blob: ea1caba5ec7d7c149ad8facf0a939bcbbc3ad81a [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <sys/mman.h>
#if !defined(__Fuchsia__)
#include <sys/sysinfo.h>
#endif
#include <unistd.h>
#include <fcntl.h>
#if defined(ANV_MAGMA)
#include "util/os_dirent.h"
#else
#include <xf86drm.h>
#include "drm-uapi/drm_fourcc.h"
#include "util/xmlpool.h"
#endif
#include "anv_private.h"
#include "util/debug.h"
#include "util/build_id.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "util/os_file.h"
#include "util/u_atomic.h"
#include "util/u_string.h"
#include "git_sha1.h"
#include "vk_util.h"
#include "common/gen_aux_map.h"
#include "common/gen_defines.h"
#include "compiler/glsl_types.h"
#include "genxml/gen7_pack.h"
#if !defined(ANV_MAGMA)
static const char anv_dri_options_xml[] =
DRI_CONF_BEGIN
DRI_CONF_SECTION_PERFORMANCE
DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
DRI_CONF_SECTION_END
DRI_CONF_SECTION_DEBUG
DRI_CONF_ALWAYS_FLUSH_CACHE("false")
DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST("false")
DRI_CONF_SECTION_END
DRI_CONF_END;
#endif
/* This is probably far to big but it reflects the max size used for messages
* in OpenGLs KHR_debug.
*/
#define MAX_DEBUG_MESSAGE_LENGTH 4096
static void
compiler_debug_log(void *data, const char *fmt, ...)
{
char str[MAX_DEBUG_MESSAGE_LENGTH];
struct anv_device *device = (struct anv_device *)data;
struct anv_instance *instance = device->physical->instance;
if (list_is_empty(&instance->debug_report_callbacks.callbacks))
return;
va_list args;
va_start(args, fmt);
(void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
va_end(args);
vk_debug_report(&instance->debug_report_callbacks,
VK_DEBUG_REPORT_DEBUG_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
0, 0, 0, "anv", str);
}
static void
compiler_perf_log(void *data, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
if (unlikely(INTEL_DEBUG & DEBUG_PERF))
intel_logd_v(__FILE__, __LINE__, fmt, args);
va_end(args);
}
static uint64_t anv_compute_heap_size(anv_device_handle_t fd, uint64_t gtt_size)
{
/* Query the total ram from the system */
#if defined(__Fuchsia__)
uint64_t total_ram = zx_system_get_physmem();
#else
struct sysinfo info;
sysinfo(&info);
uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
#endif
/* We don't want to burn too much ram with the GPU. If the user has 4GiB
* or less, we use at most half. If they have more than 4GiB, we use 3/4.
*/
uint64_t available_ram;
if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
available_ram = total_ram / 2;
else
available_ram = total_ram * 3 / 4;
/* We also want to leave some padding for things we allocate in the driver,
* so don't go over 3/4 of the GTT either.
*/
uint64_t available_gtt = gtt_size * 3 / 4;
return MIN2(available_ram, available_gtt);
}
static VkResult anv_physical_device_init_heaps(struct anv_physical_device* device,
anv_device_handle_t fd)
{
if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
&device->gtt_size) == -1) {
/* If, for whatever reason, we can't actually get the GTT size from the
* kernel (too old?) fall back to the aperture size.
*/
anv_perf_warn(NULL, NULL,
"Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
if (anv_gem_get_aperture(fd, &device->gtt_size) == -1) {
return vk_errorfi(device->instance, NULL,
VK_ERROR_INITIALIZATION_FAILED,
"failed to get aperture size: %m");
}
}
/* We only allow 48-bit addresses with softpin because knowing the actual
* address is required for the vertex cache flush workaround.
*/
device->supports_48bit_addresses = (device->info.gen >= 8) &&
device->has_softpin &&
device->gtt_size > (4ULL << 30 /* GiB */);
uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
/* When running with an overridden PCI ID, we may get a GTT size from
* the kernel that is greater than 2 GiB but the execbuf check for 48bit
* address support can still fail. Just clamp the address space size to
* 2 GiB if we don't have 48-bit support.
*/
intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
"not support for 48-bit addresses",
__FILE__, __LINE__);
heap_size = 2ull << 30;
}
device->memory.heap_count = 1;
device->memory.heaps[0] = (struct anv_memory_heap) {
.size = heap_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
uint32_t type_count = 0;
for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
if (device->info.has_llc) {
/* Big core GPUs share LLC with the CPU and thus one memory type can be
* both cached and coherent at the same time.
*/
device->memory.types[type_count++] = (struct anv_memory_type) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = heap,
};
} else {
/* The spec requires that we expose a host-visible, coherent memory
* type, but Atom GPUs don't share LLC. Thus we offer two memory types
* to give the application a choice between cached, but not coherent and
* coherent but uncached (WC though).
*/
device->memory.types[type_count++] = (struct anv_memory_type) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = heap,
};
device->memory.types[type_count++] = (struct anv_memory_type) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = heap,
};
}
}
device->memory.type_count = type_count;
return VK_SUCCESS;
}
static VkResult
anv_physical_device_init_uuids(struct anv_physical_device *device)
{
const struct build_id_note *note =
build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
if (!note) {
return vk_errorfi(device->instance, NULL,
VK_ERROR_INITIALIZATION_FAILED,
"Failed to find build-id");
}
unsigned build_id_len = build_id_length(note);
if (build_id_len < 20) {
return vk_errorfi(device->instance, NULL,
VK_ERROR_INITIALIZATION_FAILED,
"build-id too short. It needs to be a SHA");
}
memcpy(device->driver_build_sha1, build_id_data(note), 20);
struct mesa_sha1 sha1_ctx;
uint8_t sha1[20];
STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
/* The pipeline cache UUID is used for determining when a pipeline cache is
* invalid. It needs both a driver build and the PCI ID of the device.
*/
_mesa_sha1_init(&sha1_ctx);
_mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
_mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
sizeof(device->info.chipset_id));
_mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
sizeof(device->always_use_bindless));
_mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
sizeof(device->has_a64_buffer_access));
_mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
sizeof(device->has_bindless_images));
_mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
sizeof(device->has_bindless_samplers));
_mesa_sha1_final(&sha1_ctx, sha1);
memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
/* The driver UUID is used for determining sharability of images and memory
* between two Vulkan instances in separate processes. People who want to
* share memory need to also check the device UUID (below) so all this
* needs to be is the build-id.
*/
memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
/* The device UUID uniquely identifies the given device within the machine.
* Since we never have more than one device, this doesn't need to be a real
* UUID. However, on the off-chance that someone tries to use this to
* cache pre-tiled images or something of the like, we use the PCI ID and
* some bits of ISL info to ensure that this is safe.
*/
_mesa_sha1_init(&sha1_ctx);
_mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
sizeof(device->info.chipset_id));
_mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
sizeof(device->isl_dev.has_bit6_swizzling));
_mesa_sha1_final(&sha1_ctx, sha1);
memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
return VK_SUCCESS;
}
static void
anv_physical_device_init_disk_cache(struct anv_physical_device *device)
{
#ifdef ENABLE_SHADER_CACHE
char renderer[10];
ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
device->info.chipset_id);
assert(len == sizeof(renderer) - 2);
char timestamp[41];
_mesa_sha1_format(timestamp, device->driver_build_sha1);
const uint64_t driver_flags =
brw_get_compiler_config_value(device->compiler);
device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
#else
device->disk_cache = NULL;
#endif
}
static void
anv_physical_device_free_disk_cache(struct anv_physical_device *device)
{
#ifdef ENABLE_SHADER_CACHE
if (device->disk_cache)
disk_cache_destroy(device->disk_cache);
#else
assert(device->disk_cache == NULL);
#endif
}
static uint64_t
get_available_system_memory()
{
#if defined(__Fuchsia__)
return 0;
#else
char *meminfo = os_read_file("/proc/meminfo");
if (!meminfo)
return 0;
char *str = strstr(meminfo, "MemAvailable:");
if (!str) {
free(meminfo);
return 0;
}
uint64_t kb_mem_available;
if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
free(meminfo);
return kb_mem_available << 10;
}
free(meminfo);
return 0;
#endif
}
static VkResult
anv_physical_device_try_create(struct anv_instance *instance,
#if defined(ANV_MAGMA)
const char *primary_path,
const char *path,
#else
drmDevicePtr drm_device,
#endif
struct anv_physical_device **device_out)
{
#if !defined(ANV_MAGMA)
const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
const char *path = drm_device->nodes[DRM_NODE_RENDER];
#endif
VkResult result;
int master_fd = -1;
brw_process_intel_debug_variable();
#if defined(ANV_MAGMA)
anv_device_handle_t fd;
result = anv_magma_open_device_handle(path, &fd);
if (result != VK_SUCCESS)
return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
#else
int fd;
fd = open(path, O_RDWR | O_CLOEXEC);
if (fd < 0)
return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
#endif
struct gen_device_info devinfo;
if (!gen_get_device_info_from_fd(fd, &devinfo)) {
result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
goto fail_fd;
}
const char *device_name = gen_get_device_name(devinfo.chipset_id);
if (devinfo.is_haswell) {
intel_logw("Haswell Vulkan support is incomplete");
} else if (devinfo.gen == 7 && !devinfo.is_baytrail) {
intel_logw("Ivy Bridge Vulkan support is incomplete");
} else if (devinfo.gen == 7 && devinfo.is_baytrail) {
intel_logw("Bay Trail Vulkan support is incomplete");
} else if (devinfo.gen >= 8 && devinfo.gen <= 11) {
/* Gen8-11 fully supported */
} else if (devinfo.gen == 12) {
intel_logw("Vulkan is not yet fully supported on gen12");
} else {
result = vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
"Vulkan not yet supported on %s", device_name);
goto fail_fd;
}
struct anv_physical_device *device =
vk_alloc(&instance->alloc, sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (device == NULL) {
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_fd;
}
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
device->instance = instance;
assert(strlen(path) < ARRAY_SIZE(device->path));
snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
device->info = devinfo;
device->name = device_name;
device->no_hw = device->info.no_hw;
if (getenv("INTEL_NO_HW") != NULL)
device->no_hw = true;
#if !defined(ANV_MAGMA)
device->pci_info.domain = drm_device->businfo.pci->domain;
device->pci_info.bus = drm_device->businfo.pci->bus;
device->pci_info.device = drm_device->businfo.pci->dev;
device->pci_info.function = drm_device->businfo.pci->func;
#endif
device->cmd_parser_version = -1;
if (device->info.gen == 7) {
device->cmd_parser_version =
anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
if (device->cmd_parser_version == -1) {
result = vk_errorfi(device->instance, NULL,
VK_ERROR_INITIALIZATION_FAILED,
"failed to get command parser version");
goto fail_alloc;
}
}
if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
result = vk_errorfi(device->instance, NULL,
VK_ERROR_INITIALIZATION_FAILED,
"kernel missing gem wait");
goto fail_alloc;
}
if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
result = vk_errorfi(device->instance, NULL,
VK_ERROR_INITIALIZATION_FAILED,
"kernel missing execbuf2");
goto fail_alloc;
}
if (!device->info.has_llc &&
anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
result = vk_errorfi(device->instance, NULL,
VK_ERROR_INITIALIZATION_FAILED,
"kernel missing wc mmap");
goto fail_alloc;
}
device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
device->has_syncobj_wait = device->has_syncobj &&
anv_gem_supports_syncobj_wait(fd);
device->has_context_priority = anv_gem_has_context_priority(fd);
result = anv_physical_device_init_heaps(device, fd);
if (result != VK_SUCCESS)
goto fail_alloc;
#if defined(ANV_MAGMA)
device->softpin_extra_page_count = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
device->use_softpin = device->softpin_extra_page_count
&& device->supports_48bit_addresses;
#else
device->use_softpin = device->has_softpin &&
device->supports_48bit_addresses;
#endif
device->has_context_isolation =
anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
device->always_use_bindless =
env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
/* We first got the A64 messages on broadwell and we can only use them if
* we can pass addresses directly into the shader which requires softpin.
*/
device->has_a64_buffer_access = device->info.gen >= 8 &&
device->use_softpin;
/* We first get bindless image access on Skylake and we can only really do
* it if we don't have any relocations so we need softpin.
*/
device->has_bindless_images = device->info.gen >= 9 &&
device->use_softpin;
/* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
* because it's just a matter of setting the sampler address in the sample
* message header. However, we've not bothered to wire it up for vec4 so
* we leave it disabled on gen7.
*/
device->has_bindless_samplers = device->info.gen >= 8;
device->has_implicit_ccs = device->info.has_aux_map;
device->has_mem_available = get_available_system_memory() != 0;
#if defined(ANV_MAGMA)
device->always_flush_cache = false;
#else
device->always_flush_cache =
driQueryOptionb(&instance->dri_options, "always_flush_cache");
#endif
/* Starting with Gen10, the timestamp frequency of the command streamer may
* vary from one part to another. We can query the value from the kernel.
*/
if (device->info.gen >= 10) {
int timestamp_frequency =
anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
if (timestamp_frequency < 0)
intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
else
device->info.timestamp_frequency = timestamp_frequency;
}
/* GENs prior to 8 do not support EU/Subslice info */
if (device->info.gen >= 8) {
device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
/* Without this information, we cannot get the right Braswell
* brandstrings, and we have to use conservative numbers for GPGPU on
* many platforms, but otherwise, things will just work.
