0u |
| * |
| * # Return value |
| * |
| * The integer `q` closest to `x/y`. |
| */ |
| pub pure fn div_round(x: uint, y: uint) -> uint { |
| let div = x / y; |
| if x % y * 2u < y { div } |
| else { div + 1u } |
| } |
| |
| /** |
| * Divide two numbers, return the result, rounded down. |
| * |
| * Note: This is the same function as `div`. |
| * |
| * # Arguments |
| * |
| * * x - an integer |
| * * y - an integer distinct from 0u |
| * |
| * # Return value |
| * |
| * The smallest integer `q` such that `x/y <= q`. This |
| * is either `x/y` or `x/y + 1`. |
| */ |
| pub pure fn div_floor(x: uint, y: uint) -> uint { return x / y; } |
| |
| /** |
| * Iterate over the range [`lo`..`hi`), or stop when requested |
| * |
| * # Arguments |
| * |
| * * lo - The integer at which to start the loop (included) |
| * * hi - The integer at which to stop the loop (excluded) |
| * * it - A block to execute with each consecutive integer of the range. |
| * Return `true` to continue, `false` to stop. |
| * |
| * # Return value |
| * |
| * `true` If execution proceeded correctly, `false` if it was interrupted, |
| * that is if `it` returned `false` at any point. |
| */ |
| pub pure fn iterate(lo: uint, hi: uint, it: fn(uint) -> bool) -> bool { |
| let mut i = lo; |
| while i < hi { |
| if (!it(i)) { return false; } |
| i += 1u; |
| } |
| return true; |
| } |
| |
| /// Returns the smallest power of 2 greater than or equal to `n` |
| #[inline(always)] |
| pub fn next_power_of_two(n: uint) -> uint { |
| let halfbits: uint = sys::size_of::<uint>() * 4u; |
| let mut tmp: uint = n - 1u; |
| let mut shift: uint = 1u; |
| while shift <= halfbits { tmp |= tmp >> shift; shift <<= 1u; } |
| return tmp + 1u; |
| } |
| |
| #[test] |
| fn test_next_power_of_two() { |
| assert (uint::next_power_of_two(0u) == 0u); |
| assert (uint::next_power_of_two(1u) == 1u); |
| assert (uint::next_power_of_two(2u) == 2u); |
| assert (uint::next_power_of_two(3u) == 4u); |
| assert (uint::next_power_of_two(4u) == 4u); |
| assert (uint::next_power_of_two(5u) == 8u); |
| assert (uint::next_power_of_two(6u) == 8u); |
| assert (uint::next_power_of_two(7u) == 8u); |
| assert (uint::next_power_of_two(8u) == 8u); |
| assert (uint::next_power_of_two(9u) == 16u); |
| assert (uint::next_power_of_two(10u) == 16u); |
| assert (uint::next_power_of_two(11u) == 16u); |
| assert (uint::next_power_of_two(12u) == 16u); |
| assert (uint::next_power_of_two(13u) == 16u); |
| assert (uint::next_power_of_two(14u) == 16u); |
| assert (uint::next_power_of_two(15u) == 16u); |
| assert (uint::next_power_of_two(16u) == 16u); |
| assert (uint::next_power_of_two(17u) == 32u); |
| assert (uint::next_power_of_two(18u) == 32u); |
| assert (uint::next_power_of_two(19u) == 32u); |
| assert (uint::next_power_of_two(20u) == 32u); |
| assert (uint::next_power_of_two(21u) == 32u); |
| assert (uint::next_power_of_two(22u) == 32u); |
| assert (uint::next_power_of_two(23u) == 32u); |
| assert (uint::next_power_of_two(24u) == 32u); |
| assert (uint::next_power_of_two(25u) == 32u); |
| assert (uint::next_power_of_two(26u) == 32u); |
| assert (uint::next_power_of_two(27u) == 32u); |
| assert (uint::next_power_of_two(28u) == 32u); |
| assert (uint::next_power_of_two(29u) == 32u); |
| assert (uint::next_power_of_two(30u) == 32u); |
| assert (uint::next_power_of_two(31u) == 32u); |
| assert (uint::next_power_of_two(32u) == 32u); |
| assert (uint::next_power_of_two(33u) == 64u); |
| assert (uint::next_power_of_two(34u) == 64u); |
| assert (uint::next_power_of_two(35u) == 64u); |
| assert (uint::next_power_of_two(36u) == 64u); |
| assert (uint::next_power_of_two(37u) == 64u); |
| assert (uint::next_power_of_two(38u) == 64u); |
| assert (uint::next_power_of_two(39u) == 64u); |
| } |
| |
| #[test] |
| fn test_overflows() { |
| assert (uint::max_value > 0u); |
| assert (uint::min_value <= 0u); |
| assert (uint::min_value + uint::max_value + 1u == 0u); |
| } |
| |
| #[test] |
| fn test_div() { |
| assert(uint::div_floor(3u, 4u) == 0u); |
| assert(uint::div_ceil(3u, 4u) == 1u); |
| assert(uint::div_round(3u, 4u) == 1u); |
| } |