*/
if (device->subslice_total < 1 || device->eu_total < 1) {
#if defined(ANV_MAGMA)
intel_logw("WARNING: Unknown subslice/eu totals");
assert(false);
#else
intel_logw("Kernel 4.1 required to properly query GPU properties");
#endif
}
} else if (device->info.gen == 7) {
device->subslice_total = 1 << (device->info.gt - 1);
}
if (device->info.is_cherryview &&
device->subslice_total > 0 && device->eu_total > 0) {
/* Logical CS threads = EUs per subslice * num threads per EU */
uint32_t max_cs_threads =
device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
/* Fuse configurations may give more threads than expected, never less. */
if (max_cs_threads > device->info.max_cs_threads)
device->info.max_cs_threads = max_cs_threads;
}
device->compiler = brw_compiler_create(NULL, &device->info);
if (device->compiler == NULL) {
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_alloc;
}
device->compiler->shader_debug_log = compiler_debug_log;
device->compiler->shader_perf_log = compiler_perf_log;
device->compiler->supports_pull_constants = false;
device->compiler->constant_buffer_0_is_relative =
device->info.gen < 8 || !device->has_context_isolation;
device->compiler->supports_shader_constants = true;
device->compiler->compact_params = false;
/* Broadwell PRM says:
*
* "Before Gen8, there was a historical configuration control field to
* swizzle address bit[6] for in X/Y tiling modes. This was set in three
* different places: TILECTL[1:0], ARB_MODE[5:4], and
* DISP_ARB_CTL[14:13].
*
* For Gen8 and subsequent generations, the swizzle fields are all
* reserved, and the CPU's memory controller performs all address
* swizzling modifications."
*/
bool swizzled =
device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
isl_device_init(&device->isl_dev, &device->info, swizzled);
result = anv_physical_device_init_uuids(device);
if (result != VK_SUCCESS)
goto fail_compiler;
anv_physical_device_init_disk_cache(device);
if (instance->enabled_extensions.KHR_display) {
#if defined(ANV_MAGMA)
result = vk_errorfi(device->instance, NULL, VK_ERROR_INITIALIZATION_FAILED,
"Unsupported extension");
goto fail_fd;
#else
master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
if (master_fd >= 0) {
/* prod the device with a GETPARAM call which will fail if
* we don't have permission to even render on this device
*/
if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
close(master_fd);
master_fd = -1;
}
}
#endif
}
device->master_fd = master_fd;
result = anv_init_wsi(device);
if (result != VK_SUCCESS)
goto fail_disk_cache;
device->perf = anv_get_perf(&device->info, fd);
anv_physical_device_get_supported_extensions(device,
&device->supported_extensions);
#if defined(ANV_MAGMA)
device->magma_device = fd;
#else
device->local_fd = fd;
#endif
*device_out = device;
return VK_SUCCESS;
fail_disk_cache:
anv_physical_device_free_disk_cache(device);
fail_compiler:
ralloc_free(device->compiler);
fail_alloc:
vk_free(&instance->alloc, device);
fail_fd:
#if defined(ANV_MAGMA)
anv_magma_release_device_handle(fd);
#else
close(fd);
#endif
if (master_fd != -1)
close(master_fd);
return result;
}
static void
anv_physical_device_destroy(struct anv_physical_device *device)
{
anv_finish_wsi(device);
anv_physical_device_free_disk_cache(device);
ralloc_free(device->compiler);
ralloc_free(device->perf);
#if defined(ANV_MAGMA)
anv_magma_release_device_handle(device->magma_device);
#else
close(device->local_fd);
#endif
if (device->master_fd >= 0)
close(device->master_fd);
vk_free(&device->instance->alloc, device);
}
static void *
default_alloc_func(void *pUserData, size_t size, size_t align,
VkSystemAllocationScope allocationScope)
{
return malloc(size);
}
static void *
default_realloc_func(void *pUserData, void *pOriginal, size_t size,
size_t align, VkSystemAllocationScope allocationScope)
{
return realloc(pOriginal, size);
}
static void
default_free_func(void *pUserData, void *pMemory)
{
free(pMemory);
}
static const VkAllocationCallbacks default_alloc = {
.pUserData = NULL,
.pfnAllocation = default_alloc_func,
.pfnReallocation = default_realloc_func,
.pfnFree = default_free_func,
};
VkResult anv_EnumerateInstanceExtensionProperties(
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
if (anv_instance_extensions_supported.extensions[i]) {
vk_outarray_append(&out, prop) {
*prop = anv_instance_extensions[i];
}
}
}
return vk_outarray_status(&out);
}
VkResult anv_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance)
{
struct anv_instance *instance;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
struct anv_instance_extension_table enabled_extensions = {};
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
int idx;
for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
anv_instance_extensions[idx].extensionName) == 0)
break;
}
if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
if (!anv_instance_extensions_supported.extensions[idx])
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
enabled_extensions.extensions[idx] = true;
}
instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!instance)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
if (pAllocator)
instance->alloc = *pAllocator;
else
instance->alloc = default_alloc;
instance->app_info = (struct anv_app_info) { .api_version = 0 };
if (pCreateInfo->pApplicationInfo) {
const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
instance->app_info.app_name =
vk_strdup(&instance->alloc, app->pApplicationName,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
instance->app_info.app_version = app->applicationVersion;
instance->app_info.engine_name =
vk_strdup(&instance->alloc, app->pEngineName,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
instance->app_info.engine_version = app->engineVersion;
instance->app_info.api_version = app->apiVersion;
}
if (instance->app_info.api_version == 0)
instance->app_info.api_version = VK_API_VERSION_1_0;
instance->enabled_extensions = enabled_extensions;
for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
/* Vulkan requires that entrypoints for extensions which have not been
* enabled must not be advertised.
*/
if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
&instance->enabled_extensions)) {
instance->dispatch.entrypoints[i] = NULL;
} else {
instance->dispatch.entrypoints[i] =
anv_instance_dispatch_table.entrypoints[i];
}
}
for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
/* Vulkan requires that entrypoints for extensions which have not been
* enabled must not be advertised.
*/
if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
&instance->enabled_extensions)) {
instance->physical_device_dispatch.entrypoints[i] = NULL;
} else {
instance->physical_device_dispatch.entrypoints[i] =
anv_physical_device_dispatch_table.entrypoints[i];
}
}
for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
/* Vulkan requires that entrypoints for extensions which have not been
* enabled must not be advertised.
*/
if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
&instance->enabled_extensions, NULL)) {
instance->device_dispatch.entrypoints[i] = NULL;
} else {
instance->device_dispatch.entrypoints[i] =
anv_device_dispatch_table.entrypoints[i];
}
}
instance->physical_devices_enumerated = false;
list_inithead(&instance->physical_devices);
result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
if (result != VK_SUCCESS) {
vk_free2(&default_alloc, pAllocator, instance);
return vk_error(result);
}
instance->pipeline_cache_enabled =
env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
glsl_type_singleton_init_or_ref();
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
#if !defined(ANV_MAGMA)
driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
0, "anv", NULL,
instance->app_info.engine_name,
instance->app_info.engine_version);
#endif
*pInstance = anv_instance_to_handle(instance);
return VK_SUCCESS;
}
void anv_DestroyInstance(
VkInstance _instance,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
if (!instance)
return;
list_for_each_entry_safe(struct anv_physical_device, pdevice,
&instance->physical_devices, link)
anv_physical_device_destroy(pdevice);
vk_free(&instance->alloc, (char *)instance->app_info.app_name);
vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
VG(VALGRIND_DESTROY_MEMPOOL(instance));
vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
glsl_type_singleton_decref();
#if !defined(ANV_MAGMA)
driDestroyOptionCache(&instance->dri_options);
driDestroyOptionInfo(&instance->available_dri_options);
#endif
vk_free(&instance->alloc, instance);
}
static VkResult
anv_enumerate_physical_devices(struct anv_instance *instance)
{
if (instance->physical_devices_enumerated)
return VK_SUCCESS;
instance->physical_devices_enumerated = true;
#if defined(ANV_MAGMA)
VkResult result = VK_SUCCESS;
#ifdef DEV_GPU_PATH_OVERRIDE
struct anv_physical_device *pdevice;
result = anv_physical_device_try_create(instance,
DEV_GPU_PATH_OVERRIDE, DEV_GPU_PATH_OVERRIDE, &pdevice);
if (result == VK_SUCCESS) {
list_addtail(&pdevice->link, &instance->physical_devices);
} else if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
/* Incompatible device, skip. */
result = VK_SUCCESS;
}
#else
const char DEV_GPU[] = "/dev/class/gpu";
struct os_dirent* de;
os_dir_t* dir = os_opendir(DEV_GPU);
if (!dir) {
intel_loge("Error opening %s", DEV_GPU);
return VK_SUCCESS;
}
while ((de = os_readdir(dir)) != NULL) {
// extra +1 ensures space for null termination
char name[sizeof(DEV_GPU) + sizeof('/') + (NAME_MAX + 1) + 1];
snprintf(name, sizeof(name), "%s/%s", DEV_GPU, de->d_name);
struct anv_physical_device *pdevice;
result = anv_physical_device_try_create(instance,
name, name, &pdevice);
/* Incompatible device, skip. */
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
result = VK_SUCCESS;
continue;
}
/* Error creating the physical device, report the error. */
if (result != VK_SUCCESS)
break;
list_addtail(&pdevice->link, &instance->physical_devices);
}
os_closedir(dir);
#endif
#else
/* TODO: Check for more devices ? */
drmDevicePtr devices[8];
int max_devices;
max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
if (max_devices < 1)
return VK_SUCCESS;
VkResult result = VK_SUCCESS;
for (unsigned i = 0; i < (unsigned)max_devices; i++) {
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
devices[i]->bustype == DRM_BUS_PCI &&
devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
struct anv_physical_device *pdevice;
result = anv_physical_device_try_create(instance, devices[i],
&pdevice);
/* Incompatible DRM device, skip. */
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
result = VK_SUCCESS;
continue;
}
/* Error creating the physical device, report the error. */
if (result != VK_SUCCESS)
break;
list_addtail(&pdevice->link, &instance->physical_devices);
}
}
drmFreeDevices(devices, max_devices);
#endif
/* If we successfully enumerated any devices, call it success */
return result;
}
VkResult anv_EnumeratePhysicalDevices(
VkInstance _instance,
uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
VkResult result = anv_enumerate_physical_devices(instance);
if (result != VK_SUCCESS)
return result;
list_for_each_entry(struct anv_physical_device, pdevice,
&instance->physical_devices, link) {
vk_outarray_append(&out, i) {
*i = anv_physical_device_to_handle(pdevice);
}
}
return vk_outarray_status(&out);
}
VkResult anv_EnumeratePhysicalDeviceGroups(
VkInstance _instance,
uint32_t* pPhysicalDeviceGroupCount,
VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
pPhysicalDeviceGroupCount);
VkResult result = anv_enumerate_physical_devices(instance);
if (result != VK_SUCCESS)
return result;
list_for_each_entry(struct anv_physical_device, pdevice,
&instance->physical_devices, link) {
vk_outarray_append(&out, p) {
p->physicalDeviceCount = 1;
memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
p->subsetAllocation = false;
vk_foreach_struct(ext, p->pNext)
anv_debug_ignored_stype(ext->sType);
}
}
return vk_outarray_status(&out);
}
void anv_GetPhysicalDeviceFeatures(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures* pFeatures)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
*pFeatures = (VkPhysicalDeviceFeatures) {
.robustBufferAccess = true,
.fullDrawIndexUint32 = true,
.imageCubeArray = true,
.independentBlend = true,
.geometryShader = true,
.tessellationShader = true,
.sampleRateShading = true,
.dualSrcBlend = true,
.logicOp = true,
.multiDrawIndirect = true,
.drawIndirectFirstInstance = true,
.depthClamp = true,
.depthBiasClamp = true,
.fillModeNonSolid = true,
.depthBounds = pdevice->info.gen >= 12,
.wideLines = true,
.largePoints = true,
.alphaToOne = true,
.multiViewport = true,
.samplerAnisotropy = true,
.textureCompressionETC2 = pdevice->info.gen >= 8 ||
pdevice->info.is_baytrail,
.textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
.textureCompressionBC = true,
.occlusionQueryPrecise = true,
.pipelineStatisticsQuery = true,
.fragmentStoresAndAtomics = true,
.shaderTessellationAndGeometryPointSize = true,
.shaderImageGatherExtended = true,
.shaderStorageImageExtendedFormats = true,
.shaderStorageImageMultisample = false,
.shaderStorageImageReadWithoutFormat = false,
.shaderStorageImageWriteWithoutFormat = true,
.shaderUniformBufferArrayDynamicIndexing = true,
.shaderSampledImageArrayDynamicIndexing = true,
.shaderStorageBufferArrayDynamicIndexing = true,
.shaderStorageImageArrayDynamicIndexing = true,
.shaderClipDistance = true,
.shaderCullDistance = true,
.shaderFloat64 = pdevice->info.gen >= 8 &&
pdevice->info.has_64bit_float,
.shaderInt64 = pdevice->info.gen >= 8 &&
pdevice->info.has_64bit_int,
.shaderInt16 = pdevice->info.gen >= 8,
.shaderResourceMinLod = pdevice->info.gen >= 9,
.variableMultisampleRate = true,
.inheritedQueries = true,
};
/* We can't do image stores in vec4 shaders */
pFeatures->vertexPipelineStoresAndAtomics =
pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
struct anv_app_info *app_info = &pdevice->instance->app_info;
/* The new DOOM and Wolfenstein games require depthBounds without
* checking for it. They seem to run fine without it so just claim it's
* there and accept the consequences.
*/
if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
pFeatures->depthBounds = true;
}
static void
anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
f->storageBuffer16BitAccess = pdevice->info.gen >= 8;
f->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
f->storagePushConstant16 = pdevice->info.gen >= 8;
f->storageInputOutput16 = false;
f->multiview = true;
f->multiviewGeometryShader = true;
f->multiviewTessellationShader = true;
f->variablePointersStorageBuffer = true;
f->variablePointers = true;
f->protectedMemory = false;
f->samplerYcbcrConversion = true;
f->shaderDrawParameters = true;
}
static void
anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
f->samplerMirrorClampToEdge = true;
f->drawIndirectCount = true;
f->storageBuffer8BitAccess = pdevice->info.gen >= 8;
f->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
f->storagePushConstant8 = pdevice->info.gen >= 8;
f->shaderBufferInt64Atomics = pdevice->info.gen >= 9 &&
pdevice->use_softpin;
f->shaderSharedInt64Atomics = false;
f->shaderFloat16 = pdevice->info.gen >= 8;
f->shaderInt8 = pdevice->info.gen >= 8;
bool descIndexing = pdevice->has_a64_buffer_access &&
pdevice->has_bindless_images;
f->descriptorIndexing = descIndexing;
f->shaderInputAttachmentArrayDynamicIndexing = false;
f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
f->shaderUniformBufferArrayNonUniformIndexing = false;
f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
f->shaderInputAttachmentArrayNonUniformIndexing = false;
f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
f->descriptorBindingUniformBufferUpdateAfterBind = false;
f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
f->descriptorBindingPartiallyBound = descIndexing;
f->descriptorBindingVariableDescriptorCount = false;
f->runtimeDescriptorArray = descIndexing;
f->samplerFilterMinmax = pdevice->info.gen >= 9;
f->scalarBlockLayout = true;
f->imagelessFramebuffer = true;
f->uniformBufferStandardLayout = true;
f->shaderSubgroupExtendedTypes = true;
f->separateDepthStencilLayouts = true;
f->hostQueryReset = true;
f->timelineSemaphore = true;
f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
f->bufferDeviceAddressMultiDevice = false;
f->vulkanMemoryModel = true;
f->vulkanMemoryModelDeviceScope = true;
f->vulkanMemoryModelAvailabilityVisibilityChains = true;
f->shaderOutputViewportIndex = true;
f->shaderOutputLayer = true;
f->subgroupBroadcastDynamicId = true;
}
void anv_GetPhysicalDeviceFeatures2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2* pFeatures)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
VkPhysicalDeviceVulkan11Features core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
};
anv_get_physical_device_features_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Features core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
};
anv_get_physical_device_features_1_2(pdevice, &core_1_2);
#define CORE_FEATURE(major, minor, feature) \
features->feature = core_##major##_##minor.feature
vk_foreach_struct(ext, pFeatures->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
VkPhysicalDevice8BitStorageFeaturesKHR *features =
(VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
CORE_FEATURE(1, 2, storageBuffer8BitAccess);
CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
CORE_FEATURE(1, 2, storagePushConstant8);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
VkPhysicalDevice16BitStorageFeatures *features =
(VkPhysicalDevice16BitStorageFeatures *)ext;
CORE_FEATURE(1, 1, storageBuffer16BitAccess);
CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
CORE_FEATURE(1, 1, storagePushConstant16);
CORE_FEATURE(1, 1, storageInputOutput16);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
features->bufferDeviceAddressCaptureReplay = false;
features->bufferDeviceAddressMultiDevice = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
CORE_FEATURE(1, 2, bufferDeviceAddress);
CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
(VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
features->computeDerivativeGroupQuads = true;
features->computeDerivativeGroupLinear = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
(VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
features->conditionalRendering = pdevice->info.gen >= 8 ||
pdevice->info.is_haswell;
features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
pdevice->info.is_haswell;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
(VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
features->depthClipEnable = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
CORE_FEATURE(1, 2, shaderFloat16);
CORE_FEATURE(1, 2, shaderInt8);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
(VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
features->fragmentShaderShadingRateInterlock = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
(VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
CORE_FEATURE(1, 2, hostQueryReset);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
(VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
CORE_FEATURE(1, 2, runtimeDescriptorArray);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
(VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
features->indexTypeUint8 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
(VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
features->inlineUniformBlock = true;
features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
(VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
features->rectangularLines = true;
features->bresenhamLines = true;
/* Support for Smooth lines with MSAA was removed on gen11. From the
* BSpec section "Multisample ModesState" table for "AA Line Support
* Requirements":
*
* GEN10:BUG:######## NUM_MULTISAMPLES == 1
*
* Fortunately, this isn't a case most people care about.
*/
features->smoothLines = pdevice->info.gen < 10;
features->stippledRectangularLines = false;
features->stippledBresenhamLines = true;
features->stippledSmoothLines = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
VkPhysicalDeviceMultiviewFeatures *features =
(VkPhysicalDeviceMultiviewFeatures *)ext;
CORE_FEATURE(1, 1, multiview);
CORE_FEATURE(1, 1, multiviewGeometryShader);
CORE_FEATURE(1, 1, multiviewTessellationShader);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
(VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
CORE_FEATURE(1, 2, imagelessFramebuffer);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
(VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
features->pipelineExecutableInfo = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
CORE_FEATURE(1, 1, protectedMemory);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
(VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
CORE_FEATURE(1, 1, samplerYcbcrConversion);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
(VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
CORE_FEATURE(1, 2, scalarBlockLayout);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
(VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
CORE_FEATURE(1, 2, separateDepthStencilLayouts);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
features->shaderDemoteToHelperInvocation = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
VkPhysicalDeviceShaderClockFeaturesKHR *features =
(VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
features->shaderSubgroupClock = true;
features->shaderDeviceClock = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
CORE_FEATURE(1, 1, shaderDrawParameters);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
(VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
(VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
features->subgroupSizeControl = true;
features->computeFullSubgroups = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
(VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
features->texelBufferAlignment = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
(VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
CORE_FEATURE(1, 2, timelineSemaphore);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
CORE_FEATURE(1, 1, variablePointersStorageBuffer);
CORE_FEATURE(1, 1, variablePointers);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
(VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
features->transformFeedback = true;
features->geometryStreams = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
(VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
CORE_FEATURE(1, 2, uniformBufferStandardLayout);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
(VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
features->vertexAttributeInstanceRateDivisor = true;
features->vertexAttributeInstanceRateZeroDivisor = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
anv_get_physical_device_features_1_1(pdevice, (void *)ext);
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
anv_get_physical_device_features_1_2(pdevice, (void *)ext);
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
CORE_FEATURE(1, 2, vulkanMemoryModel);
CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
(VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
features->ycbcrImageArrays = true;
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
#undef CORE_FEATURE
}
#define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
#define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
#define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
void anv_GetPhysicalDeviceProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties* pProperties)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
const struct gen_device_info *devinfo = &pdevice->info;
/* See assertions made when programming the buffer surface state. */
const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
(1ul << 30) : (1ul << 27);
const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
const uint32_t max_textures =
pdevice->has_bindless_images ? UINT16_MAX : 128;
const uint32_t max_samplers =
pdevice->has_bindless_samplers ? UINT16_MAX :
(devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
const uint32_t max_images =
pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
/* If we can use bindless for everything, claim a high per-stage limit,
* otherwise use the binding table size, minus the slots reserved for
* render targets and one slot for the descriptor buffer. */
const uint32_t max_per_stage =
pdevice->has_bindless_images && pdevice->has_a64_buffer_access
? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
/* Limit max_threads to 64 for the GPGPU_WALKER command */
const uint32_t max_workgroup_size = 32 * MIN2(64, devinfo->max_cs_threads);
VkSampleCountFlags sample_counts =
isl_device_get_sample_counts(&pdevice->isl_dev);
VkPhysicalDeviceLimits limits = {
.maxImageDimension1D = (1 << 14),
.maxImageDimension2D = (1 << 14),
.maxImageDimension3D = (1 << 11),
.maxImageDimensionCube = (1 << 14),
.maxImageArrayLayers = (1 << 11),
.maxTexelBufferElements = 128 * 1024 * 1024,
.maxUniformBufferRange = (1ul << 27),
.maxStorageBufferRange = max_raw_buffer_sz,
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
.maxMemoryAllocationCount = UINT32_MAX,
.maxSamplerAllocationCount = 64 * 1024,
.bufferImageGranularity = 64, /* A cache line */
.sparseAddressSpaceSize = 0,
.maxBoundDescriptorSets = MAX_SETS,
.maxPerStageDescriptorSamplers = max_samplers,
.maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
.maxPerStageDescriptorStorageBuffers = max_ssbos,
.maxPerStageDescriptorSampledImages = max_textures,
.maxPerStageDescriptorStorageImages = max_images,
.maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
.maxPerStageResources = max_per_stage,
.maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
.maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
.maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
.maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
.maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
.maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
.maxVertexInputAttributes = MAX_VBS,
.maxVertexInputBindings = MAX_VBS,
.maxVertexInputAttributeOffset = 2047,
.maxVertexInputBindingStride = 2048,
.maxVertexOutputComponents = 128,
.maxTessellationGenerationLevel = 64,
.maxTessellationPatchSize = 32,
.maxTessellationControlPerVertexInputComponents = 128,
.maxTessellationControlPerVertexOutputComponents = 128,
.maxTessellationControlPerPatchOutputComponents = 128,
.maxTessellationControlTotalOutputComponents = 2048,
.maxTessellationEvaluationInputComponents = 128,
.maxTessellationEvaluationOutputComponents = 128,
.maxGeometryShaderInvocations = 32,
.maxGeometryInputComponents = 64,
.maxGeometryOutputComponents = 128,
.maxGeometryOutputVertices = 256,
.maxGeometryTotalOutputComponents = 1024,
.maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
.maxFragmentOutputAttachments = 8,
.maxFragmentDualSrcAttachments = 1,
.maxFragmentCombinedOutputResources = 8,
.maxComputeSharedMemorySize = 64 * 1024,
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
.maxComputeWorkGroupInvocations = max_workgroup_size,
.maxComputeWorkGroupSize = {
max_workgroup_size,
max_workgroup_size,
max_workgroup_size,
},
.subPixelPrecisionBits = 8,
.subTexelPrecisionBits = 8,
.mipmapPrecisionBits = 8,
.maxDrawIndexedIndexValue = UINT32_MAX,
.maxDrawIndirectCount = UINT32_MAX,
.maxSamplerLodBias = 16,
.maxSamplerAnisotropy = 16,
.maxViewports = MAX_VIEWPORTS,
.maxViewportDimensions = { (1 << 14), (1 << 14) },
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
.viewportSubPixelBits = 13, /* We take a float? */
.minMemoryMapAlignment = 4096, /* A page */
/* The dataport requires texel alignment so we need to assume a worst
* case of R32G32B32A32 which is 16 bytes.
*/
.minTexelBufferOffsetAlignment = 16,
/* We need 16 for UBO block reads to work and 32 for push UBOs */
.minUniformBufferOffsetAlignment = 32,
.minStorageBufferOffsetAlignment = 4,
.minTexelOffset = -8,
.maxTexelOffset = 7,
.minTexelGatherOffset = -32,
.maxTexelGatherOffset = 31,
.minInterpolationOffset = -0.5,
.maxInterpolationOffset = 0.4375,
.subPixelInterpolationOffsetBits = 4,
.maxFramebufferWidth = (1 << 14),
.maxFramebufferHeight = (1 << 14),
.maxFramebufferLayers = (1 << 11),
.framebufferColorSampleCounts = sample_counts,
.framebufferDepthSampleCounts = sample_counts,
.framebufferStencilSampleCounts = sample_counts,
.framebufferNoAttachmentsSampleCounts = sample_counts,
.maxColorAttachments = MAX_RTS,
.sampledImageColorSampleCounts = sample_counts,
.sampledImageIntegerSampleCounts = sample_counts,
.sampledImageDepthSampleCounts = sample_counts,
.sampledImageStencilSampleCounts = sample_counts,
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
.maxSampleMaskWords = 1,
.timestampComputeAndGraphics = true,
.timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
.maxClipDistances = 8,
.maxCullDistances = 8,
.maxCombinedClipAndCullDistances = 8,
.discreteQueuePriorities = 2,
.pointSizeRange = { 0.125, 255.875 },
.lineWidthRange = {
0.0,
(devinfo->gen >= 9 || devinfo->is_cherryview) ?
2047.9921875 : 7.9921875,
},
.pointSizeGranularity = (1.0 / 8.0),
.lineWidthGranularity = (1.0 / 128.0),
.strictLines = false,
.standardSampleLocations = true,
.optimalBufferCopyOffsetAlignment = 128,
.optimalBufferCopyRowPitchAlignment = 128,
.nonCoherentAtomSize = 64,
};
*pProperties = (VkPhysicalDeviceProperties) {
.apiVersion = anv_physical_device_api_version(pdevice),
.driverVersion = vk_get_driver_version(),
.vendorID = 0x8086,
.deviceID = pdevice->info.chipset_id,
.deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
.limits = limits,
.sparseProperties = {0}, /* Broadwell doesn't do sparse. */
};
snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
"%s", pdevice->name);
memcpy(pProperties->pipelineCacheUUID,
pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
}
static void
anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
memset(p->deviceLUID, 0, VK_LUID_SIZE);
p->deviceNodeMask = 0;
p->deviceLUIDValid = false;
p->subgroupSize = BRW_SUBGROUP_SIZE;
VkShaderStageFlags scalar_stages = 0;
for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
if (pdevice->compiler->scalar_stage[stage])
scalar_stages |= mesa_to_vk_shader_stage(stage);
}
p->subgroupSupportedStages = scalar_stages;
p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
VK_SUBGROUP_FEATURE_VOTE_BIT |
VK_SUBGROUP_FEATURE_BALLOT_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
VK_SUBGROUP_FEATURE_QUAD_BIT;
if (pdevice->info.gen >= 8) {
/* TODO: There's no technical reason why these can't be made to
* work on gen7 but they don't at the moment so it's best to leave
* the feature disabled than enabled and broken.
*/
p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
}
p->subgroupQuadOperationsInAllStages = pdevice->info.gen >= 8;
p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
p->maxMultiviewViewCount = 16;
p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
p->protectedNoFault = false;
/* This value doesn't matter for us today as our per-stage descriptors are
* the real limit.
*/
p->maxPerSetDescriptors = 1024;
p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
}
static void
anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
memset(p->driverName, 0, sizeof(p->driverName));
snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
"Intel open-source Mesa driver");
memset(p->driverInfo, 0, sizeof(p->driverInfo));
snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
"Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
p->conformanceVersion = (VkConformanceVersionKHR) {
.major = 1,
.minor = 2,
.subminor = 0,
.patch = 0,
};
p->denormBehaviorIndependence =
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
p->roundingModeIndependence =
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
/* Broadwell does not support HF denorms and there are restrictions
* other gens. According to Kabylake's PRM:
*
* "math - Extended Math Function
* [...]
* Restriction : Half-float denorms are always retained."
*/
p->shaderDenormFlushToZeroFloat16 = false;
p->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
p->shaderRoundingModeRTEFloat16 = true;
p->shaderRoundingModeRTZFloat16 = true;
p->shaderSignedZeroInfNanPreserveFloat16 = true;
p->shaderDenormFlushToZeroFloat32 = true;
p->shaderDenormPreserveFloat32 = true;
p->shaderRoundingModeRTEFloat32 = true;
p->shaderRoundingModeRTZFloat32 = true;
p->shaderSignedZeroInfNanPreserveFloat32 = true;
p->shaderDenormFlushToZeroFloat64 = true;
p->shaderDenormPreserveFloat64 = true;
p->shaderRoundingModeRTEFloat64 = true;
p->shaderRoundingModeRTZFloat64 = true;
p->shaderSignedZeroInfNanPreserveFloat64 = true;
/* It's a bit hard to exactly map our implementation to the limits
* described here. The bindless surface handle in the extended
* message descriptors is 20 bits and it's an index into the table of
* RENDER_SURFACE_STATE structs that starts at bindless surface base
* address. Given that most things consume two surface states per
* view (general/sampled for textures and write-only/read-write for
* images), we claim 2^19 things.
*
* For SSBOs, we just use A64 messages so there is no real limit
* there beyond the limit on the total size of a descriptor set.
*/
const unsigned max_bindless_views = 1 << 19;
p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
p->shaderUniformBufferArrayNonUniformIndexingNative = false;
p->shaderSampledImageArrayNonUniformIndexingNative = false;
p->shaderStorageBufferArrayNonUniformIndexingNative = true;
p->shaderStorageImageArrayNonUniformIndexingNative = false;
p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
p->robustBufferAccessUpdateAfterBind = true;
p->quadDivergentImplicitLod = false;
p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
/* We support all of the depth resolve modes */
p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
VK_RESOLVE_MODE_MIN_BIT_KHR |
VK_RESOLVE_MODE_MAX_BIT_KHR;
/* Average doesn't make sense for stencil so we don't support that */
p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
if (pdevice->info.gen >= 8) {
/* The advanced stencil resolve modes currently require stencil
* sampling be supported by the hardware.
*/
p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR |
VK_RESOLVE_MODE_MAX_BIT_KHR;
}
p->independentResolveNone = true;
p->independentResolve = true;
p->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
p->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
p->framebufferIntegerColorSampleCounts =
isl_device_get_sample_counts(&pdevice->isl_dev);
}
void anv_GetPhysicalDeviceProperties2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2* pProperties)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
VkPhysicalDeviceVulkan11Properties core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
};
anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Properties core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
};
anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
#define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
sizeof(core_##major##_##minor.core_property))
#define CORE_PROPERTY(major, minor, property) \
CORE_RENAMED_PROPERTY(major, minor, property, property)
vk_foreach_struct(ext, pProperties->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
(VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
CORE_PROPERTY(1, 2, supportedDepthResolveModes);
CORE_PROPERTY(1, 2, supportedStencilResolveModes);
CORE_PROPERTY(1, 2, independentResolveNone);
CORE_PROPERTY(1, 2, independentResolve);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
(VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
VkPhysicalDeviceDriverPropertiesKHR *properties =
(VkPhysicalDeviceDriverPropertiesKHR *) ext;
CORE_PROPERTY(1, 2, driverID);
CORE_PROPERTY(1, 2, driverName);
CORE_PROPERTY(1, 2, driverInfo);
CORE_PROPERTY(1, 2, conformanceVersion);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
(VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
/* Userptr needs page aligned memory. */
props->minImportedHostPointerAlignment = 4096;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
VkPhysicalDeviceIDProperties *properties =
(VkPhysicalDeviceIDProperties *)ext;
CORE_PROPERTY(1, 1, deviceUUID);
CORE_PROPERTY(1, 1, driverUUID);
CORE_PROPERTY(1, 1, deviceLUID);
CORE_PROPERTY(1, 1, deviceLUIDValid);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
(VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
props->maxPerStageDescriptorInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
props->maxDescriptorSetInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
(VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
/* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
* Sampling Rules - Legacy Mode", it says the following:
*
* "Note that the device divides a pixel into a 16x16 array of
* subpixels, referenced by their upper left corners."
*
* This is the only known reference in the PRMs to the subpixel
* precision of line rasterization and a "16x16 array of subpixels"
* implies 4 subpixel precision bits. Empirical testing has shown
* that 4 subpixel precision bits applies to all line rasterization
* types.
*/
props->lineSubPixelPrecisionBits = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
VkPhysicalDeviceMaintenance3Properties *properties =
(VkPhysicalDeviceMaintenance3Properties *)ext;
/* This value doesn't matter for us today as our per-stage
* descriptors are the real limit.
*/
CORE_PROPERTY(1, 1, maxPerSetDescriptors);
CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
VkPhysicalDeviceMultiviewProperties *properties =
(VkPhysicalDeviceMultiviewProperties *)ext;
CORE_PROPERTY(1, 1, maxMultiviewViewCount);
CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
break;
}
#if !defined(ANV_MAGMA) // TODO(MA-649)
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
(VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
properties->pciDomain = pdevice->pci_info.domain;
properties->pciBus = pdevice->pci_info.bus;
properties->pciDevice = pdevice->pci_info.device;
properties->pciFunction = pdevice->pci_info.function;
break;
}
#endif
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
VkPhysicalDevicePointClippingProperties *properties =
(VkPhysicalDevicePointClippingProperties *) ext;
CORE_PROPERTY(1, 1, pointClippingBehavior);
break;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch"
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
VkPhysicalDevicePresentationPropertiesANDROID *props =
(VkPhysicalDevicePresentationPropertiesANDROID *)ext;
props->sharedImage = VK_FALSE;
break;
}
#pragma GCC diagnostic pop
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
VkPhysicalDeviceProtectedMemoryProperties *properties =
(VkPhysicalDeviceProtectedMemoryProperties *)ext;
CORE_PROPERTY(1, 1, protectedNoFault);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
(VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
(VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
CORE_PROPERTY(1, 1, subgroupSize);
CORE_RENAMED_PROPERTY(1, 1, supportedStages,
subgroupSupportedStages);
CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
subgroupSupportedOperations);
CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
subgroupQuadOperationsInAllStages);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
(VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
props->minSubgroupSize = 8;
props->maxSubgroupSize = 32;
props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
CORE_PROPERTY(1, 2, denormBehaviorIndependence);
CORE_PROPERTY(1, 2, roundingModeIndependence);
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
(VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
/* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
* Base Address:
*
* "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
* specifies the base address of the first element of the surface,
* computed in software by adding the surface base address to the
* byte offset of the element in the buffer. The base address must
* be aligned to element size."
*
* The typed dataport messages require that things be texel aligned.
* Otherwise, we may just load/store the wrong data or, in the worst
* case, there may be hangs.
*/
props->storageTexelBufferOffsetAlignmentBytes = 16;
props->storageTexelBufferOffsetSingleTexelAlignment = true;
/* The sampler, however, is much more forgiving and it can handle
* arbitrary byte alignment for linear and buffer surfaces. It's
* hard to find a good PRM citation for this but years of empirical
* experience demonstrate that this is true.
*/
props->uniformTexelBufferOffsetAlignmentBytes = 1;
props->uniformTexelBufferOffsetSingleTexelAlignment = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
VkPhysicalDeviceTimelineSemaphorePropertiesKHR *properties =
(VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
(VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
props->maxTransformFeedbackBufferSize = (1ull << 32);
props->maxTransformFeedbackStreamDataSize = 128 * 4;
props->maxTransformFeedbackBufferDataSize = 128 * 4;
props->maxTransformFeedbackBufferDataStride = 2048;
props->transformFeedbackQueries = true;
props->transformFeedbackStreamsLinesTriangles = false;
props->transformFeedbackRasterizationStreamSelect = false;
props->transformFeedbackDraw = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
(VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
/* We have to restrict this a bit for multiview */
props->maxVertexAttribDivisor = UINT32_MAX / 16;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
anv_get_physical_device_properties_1_1(pdevice, (void *)ext);
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
anv_get_physical_device_properties_1_2(pdevice, (void *)ext);
break;
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
#undef CORE_RENAMED_PROPERTY
#undef CORE_PROPERTY
}
/* We support exactly one queue family. */
static const VkQueueFamilyProperties
anv_queue_family_properties = {
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT,
.queueCount = 1,
.timestampValidBits = 36, /* XXX: Real value here */
.minImageTransferGranularity = { 1, 1, 1 },
};
void anv_GetPhysicalDeviceQueueFamilyProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pCount,
VkQueueFamilyProperties* pQueueFamilyProperties)
{
VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
vk_outarray_append(&out, p) {
*p = anv_queue_family_properties;
}
}
void anv_GetPhysicalDeviceQueueFamilyProperties2(
VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties2* pQueueFamilyProperties)
{
VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
vk_outarray_append(&out, p) {
p->queueFamilyProperties = anv_queue_family_properties;
vk_foreach_struct(s, p->pNext) {
anv_debug_ignored_stype(s->sType);
}
}
}
void anv_GetPhysicalDeviceMemoryProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties* pMemoryProperties)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
.propertyFlags = physical_device->memory.types[i].propertyFlags,
.heapIndex = physical_device->memory.types[i].heapIndex,
};
}
pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
.size = physical_device->memory.heaps[i].size,
.flags = physical_device->memory.heaps[i].flags,
};
}
}
static void
anv_get_memory_budget(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
{
ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
uint64_t sys_available = get_available_system_memory();
assert(sys_available > 0);
VkDeviceSize total_heaps_size = 0;
for (size_t i = 0; i < device->memory.heap_count; i++)
total_heaps_size += device->memory.heaps[i].size;
for (size_t i = 0; i < device->memory.heap_count; i++) {
VkDeviceSize heap_size = device->memory.heaps[i].size;
VkDeviceSize heap_used = device->memory.heaps[i].used;
VkDeviceSize heap_budget;
double heap_proportion = (double) heap_size / total_heaps_size;
VkDeviceSize sys_available_prop = sys_available * heap_proportion;
/*
* Let's not incite the app to starve the system: report at most 90% of
* available system memory.
*/
uint64_t heap_available = sys_available_prop * 9 / 10;
heap_budget = MIN2(heap_size, heap_used + heap_available);
/*
* Round down to the nearest MB
*/
heap_budget &= ~((1ull << 20) - 1);
/*
* The heapBudget value must be non-zero for array elements less than
* VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
* value must be less than or equal to VkMemoryHeap::size for each heap.
*/
assert(0 < heap_budget && heap_budget <= heap_size);
memoryBudget->heapUsage[i] = heap_used;
memoryBudget->heapBudget[i] = heap_budget;
}
/* The heapBudget and heapUsage values must be zero for array elements
* greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
*/
for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
memoryBudget->heapBudget[i] = 0;
memoryBudget->heapUsage[i] = 0;
}
}
void anv_GetPhysicalDeviceMemoryProperties2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
{
anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
&pMemoryProperties->memoryProperties);
vk_foreach_struct(ext, pMemoryProperties->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
anv_get_memory_budget(physicalDevice, (void*)ext);
break;
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
}
void
anv_GetDeviceGroupPeerMemoryFeatures(
VkDevice device,
uint32_t heapIndex,
uint32_t localDeviceIndex,
uint32_t remoteDeviceIndex,
VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
{
assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
*pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
}
PFN_vkVoidFunction anv_GetInstanceProcAddr(
VkInstance _instance,
const char* pName)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
/* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
* when we have to return valid function pointers, NULL, or it's left
* undefined. See the table for exact details.
*/
if (pName == NULL)
return NULL;
#define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
if (strcmp(pName, "vk" #entrypoint) == 0) \
return (PFN_vkVoidFunction)anv_##entrypoint
LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
LOOKUP_ANV_ENTRYPOINT(CreateInstance);
#undef LOOKUP_ANV_ENTRYPOINT
if (instance == NULL)
return NULL;
int idx = anv_get_instance_entrypoint_index(pName);
if (idx >= 0)
return instance->dispatch.entrypoints[idx];
idx = anv_get_physical_device_entrypoint_index(pName);
if (idx >= 0)
return instance->physical_device_dispatch.entrypoints[idx];
idx = anv_get_device_entrypoint_index(pName);
if (idx >= 0)
return instance->device_dispatch.entrypoints[idx];
return NULL;
}
/* With version 1+ of the loader interface the ICD should expose
* vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
*/
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName);
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName)
{
return anv_GetInstanceProcAddr(instance, pName);
}
PFN_vkVoidFunction anv_GetDeviceProcAddr(
VkDevice _device,
const char* pName)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (!device || !pName)
return NULL;
int idx = anv_get_device_entrypoint_index(pName);
if (idx < 0)
return NULL;
return device->dispatch.entrypoints[idx];
}
/* With version 4+ of the loader interface the ICD should expose
* vk_icdGetPhysicalDeviceProcAddr()
*/
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
VkInstance _instance,
const char* pName);
PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
VkInstance _instance,
const char* pName)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
if (!pName || !instance)
return NULL;
int idx = anv_get_physical_device_entrypoint_index(pName);
if (idx < 0)
return NULL;
return instance->physical_device_dispatch.entrypoints[idx];
}
VkResult
anv_CreateDebugReportCallbackEXT(VkInstance _instance,
const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDebugReportCallbackEXT* pCallback)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
return vk_create_debug_report_callback(&instance->debug_report_callbacks,
pCreateInfo, pAllocator, &instance->alloc,
pCallback);
}
void
anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
VkDebugReportCallbackEXT _callback,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
_callback, pAllocator, &instance->alloc);
}
void
anv_DebugReportMessageEXT(VkInstance _instance,
VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object,
size_t location,
int32_t messageCode,
const char* pLayerPrefix,
const char* pMessage)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
object, location, messageCode, pLayerPrefix, pMessage);
}
static struct anv_state
anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
{
struct anv_state state;
state = anv_state_pool_alloc(pool, size, align);
memcpy(state.map, p, size);
return state;
}
/* Haswell border color is a bit of a disaster. Float and unorm formats use a
* straightforward 32-bit float color in the first 64 bytes. Instead of using
* a nice float/integer union like Gen8+, Haswell specifies the integer border
* color as a separate entry /after/ the float color. The layout of this entry
* also depends on the format's bpp (with extra hacks for RG32), and overlaps.
*
* Since we don't know the format/bpp, we can't make any of the border colors
* containing '1' work for all formats, as it would be in the wrong place for
* some of them. We opt to make 32-bit integers work as this seems like the
* most common option. Fortunately, transparent black works regardless, as
* all zeroes is the same in every bit-size.
*/
struct hsw_border_color {
float float32[4];
uint32_t _pad0[12];
uint32_t uint32[4];
uint32_t _pad1[108];
};
struct gen8_border_color {
union {
float float32[4];
uint32_t uint32[4];
};
/* Pad out to 64 bytes */
uint32_t _pad[12];
};
static void
anv_device_init_border_colors(struct anv_device *device)
{
if (device->info.is_haswell) {
static const struct hsw_border_color border_colors[] = {
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
};
device->border_colors =
anv_state_pool_emit_data(&device->dynamic_state_pool,
sizeof(border_colors), 512, border_colors);
} else {
static const struct gen8_border_color border_colors[] = {
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
};
device->border_colors =
anv_state_pool_emit_data(&device->dynamic_state_pool,
sizeof(border_colors), 64, border_colors);
}
}
static VkResult
anv_device_init_trivial_batch(struct anv_device *device)
{
VkResult result = anv_device_alloc_bo(device, 4096,
ANV_BO_ALLOC_MAPPED,
0 /* explicit_address */,
&device->trivial_batch_bo);
if (result != VK_SUCCESS)
return result;
struct anv_batch batch = {
.start = device->trivial_batch_bo->map,
.next = device->trivial_batch_bo->map,
.end = device->trivial_batch_bo->map + 4096,
};
anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
if (!device->info.has_llc)
gen_clflush_range(batch.start, batch.next - batch.start);
return VK_SUCCESS;
}
VkResult anv_EnumerateDeviceExtensionProperties(
VkPhysicalDevice physicalDevice,
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
if (device->supported_extensions.extensions[i]) {
vk_outarray_append(&out, prop) {
*prop = anv_device_extensions[i];
}
}
}
return vk_outarray_status(&out);
}
static void
anv_device_init_dispatch(struct anv_device *device)
{
const struct anv_instance *instance = device->physical->instance;
const struct anv_device_dispatch_table *genX_table;
switch (device->info.gen) {
case 12:
genX_table = &gen12_device_dispatch_table;
break;
case 11:
genX_table = &gen11_device_dispatch_table;
break;
case 10:
genX_table = &gen10_device_dispatch_table;
break;
case 9:
genX_table = &gen9_device_dispatch_table;
break;
case 8:
genX_table = &gen8_device_dispatch_table;
break;
case 7:
if (device->info.is_haswell)
genX_table = &gen75_device_dispatch_table;
else
genX_table = &gen7_device_dispatch_table;
break;
default:
unreachable("unsupported gen\n");
}
for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
/* Vulkan requires that entrypoints for extensions which have not been
* enabled must not be advertised.
*/
if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
&instance->enabled_extensions,
&device->enabled_extensions)) {
device->dispatch.entrypoints[i] = NULL;
} else if (genX_table->entrypoints[i]) {
device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
} else {
device->dispatch.entrypoints[i] =
anv_device_dispatch_table.entrypoints[i];
}
}
}
static int
vk_priority_to_gen(int priority)
{
switch (priority) {
case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
return GEN_CONTEXT_LOW_PRIORITY;
case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
return GEN_CONTEXT_MEDIUM_PRIORITY;
case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
return GEN_CONTEXT_HIGH_PRIORITY;
case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
return GEN_CONTEXT_REALTIME_PRIORITY;
default:
unreachable("Invalid priority");
}
}
static VkResult
anv_device_init_hiz_clear_value_bo(struct anv_device *device)
{
VkResult result = anv_device_alloc_bo(device, 4096,
ANV_BO_ALLOC_MAPPED,
0 /* explicit_address */,
&device->hiz_clear_bo);
if (result != VK_SUCCESS)
return result;
union isl_color_value hiz_clear = { .u32 = { 0, } };
hiz_clear.f32[0] = ANV_HZ_FC_VAL;
memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
if (!device->info.has_llc)
gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
return VK_SUCCESS;
}
static bool
get_bo_from_pool(struct gen_batch_decode_bo *ret,
struct anv_block_pool *pool,
uint64_t address)
{
anv_block_pool_foreach_bo(bo, pool) {
uint64_t bo_address = gen_48b_address(bo->offset);
if (address >= bo_address && address < (bo_address + bo->size)) {
*ret = (struct gen_batch_decode_bo) {
.addr = bo_address,
.size = bo->size,
.map = bo->map,
};
return true;
}
}
return false;
}
/* Finding a buffer for batch decoding */
static struct gen_batch_decode_bo
decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
{
struct anv_device *device = v_batch;
struct gen_batch_decode_bo ret_bo = {};
assert(ppgtt);
if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
return ret_bo;
if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
return ret_bo;
if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
return ret_bo;
if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
return ret_bo;
if (!device->cmd_buffer_being_decoded)
return (struct gen_batch_decode_bo) { };
struct anv_batch_bo **bo;
u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
/* The decoder zeroes out the top 16 bits, so we need to as well */
uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
return (struct gen_batch_decode_bo) {
.addr = bo_address,
.size = (*bo)->bo->size,
.map = (*bo)->bo->map,
};
}
}
return (struct gen_batch_decode_bo) { };
}
struct gen_aux_map_buffer {
struct gen_buffer base;
struct anv_state state;
};
static struct gen_buffer *
gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
{
struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
if (!buf)
return NULL;
struct anv_device *device = (struct anv_device*)driver_ctx;
assert(device->physical->supports_48bit_addresses &&
device->physical->use_softpin);
struct anv_state_pool *pool = &device->dynamic_state_pool;
buf->state = anv_state_pool_alloc(pool, size, size);
buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
buf->base.map = buf->state.map;
buf->base.driver_bo = &buf->state;
return &buf->base;
}
static void
gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
{
struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
struct anv_device *device = (struct anv_device*)driver_ctx;
struct anv_state_pool *pool = &device->dynamic_state_pool;
anv_state_pool_free(pool, buf->state);
free(buf);
}
static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
.alloc = gen_aux_map_buffer_alloc,
.free = gen_aux_map_buffer_free,
};
static VkResult
check_physical_device_features(VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceFeatures *features)
{
VkPhysicalDeviceFeatures supported_features;
anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
VkBool32 *supported_feature = (VkBool32 *)&supported_features;
VkBool32 *enabled_feature = (VkBool32 *)features;
unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
for (uint32_t i = 0; i < num_features; i++) {
if (enabled_feature[i] && !supported_feature[i])
return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
}
return VK_SUCCESS;
}
VkResult anv_CreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
VkResult result;
struct anv_device *device;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
struct anv_device_extension_table enabled_extensions = { };
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
int idx;
for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
anv_device_extensions[idx].extensionName) == 0)
break;
}
if (idx >= ANV_DEVICE_EXTENSION_COUNT)
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
if (!physical_device->supported_extensions.extensions[idx])
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
enabled_extensions.extensions[idx] = true;
}
/* Check enabled features */
bool robust_buffer_access = false;
if (pCreateInfo->pEnabledFeatures) {
result = check_physical_device_features(physicalDevice,
pCreateInfo->pEnabledFeatures);
if (result != VK_SUCCESS)
return result;
if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
robust_buffer_access = true;
}
vk_foreach_struct_const(ext, pCreateInfo->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
result = check_physical_device_features(physicalDevice,
&features->features);
if (result != VK_SUCCESS)
return result;
if (features->features.robustBufferAccess)
robust_buffer_access = true;
break;
}
default:
/* Don't warn */
break;
}
}
/* Check requested queues and fail if we are requested to create any
* queues with flags we don't support.
*/
assert(pCreateInfo->queueCreateInfoCount > 0);
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
return vk_error(VK_ERROR_INITIALIZATION_FAILED);
}
/* Check if client specified queue priority. */
const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
VkQueueGlobalPriorityEXT priority =
queue_priority ? queue_priority->globalPriority :
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
if (INTEL_DEBUG & DEBUG_BATCH) {
const unsigned decode_flags =
GEN_BATCH_DECODE_FULL |
((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
GEN_BATCH_DECODE_OFFSETS |
GEN_BATCH_DECODE_FLOATS;
gen_batch_decode_ctx_init(&device->decoder_ctx,
&physical_device->info,
stderr, decode_flags, NULL,
decode_get_bo, NULL, device);
}
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
device->physical = physical_device;
device->no_hw = physical_device->no_hw;
device->_lost = false;
if (pAllocator)
device->alloc = *pAllocator;
else
device->alloc = physical_device->instance->alloc;
#if defined(ANV_MAGMA)
result = anv_magma_open_device_handle(physical_device->path, &device->handle);
if (result != VK_SUCCESS) {
goto fail_device;
}
#else
/* XXX(chadv): Can we dup() physicalDevice->fd here? */
device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
if (device->fd == -1) {
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
goto fail_device;
}
#endif
#if defined(ANV_MAGMA)
if (anv_gem_connect(device) != 0) {
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
goto fail_device;
}
#endif
device->context_id = anv_gem_create_context(device);
if (device->context_id == -1) {
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
goto fail_fd;
}
result = anv_queue_init(device, &device->queue);
if (result != VK_SUCCESS)
goto fail_context_id;
if (physical_device->use_softpin) {
if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
goto fail_queue;
}
/* keep the page with address zero out of the allocator */
util_vma_heap_init(&device->vma_lo,
LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
CLIENT_VISIBLE_HEAP_SIZE);
/* Leave the last 4GiB out of the high vma range, so that no state
* base address + size can overflow 48 bits. For more information see
* the comment about Wa32bitGeneralStateOffset in anv_allocator.c
*/
util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
physical_device->gtt_size - (1ull << 32) -
HIGH_HEAP_MIN_ADDRESS);
}
list_inithead(&device->memory_objects);
/* As per spec, the driver implementation may deny requests to acquire
* a priority above the default priority (MEDIUM) if the caller does not
* have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
* is returned.
*/
if (physical_device->has_context_priority) {
#if defined(ANV_MAGMA)
int err =
anv_gem_set_context_param(device->handle, device->context_id, I915_CONTEXT_PARAM_PRIORITY,
vk_priority_to_gen(priority));
#else
int err = anv_gem_set_context_param(device->fd, device->context_id,
I915_CONTEXT_PARAM_PRIORITY,
vk_priority_to_gen(priority));
#endif
if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
goto fail_vmas;
}
}
device->info = physical_device->info;
device->isl_dev = physical_device->isl_dev;
/* On Broadwell and later, we can use batch chaining to more efficiently
* implement growing command buffers. Prior to Haswell, the kernel
* command parser gets in the way and we have to fall back to growing
* the batch.
*/
device->can_chain_batches = device->info.gen >= 8;
device->robust_buffer_access = robust_buffer_access;
device->enabled_extensions = enabled_extensions;
anv_device_init_dispatch(device);
if (pthread_mutex_init(&device->mutex, NULL) != 0) {
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
goto fail_queue;
}
pthread_condattr_t condattr;
if (pthread_condattr_init(&condattr) != 0) {
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
goto fail_mutex;
}
if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
pthread_condattr_destroy(&condattr);
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
goto fail_mutex;
}
if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
pthread_condattr_destroy(&condattr);
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
goto fail_mutex;
}
pthread_condattr_destroy(&condattr);
result = anv_bo_cache_init(&device->bo_cache);
if (result != VK_SUCCESS)
goto fail_queue_cond;
anv_bo_pool_init(&device->batch_bo_pool, device);
result = anv_state_pool_init(&device->dynamic_state_pool, device,
DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
if (result != VK_SUCCESS)
goto fail_batch_bo_pool;
result = anv_state_pool_init(&device->instruction_state_pool, device,
INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
if (result != VK_SUCCESS)
goto fail_dynamic_state_pool;
result = anv_state_pool_init(&device->surface_state_pool, device,
SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
if (result != VK_SUCCESS)
goto fail_instruction_state_pool;
if (physical_device->use_softpin) {
result = anv_state_pool_init(&device->binding_table_pool, device,
BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
if (result != VK_SUCCESS)
goto fail_surface_state_pool;
}
if (device->info.gen >= 12) {
device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
&physical_device->info);
if (!device->aux_map_ctx)
goto fail_binding_table_pool;
}
result = anv_device_alloc_bo(device, 4096, 0 /* flags */,
0 /* explicit_address */,
&device->workaround_bo);
if (result != VK_SUCCESS)
goto fail_surface_aux_map_pool;
result = anv_device_init_trivial_batch(device);
if (result != VK_SUCCESS)
goto fail_workaround_bo;
if (device->info.gen >= 10) {
result = anv_device_init_hiz_clear_value_bo(device);
if (result != VK_SUCCESS)
goto fail_trivial_batch_bo;
}
anv_scratch_pool_init(device, &device->scratch_pool);
switch (device->info.gen) {
case 7:
if (!device->info.is_haswell)
result = gen7_init_device_state(device);
else
result = gen75_init_device_state(device);
break;
case 8:
result = gen8_init_device_state(device);
break;
case 9:
result = gen9_init_device_state(device);
break;
case 10:
result = gen10_init_device_state(device);
break;
case 11:
result = gen11_init_device_state(device);
break;
case 12:
result = gen12_init_device_state(device);
break;
default:
/* Shouldn't get here as we don't create physical devices for any other
* gens. */
unreachable("unhandled gen");
}
if (result != VK_SUCCESS)
goto fail_workaround_bo;
anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
anv_device_init_blorp(device);
anv_device_init_border_colors(device);
anv_device_perf_init(device);
*pDevice = anv_device_to_handle(device);
return VK_SUCCESS;
fail_workaround_bo:
anv_scratch_pool_finish(device, &device->scratch_pool);
if (device->info.gen >= 10)
anv_device_release_bo(device, device->hiz_clear_bo);
anv_device_release_bo(device, device->workaround_bo);
fail_trivial_batch_bo:
anv_device_release_bo(device, device->trivial_batch_bo);
fail_surface_aux_map_pool:
if (device->info.gen >= 12) {
gen_aux_map_finish(device->aux_map_ctx);
device->aux_map_ctx = NULL;
}
fail_binding_table_pool:
if (physical_device->use_softpin)
anv_state_pool_finish(&device->binding_table_pool);
fail_surface_state_pool:
anv_state_pool_finish(&device->surface_state_pool);
fail_instruction_state_pool:
anv_state_pool_finish(&device->instruction_state_pool);
fail_dynamic_state_pool:
anv_state_pool_finish(&device->dynamic_state_pool);
fail_batch_bo_pool:
anv_bo_pool_finish(&device->batch_bo_pool);
anv_bo_cache_finish(&device->bo_cache);
fail_queue_cond:
pthread_cond_destroy(&device->queue_submit);
fail_mutex:
pthread_mutex_destroy(&device->mutex);
fail_vmas:
if (physical_device->use_softpin) {
util_vma_heap_finish(&device->vma_hi);
util_vma_heap_finish(&device->vma_cva);
util_vma_heap_finish(&device->vma_lo);
}
fail_queue:
anv_queue_finish(&device->queue);
fail_context_id:
anv_gem_destroy_context(device, device->context_id);
fail_fd:
#if defined(ANV_MAGMA)
anv_magma_release_device_handle(device->handle);
#else
close(device->fd);
#endif
fail_device:
vk_free(&device->alloc, device);
return result;
}
void anv_DestroyDevice(
VkDevice _device,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (!device)
return;
anv_device_finish_blorp(device);
anv_pipeline_cache_finish(&device->default_pipeline_cache);
anv_queue_finish(&device->queue);
#ifdef HAVE_VALGRIND
/* We only need to free these to prevent valgrind errors. The backing
* BO will go away in a couple of lines so we don't actually leak.
*/
anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
#endif
anv_scratch_pool_finish(device, &device->scratch_pool);
anv_device_release_bo(device, device->workaround_bo);
anv_device_release_bo(device, device->trivial_batch_bo);
if (device->info.gen >= 10)
anv_device_release_bo(device, device->hiz_clear_bo);
if (device->info.gen >= 12) {
gen_aux_map_finish(device->aux_map_ctx);
device->aux_map_ctx = NULL;
}
if (device->physical->use_softpin)
anv_state_pool_finish(&device->binding_table_pool);
anv_state_pool_finish(&device->surface_state_pool);
anv_state_pool_finish(&device->instruction_state_pool);
anv_state_pool_finish(&device->dynamic_state_pool);
anv_bo_pool_finish(&device->batch_bo_pool);
anv_bo_cache_finish(&device->bo_cache);
if (device->physical->use_softpin) {
util_vma_heap_finish(&device->vma_hi);
util_vma_heap_finish(&device->vma_cva);
util_vma_heap_finish(&device->vma_lo);
}
pthread_cond_destroy(&device->queue_submit);
pthread_mutex_destroy(&device->mutex);
anv_gem_destroy_context(device, device->context_id);
#if defined(ANV_MAGMA)
anv_gem_disconnect(device);
#endif
if (INTEL_DEBUG & DEBUG_BATCH)
gen_batch_decode_ctx_finish(&device->decoder_ctx);
#if defined(ANV_MAGMA)
anv_magma_release_device_handle(device->handle);
#else
close(device->fd);
#endif
vk_free(&device->alloc, device);
}
VkResult anv_EnumerateInstanceLayerProperties(
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
}
VkResult anv_EnumerateDeviceLayerProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
}
void anv_GetDeviceQueue(
VkDevice _device,
uint32_t queueNodeIndex,
uint32_t queueIndex,
VkQueue* pQueue)
{
const VkDeviceQueueInfo2 info = {
.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
.pNext = NULL,
.flags = 0,
.queueFamilyIndex = queueNodeIndex,
.queueIndex = queueIndex,
};
anv_GetDeviceQueue2(_device, &info, pQueue);
}
void anv_GetDeviceQueue2(
VkDevice _device,
const VkDeviceQueueInfo2* pQueueInfo,
VkQueue* pQueue)
{
ANV_FROM_HANDLE(anv_device, device, _device);
assert(pQueueInfo->queueIndex == 0);
if (pQueueInfo->flags == device->queue.flags)
*pQueue = anv_queue_to_handle(&device->queue);
else
*pQueue = NULL;
}
VkResult
_anv_device_set_lost(struct anv_device *device,
const char *file, int line,
const char *msg, ...)
{
VkResult err;
va_list ap;
p_atomic_inc(&device->_lost);
va_start(ap, msg);
err = __vk_errorv(device->physical->instance, device,
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
VK_ERROR_DEVICE_LOST, file, line, msg, ap);
va_end(ap);
if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
abort();
return err;
}
VkResult
_anv_queue_set_lost(struct anv_queue *queue,
const char *file, int line,
const char *msg, ...)
{
VkResult err;
va_list ap;
p_atomic_inc(&queue->device->_lost);
va_start(ap, msg);
err = __vk_errorv(queue->device->physical->instance, queue->device,
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
VK_ERROR_DEVICE_LOST, file, line, msg, ap);
va_end(ap);
if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
abort();
return err;
}
VkResult
anv_device_query_status(struct anv_device *device)
{
/* This isn't likely as most of the callers of this function already check
* for it. However, it doesn't hurt to check and it potentially lets us
* avoid an ioctl.
*/
if (anv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
uint32_t active, pending;
int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
if (ret == -1) {
/* We don't know the real error. */
return anv_device_set_lost(device, "get_reset_stats failed: %m");
}
if (active) {
return anv_device_set_lost(device, "GPU hung on one of our command buffers");
} else if (pending) {
return anv_device_set_lost(device, "GPU hung with commands in-flight");
}
return VK_SUCCESS;
}
VkResult
anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
{
/* Note: This only returns whether or not the BO is in use by an i915 GPU.
* Other usages of the BO (such as on different hardware) will not be
* flagged as "busy" by this ioctl. Use with care.
*/
int ret = anv_gem_busy(device, bo->gem_handle);
if (ret == 1) {
return VK_NOT_READY;
} else if (ret == -1) {
/* We don't know the real error. */
return anv_device_set_lost(device, "gem wait failed: %m");
}
/* Query for device status after the busy call. If the BO we're checking
* got caught in a GPU hang we don't want to return VK_SUCCESS to the
* client because it clearly doesn't have valid data. Yes, this most
* likely means an ioctl, but we just did an ioctl to query the busy status
* so it's no great loss.
*/
return anv_device_query_status(device);
}
VkResult
anv_device_wait(struct anv_device *device, struct anv_bo *bo,
int64_t timeout)
{
int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
if (ret == -1 && errno == ETIME) {
return VK_TIMEOUT;
} else if (ret == -1) {
/* We don't know the real error. */
return anv_device_set_lost(device, "gem wait failed: %m");
}
/* Query for device status after the wait. If the BO we're waiting on got
* caught in a GPU hang we don't want to return VK_SUCCESS to the client
* because it clearly doesn't have valid data. Yes, this most likely means
* an ioctl, but we just did an ioctl to wait so it's no great loss.
*/
return anv_device_query_status(device);
}
VkResult anv_DeviceWaitIdle(
VkDevice _device)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (anv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
return anv_queue_submit_simple_batch(&device->queue, NULL);
}
uint64_t
anv_vma_alloc(struct anv_device *device,
uint64_t size, uint64_t align,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address)
{
#if defined(ANV_MAGMA)
const uint32_t page_size = 4096;
size += device->physical->softpin_extra_page_count * page_size;
#endif
pthread_mutex_lock(&device->vma_mutex);
uint64_t addr = 0;
if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
if (client_address) {
if (util_vma_heap_alloc_addr(&device->vma_cva,
client_address, size)) {
addr = client_address;
}
} else {
addr = util_vma_heap_alloc(&device->vma_cva, size, align);
}
/* We don't want to fall back to other heaps */
goto done;
}
assert(client_address == 0);
if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
addr = util_vma_heap_alloc(&device->vma_hi, size, align);
if (addr == 0)
addr = util_vma_heap_alloc(&device->vma_lo, size, align);
done:
pthread_mutex_unlock(&device->vma_mutex);
assert(addr == gen_48b_address(addr));
return gen_canonical_address(addr);
}
void
anv_vma_free(struct anv_device *device,
uint64_t address, uint64_t size)
{
#if defined(ANV_MAGMA)
const uint32_t page_size = 4096;
size += device->physical->softpin_extra_page_count * page_size;
#endif
const uint64_t addr_48b = gen_48b_address(address);
pthread_mutex_lock(&device->vma_mutex);
if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
addr_48b <= LOW_HEAP_MAX_ADDRESS) {
util_vma_heap_free(&device->vma_lo, addr_48b, size);
} else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
util_vma_heap_free(&device->vma_cva, addr_48b, size);
} else {
assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
util_vma_heap_free(&device->vma_hi, addr_48b, size);
}
pthread_mutex_unlock(&device->vma_mutex);
}
VkResult anv_AllocateMemory(
VkDevice _device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMem)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_physical_device *pdevice = device->physical;
struct anv_device_memory *mem;
VkResult result = VK_SUCCESS;
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
/* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
assert(pAllocateInfo->allocationSize > 0);
VkDeviceSize aligned_alloc_size =
align_u64(pAllocateInfo->allocationSize, 4096);
if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
struct anv_memory_type *mem_type =
&pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
assert(mem_type->heapIndex < pdevice->memory.heap_count);
struct anv_memory_heap *mem_heap =
&pdevice->memory.heaps[mem_type->heapIndex];
uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
if (mem_heap_used + aligned_alloc_size > mem_heap->size)
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (mem == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
mem->type = mem_type;
mem->map = NULL;
mem->map_size = 0;
mem->ahw = NULL;
mem->host_ptr = NULL;
enum anv_bo_alloc_flags alloc_flags = 0;
const VkExportMemoryAllocateInfo *export_info = NULL;
const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
const VkImportMemoryFdInfoKHR *fd_info = NULL;
#ifdef VK_USE_PLATFORM_FUCHSIA
const VkImportMemoryZirconHandleInfoFUCHSIA *fuchsia_info = NULL;
const VkImportMemoryBufferCollectionFUCHSIA* fuchsia_buffer_collection = NULL;
#endif
const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
VkMemoryAllocateFlags vk_flags = 0;
uint64_t client_address = 0;
vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
export_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
ahw_import_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
fd_info = (void *)ext;
break;
#ifdef VK_USE_PLATFORM_FUCHSIA
case VK_STRUCTURE_TYPE_TEMP_IMPORT_MEMORY_ZIRCON_HANDLE_INFO_FUCHSIA:
fuchsia_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_BUFFER_COLLECTION_FUCHSIA:
fuchsia_buffer_collection = (void *)ext;
break;
#endif
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
host_ptr_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
vk_flags = flags_info->flags;
break;
}
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
dedicated_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
(const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
client_address = addr_info->opaqueCaptureAddress;
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
/* By default, we want all VkDeviceMemory objects to support CCS */
if (device->physical->has_implicit_ccs)
alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
if ((export_info && export_info->handleTypes) ||
(fd_info && fd_info->handleType) ||
(host_ptr_info && host_ptr_info->handleType)) {
/* Anything imported or exported is EXTERNAL */
alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
/* We can't have implicit CCS on external memory with an AUX-table.
* Doing so would require us to sync the aux tables across processes
* which is impractical.
*/
if (device->info.has_aux_map)
alloc_flags &= ~ANV_BO_ALLOC_IMPLICIT_CCS;
}
/* Check if we need to support Android HW buffer export. If so,
* create AHardwareBuffer and import memory from it.
*/
bool android_export = false;
if (export_info && export_info->handleTypes &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
android_export = true;
if (ahw_import_info) {
result = anv_import_ahw_memory(_device, mem, ahw_import_info);
if (result != VK_SUCCESS)
goto fail;
goto success;
} else if (android_export) {
result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
if (result != VK_SUCCESS)
goto fail;
const VkImportAndroidHardwareBufferInfoANDROID import_info = {
.buffer = mem->ahw,
};
result = anv_import_ahw_memory(_device, mem, &import_info);
if (result != VK_SUCCESS)
goto fail;
goto success;
}
/* The Vulkan spec permits handleType to be 0, in which case the struct is
* ignored.
*/
if (fd_info && fd_info->handleType) {
/* At the moment, we support only the below handle types. */
assert(fd_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
fd_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
client_address, &mem->bo);
if (result != VK_SUCCESS)
goto fail;
/* For security purposes, we reject importing the bo if it's smaller
* than the requested allocation size. This prevents a malicious client
* from passing a buffer to a trusted client, lying about the size, and
* telling the trusted client to try and texture from an image that goes
* out-of-bounds. This sort of thing could lead to GPU hangs or worse
* in the trusted client. The trusted client can protect itself against
* this sort of attack but only if it can trust the buffer size.
*/
if (mem->bo->size < aligned_alloc_size) {
result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"aligned allocationSize too large for "
"VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
"%"PRIu64"B > %"PRIu64"B",
aligned_alloc_size, mem->bo->size);
anv_device_release_bo(device, mem->bo);
goto fail;
}
/* From the Vulkan spec:
*
* "Importing memory from a file descriptor transfers ownership of
* the file descriptor from the application to the Vulkan
* implementation. The application must not perform any operations on
* the file descriptor after a successful import."
*
* If the import fails, we leave the file descriptor open.
*/
close(fd_info->fd);
goto success;
#if VK_USE_PLATFORM_FUCHSIA
} else if (fuchsia_info && fuchsia_info->handleType) {
assert(fuchsia_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_TEMP_ZIRCON_VMO_BIT_FUCHSIA);
VkDeviceSize aligned_alloc_size =
align_u64(pAllocateInfo->allocationSize, 4096);
// The uint32_t isn't a unique handle per object, so the cache
// lookup in the import will always fail.
// TODO(MA-320) - get a unique id for this object and use that as the cache key;
// then clients will be able to import a buffer more than once.
uint32_t buffer;
uint64_t import_size;
int status = anv_gem_import_fuchsia_buffer(
device, fuchsia_info->handle, &buffer, &import_size);
if (status != 0)
return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
if (import_size < aligned_alloc_size) {
result = vk_errorf(device, device,
VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
"aligned allocationSize too large for "
"VK_EXTERNAL_MEMORY_HANDLE_TYPE_FUCHSIA_BIT_KHR: "
"%"PRIu64"B > %"PRIu64"B",
aligned_alloc_size, import_size);
anv_gem_close(device, buffer);
goto fail;
}
VkResult result = anv_device_import_buffer_handle(
device,
buffer,
aligned_alloc_size,
alloc_flags | ANV_BO_EXTERNAL,
0 /* client_address */,
&mem->bo);
if (result != VK_SUCCESS)
goto fail;
goto success;
} else if (fuchsia_buffer_collection) {
VkDeviceSize aligned_alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
bool non_cache_coherent;
result = anv_image_params_from_buffer_collection(
_device, fuchsia_buffer_collection->collection, NULL, NULL, NULL, &non_cache_coherent);
if (result != VK_SUCCESS)
goto fail;
uint32_t handle;
uint32_t offset;
VkResult result =
anv_get_buffer_collection_handle(device, fuchsia_buffer_collection->collection,
fuchsia_buffer_collection->index, &handle, &offset);
if (result != VK_SUCCESS)
goto fail;
// The uint32_t isn't a unique handle per object, so the cache
// lookup in the import will always fail.
// TODO(MA-320) - get a unique id for this object and use that as the cache key;
// then clients will be able to import a buffer more than once.
uint32_t buffer;
uint64_t import_size;
int status = anv_gem_import_fuchsia_buffer(device, handle, &buffer, &import_size);
if (status != 0)
return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
if (import_size < aligned_alloc_size) {
result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
"aligned allocationSize too large for "
"VK_EXTERNAL_MEMORY_HANDLE_TYPE_FUCHSIA_BIT_KHR: "
"%" PRIu64 "B > %" PRIu64 "B",
aligned_alloc_size, import_size);
anv_gem_close(device, buffer);
goto fail;
}
if (non_cache_coherent)
alloc_flags |= ANV_BO_UNCACHED;
result = anv_device_import_buffer_handle(device, buffer, aligned_alloc_size,
alloc_flags | ANV_BO_EXTERNAL,
0, /*client_address*/
&mem->bo);
if (result != VK_SUCCESS)
goto fail;
goto success;
#endif // VK_USE_PLATFORM_FUCHSIA
}
if (host_ptr_info && host_ptr_info->handleType) {
if (host_ptr_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
goto fail;
}
assert(host_ptr_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
result = anv_device_import_bo_from_host_ptr(device,
host_ptr_info->pHostPointer,
pAllocateInfo->allocationSize,
alloc_flags,
client_address,
&mem->bo);
if (result != VK_SUCCESS)
goto fail;
mem->host_ptr = host_ptr_info->pHostPointer;
goto success;
}
/* Regular allocate (not importing memory). */
result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
alloc_flags, client_address, &mem->bo);
if (result != VK_SUCCESS)
goto fail;
if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
/* Some legacy (non-modifiers) consumers need the tiling to be set on
* the BO. In this case, we have a dedicated allocation.
*/
if (image->needs_set_tiling) {
const uint32_t i915_tiling =
isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
image->planes[0].surface.isl.row_pitch_B,
i915_tiling);
if (ret) {
anv_device_release_bo(device, mem->bo);
result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
"failed to set BO tiling: %m");
goto fail;
}
}
}
success:
mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
if (mem_heap_used > mem_heap->size) {
p_atomic_add(&mem_heap->used, -mem->bo->size);
anv_device_release_bo(device, mem->bo);
result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
"Out of heap memory");
goto fail;
}
pthread_mutex_lock(&device->mutex);
list_addtail(&mem->link, &device->memory_objects);
pthread_mutex_unlock(&device->mutex);
*pMem = anv_device_memory_to_handle(mem);
return VK_SUCCESS;
fail:
vk_free2(&device->alloc, pAllocator, mem);
return result;
}
VkResult anv_GetMemoryFdKHR(
VkDevice device_h,
const VkMemoryGetFdInfoKHR* pGetFdInfo,
int* pFd)
{
ANV_FROM_HANDLE(anv_device, dev, device_h);
ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
return anv_device_export_bo(dev, mem->bo, pFd);
}
VkResult anv_GetMemoryFdPropertiesKHR(
VkDevice _device,
VkExternalMemoryHandleTypeFlagBits handleType,
int fd,
VkMemoryFdPropertiesKHR* pMemoryFdProperties)
{
ANV_FROM_HANDLE(anv_device, device, _device);
switch (handleType) {
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
/* dma-buf can be imported as any memory type */
pMemoryFdProperties->memoryTypeBits =
(1 << device->physical->memory.type_count) - 1;
return VK_SUCCESS;
default:
/* The valid usage section for this function says:
*
* "handleType must not be one of the handle types defined as
* opaque."
*
* So opaque handle types fall into the default "unsupported" case.
*/
return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
}
}
VkResult anv_GetMemoryHostPointerPropertiesEXT(
VkDevice _device,
VkExternalMemoryHandleTypeFlagBits handleType,
const void* pHostPointer,
VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
{
ANV_FROM_HANDLE(anv_device, device, _device);
assert(pMemoryHostPointerProperties->sType ==
VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
switch (handleType) {
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
/* Host memory can be imported as any memory type. */
pMemoryHostPointerProperties->memoryTypeBits =
(1ull << device->physical->memory.type_count) - 1;
return VK_SUCCESS;
default:
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
}
void anv_FreeMemory(
VkDevice _device,
VkDeviceMemory _mem,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
if (mem == NULL)
return;
pthread_mutex_lock(&device->mutex);
list_del(&mem->link);
pthread_mutex_unlock(&device->mutex);
if (mem->map)
anv_UnmapMemory(_device, _mem);
p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
-mem->bo->size);
anv_device_release_bo(device, mem->bo);
#if defined(ANDROID) && ANDROID_API_LEVEL >= 26
if (mem->ahw)
AHardwareBuffer_release(mem->ahw);
#endif
vk_free2(&device->alloc, pAllocator, mem);
}
VkResult anv_MapMemory(
VkDevice _device,
VkDeviceMemory _memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,
void** ppData)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
if (mem == NULL) {
*ppData = NULL;
return VK_SUCCESS;
}
if (mem->host_ptr) {
*ppData = mem->host_ptr + offset;
return VK_SUCCESS;
}
if (size == VK_WHOLE_SIZE)
size = mem->bo->size - offset;
/* From the Vulkan spec version 1.0.32 docs for MapMemory:
*
* * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
* assert(size != 0);
* * If size is not equal to VK_WHOLE_SIZE, size must be less than or
* equal to the size of the memory minus offset
*/
assert(size > 0);
assert(offset + size <= mem->bo->size);
/* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
* takes a VkDeviceMemory pointer, it seems like only one map of the memory
* at a time is valid. We could just mmap up front and return an offset
* pointer here, but that may exhaust virtual memory on 32 bit
* userspace. */
uint32_t gem_flags = 0;
if (!device->info.has_llc &&
(mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
gem_flags |= I915_MMAP_WC;
/* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
uint64_t map_offset = offset & ~4095ull;
assert(offset >= map_offset);
uint64_t map_size = (offset + size) - map_offset;
/* Let's map whole pages */
map_size = align_u64(map_size, 4096);
void *map = anv_gem_mmap(device, mem->bo->gem_handle,
map_offset, map_size, gem_flags);
if (map == MAP_FAILED)
return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
mem->map = map;
mem->map_size = map_size;
*ppData = mem->map + (offset - map_offset);
return VK_SUCCESS;
}
void anv_UnmapMemory(
VkDevice _device,
VkDeviceMemory _memory)
{
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
ANV_FROM_HANDLE(anv_device, device, _device);
if (mem == NULL || mem->host_ptr)
return;
anv_gem_munmap(mem->map, mem->map_size);
mem->map = NULL;
mem->map_size = 0;
}
static void
clflush_mapped_ranges(struct anv_device *device,
uint32_t count,
const VkMappedMemoryRange *ranges)
{
for (uint32_t i = 0; i < count; i++) {
ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
if (ranges[i].offset >= mem->map_size)
continue;
gen_clflush_range(mem->map + ranges[i].offset,
MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
}
}
VkResult anv_FlushMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (device->info.has_llc)
return VK_SUCCESS;
/* Make sure the writes we're flushing have landed. */
__builtin_ia32_mfence();
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
return VK_SUCCESS;
}
VkResult anv_InvalidateMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (device->info.has_llc)
return VK_SUCCESS;
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
/* Make sure no reads get moved up above the invalidate. */
__builtin_ia32_mfence();
return VK_SUCCESS;
}
void anv_GetBufferMemoryRequirements(
VkDevice _device,
VkBuffer _buffer,
VkMemoryRequirements* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
ANV_FROM_HANDLE(anv_device, device, _device);
/* The Vulkan spec (git aaed022) says:
*
* memoryTypeBits is a bitfield and contains one bit set for every
* supported memory type for the resource. The bit `1<<i` is set if and
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
* structure for the physical device is supported.
*/
uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
/* Base alignment requirement of a cache line */
uint32_t alignment = 16;
/* We need an alignment of 32 for pushing UBOs */
if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
alignment = MAX2(alignment, 32);
pMemoryRequirements->size = buffer->size;
pMemoryRequirements->alignment = alignment;
/* Storage and Uniform buffers should have their size aligned to
* 32-bits to avoid boundary checks when last DWord is not complete.
* This would ensure that not internal padding would be needed for
* 16-bit types.
*/
if (device->robust_buffer_access &&
(buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
pMemoryRequirements->size = align_u64(buffer->size, 4);
pMemoryRequirements->memoryTypeBits = memory_types;
}
void anv_GetBufferMemoryRequirements2(
VkDevice _device,
const VkBufferMemoryRequirementsInfo2* pInfo,
VkMemoryRequirements2* pMemoryRequirements)
{
anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
&pMemoryRequirements->memoryRequirements);
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *requirements = (void *)ext;
requirements->prefersDedicatedAllocation = false;
requirements->requiresDedicatedAllocation = false;
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
}
void anv_GetImageMemoryRequirements(
VkDevice _device,
VkImage _image,
VkMemoryRequirements* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_image, image, _image);
ANV_FROM_HANDLE(anv_device, device, _device);
/* The Vulkan spec (git aaed022) says:
*
* memoryTypeBits is a bitfield and contains one bit set for every
* supported memory type for the resource. The bit `1<<i` is set if and
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
* structure for the physical device is supported.
*
* All types are currently supported for images.
*/
uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
/* We must have image allocated or imported at this point. According to the
* specification, external images must have been bound to memory before
* calling GetImageMemoryRequirements.
*/
assert(image->size > 0);
pMemoryRequirements->size = image->size;
pMemoryRequirements->alignment = image->alignment;
pMemoryRequirements->memoryTypeBits = memory_types;
}
void anv_GetImageMemoryRequirements2(
VkDevice _device,
const VkImageMemoryRequirementsInfo2* pInfo,
VkMemoryRequirements2* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_image, image, pInfo->image);
anv_GetImageMemoryRequirements(_device, pInfo->image,
&pMemoryRequirements->memoryRequirements);
vk_foreach_struct_const(ext, pInfo->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
(const VkImagePlaneMemoryRequirementsInfo *) ext;
uint32_t plane = anv_image_aspect_to_plane(image->aspects,
plane_reqs->planeAspect);
assert(image->planes[plane].offset == 0);
/* The Vulkan spec (git aaed022) says:
*
* memoryTypeBits is a bitfield and contains one bit set for every
* supported memory type for the resource. The bit `1<<i` is set
* if and only if the memory type `i` in the
* VkPhysicalDeviceMemoryProperties structure for the physical
* device is supported.
*
* All types are currently supported for images.
*/
pMemoryRequirements->memoryRequirements.memoryTypeBits =
(1ull << device->physical->memory.type_count) - 1;
/* We must have image allocated or imported at this point. According to the
* specification, external images must have been bound to memory before
* calling GetImageMemoryRequirements.
*/
assert(image->planes[plane].size > 0);
pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
pMemoryRequirements->memoryRequirements.alignment =
image->planes[plane].alignment;
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *requirements = (void *)ext;
if (image->needs_set_tiling || image->external_format) {
/* If we need to set the tiling for external consumers, we need a
* dedicated allocation.
*
* See also anv_AllocateMemory.
*/
requirements->prefersDedicatedAllocation = true;
requirements->requiresDedicatedAllocation = true;
} else {
requirements->prefersDedicatedAllocation = false;
requirements->requiresDedicatedAllocation = false;
}
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
}
void anv_GetImageSparseMemoryRequirements(
VkDevice device,
VkImage image,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
{
*pSparseMemoryRequirementCount = 0;
}
void anv_GetImageSparseMemoryRequirements2(
VkDevice device,
const VkImageSparseMemoryRequirementsInfo2* pInfo,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
{
*pSparseMemoryRequirementCount = 0;
}
void anv_GetDeviceMemoryCommitment(
VkDevice device,
VkDeviceMemory memory,
VkDeviceSize* pCommittedMemoryInBytes)
{
*pCommittedMemoryInBytes = 0;
}
static void
anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
{
ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
if (mem) {
buffer->address = (struct anv_address) {
.bo = mem->bo,
.offset = pBindInfo->memoryOffset,
};
} else {
buffer->address = ANV_NULL_ADDRESS;
}
}
VkResult anv_BindBufferMemory(
VkDevice device,
VkBuffer buffer,
VkDeviceMemory memory,
VkDeviceSize memoryOffset)
{
anv_bind_buffer_memory(
&(VkBindBufferMemoryInfo) {
.sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
.buffer = buffer,
.memory = memory,
.memoryOffset = memoryOffset,
});
return VK_SUCCESS;
}
VkResult anv_BindBufferMemory2(
VkDevice device,
uint32_t bindInfoCount,
const VkBindBufferMemoryInfo* pBindInfos)
{
for (uint32_t i = 0; i < bindInfoCount; i++)
anv_bind_buffer_memory(&pBindInfos[i]);
return VK_SUCCESS;
}
VkResult anv_QueueBindSparse(
VkQueue _queue,
uint32_t bindInfoCount,
const VkBindSparseInfo* pBindInfo,
VkFence fence)
{
ANV_FROM_HANDLE(anv_queue, queue, _queue);
if (anv_device_is_lost(queue->device))
return VK_ERROR_DEVICE_LOST;
return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
}
// Event functions
VkResult anv_CreateEvent(
VkDevice _device,
const VkEventCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkEvent* pEvent)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_state state;
struct anv_event *event;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
state = anv_state_pool_alloc(&device->dynamic_state_pool,
sizeof(*event), 8);
event = state.map;
event->state = state;
event->semaphore = VK_EVENT_RESET;
if (!device->info.has_llc) {
/* Make sure the writes we're flushing have landed. */
__builtin_ia32_mfence();
__builtin_ia32_clflush(event);
}
*pEvent = anv_event_to_handle(event);
return VK_SUCCESS;
}
void anv_DestroyEvent(
VkDevice _device,
VkEvent _event,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
if (!event)
return;
anv_state_pool_free(&device->dynamic_state_pool, event->state);
}
VkResult anv_GetEventStatus(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
if (anv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
if (!device->info.has_llc) {
/* Invalidate read cache before reading event written by GPU. */
__builtin_ia32_clflush(event);
__builtin_ia32_mfence();
}
return event->semaphore;
}
VkResult anv_SetEvent(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
event->semaphore = VK_EVENT_SET;
if (!device->info.has_llc) {
/* Make sure the writes we're flushing have landed. */
__builtin_ia32_mfence();
__builtin_ia32_clflush(event);
}
return VK_SUCCESS;
}
VkResult anv_ResetEvent(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
event->semaphore = VK_EVENT_RESET;
if (!device->info.has_llc) {
/* Make sure the writes we're flushing have landed. */
__builtin_ia32_mfence();
__builtin_ia32_clflush(event);
}
return VK_SUCCESS;
}
// Buffer functions
VkResult anv_CreateBuffer(
VkDevice _device,
const VkBufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkBuffer* pBuffer)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_buffer *buffer;
/* Don't allow creating buffers bigger than our address space. The real
* issue here is that we may align up the buffer size and we don't want
* doing so to cause roll-over. However, no one has any business
* allocating a buffer larger than our GTT size.
*/
if (pCreateInfo->size > device->physical->gtt_size)
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (buffer == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
buffer->size = pCreateInfo->size;
buffer->usage = pCreateInfo->usage;
buffer->address = ANV_NULL_ADDRESS;
*pBuffer = anv_buffer_to_handle(buffer);
return VK_SUCCESS;
}
void anv_DestroyBuffer(
VkDevice _device,
VkBuffer _buffer,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
if (!buffer)
return;
vk_free2(&device->alloc, pAllocator, buffer);
}
VkDeviceAddress anv_GetBufferDeviceAddress(
VkDevice device,
const VkBufferDeviceAddressInfoKHR* pInfo)
{
ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
assert(!anv_address_is_null(buffer->address));
assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
return anv_address_physical(buffer->address);
}
uint64_t anv_GetBufferOpaqueCaptureAddress(
VkDevice device,
const VkBufferDeviceAddressInfoKHR* pInfo)
{
return 0;
}
uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
VkDevice device,
const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
{
ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
assert(memory->bo->flags & EXEC_OBJECT_PINNED);
assert(memory->bo->has_client_visible_address);
return gen_48b_address(memory->bo->offset);
}
void
anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
enum isl_format format,
struct anv_address address,
uint32_t range, uint32_t stride)
{
isl_buffer_fill_state(&device->isl_dev, state.map,
.address = anv_address_physical(address),
.mocs = device->isl_dev.mocs.internal,
.size_B = range,
.format = format,
.swizzle = ISL_SWIZZLE_IDENTITY,
.stride_B = stride);
}
void anv_DestroySampler(
VkDevice _device,
VkSampler _sampler,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
if (!sampler)
return;
if (sampler->bindless_state.map) {
anv_state_pool_free(&device->dynamic_state_pool,
sampler->bindless_state);
}
vk_free2(&device->alloc, pAllocator, sampler);
}
VkResult anv_CreateFramebuffer(
VkDevice _device,
const VkFramebufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkFramebuffer* pFramebuffer)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_framebuffer *framebuffer;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
size_t size = sizeof(*framebuffer);
/* VK_KHR_imageless_framebuffer extension says:
*
* If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
* parameter pAttachments is ignored.
*/
if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (framebuffer == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
framebuffer->attachments[i] = iview;
}
framebuffer->attachment_count = pCreateInfo->attachmentCount;
} else {
framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (framebuffer == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
framebuffer->attachment_count = 0;
}
framebuffer->width = pCreateInfo->width;
framebuffer->height = pCreateInfo->height;
framebuffer->layers = pCreateInfo->layers;
*pFramebuffer = anv_framebuffer_to_handle(framebuffer);
return VK_SUCCESS;
}
void anv_DestroyFramebuffer(
VkDevice _device,
VkFramebuffer _fb,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
if (!fb)
return;
vk_free2(&device->alloc, pAllocator, fb);
}
static const VkTimeDomainEXT anv_time_domains[] = {
VK_TIME_DOMAIN_DEVICE_EXT,
VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
};
VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
VkPhysicalDevice physicalDevice,
uint32_t *pTimeDomainCount,
VkTimeDomainEXT *pTimeDomains)
{
int d;
VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
vk_outarray_append(&out, i) {
*i = anv_time_domains[d];
}
}
return vk_outarray_status(&out);
}
static uint64_t
anv_clock_gettime(clockid_t clock_id)
{
struct timespec current;
int ret;
ret = clock_gettime(clock_id, &current);
if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
ret = clock_gettime(CLOCK_MONOTONIC, &current);
if (ret < 0)
return 0;
return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
}
#define TIMESTAMP 0x2358
VkResult anv_GetCalibratedTimestampsEXT(
VkDevice _device,
uint32_t timestampCount,
const VkCalibratedTimestampInfoEXT *pTimestampInfos,
uint64_t *pTimestamps,
uint64_t *pMaxDeviation)
{
ANV_FROM_HANDLE(anv_device, device, _device);
uint64_t timestamp_frequency = device->info.timestamp_frequency;
int ret;
int d;
uint64_t begin, end;
uint64_t max_clock_period = 0;
begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
for (d = 0; d < timestampCount; d++) {
switch (pTimestampInfos[d].timeDomain) {
case VK_TIME_DOMAIN_DEVICE_EXT:
ret = anv_gem_reg_read(device, TIMESTAMP | 1,
&pTimestamps[d]);
if (ret != 0) {
return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
"register: %m");
}
uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
max_clock_period = MAX2(max_clock_period, device_period);
break;
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
max_clock_period = MAX2(max_clock_period, 1);
break;
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
pTimestamps[d] = begin;
break;
default:
pTimestamps[d] = 0;
break;
}
}
end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
/*
* The maximum deviation is the sum of the interval over which we
* perform the sampling and the maximum period of any sampled
* clock. That's because the maximum skew between any two sampled
* clock edges is when the sampled clock with the largest period is
* sampled at the end of that period but right at the beginning of the
* sampling interval and some other clock is sampled right at the
* begining of its sampling period and right at the end of the
* sampling interval. Let's assume the GPU has the longest clock
* period and that the application is sampling GPU and monotonic:
*
* s e
* w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
* Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
*
* g
* 0 1 2 3
* GPU -----_____-----_____-----_____-----_____
*
* m
* x y z 0 1 2 3 4 5 6 7 8 9 a b c
* Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
*
* Interval <----------------->
* Deviation <-------------------------->
*
* s = read(raw) 2
* g = read(GPU) 1
* m = read(monotonic) 2
* e = read(raw) b
*
* We round the sample interval up by one tick to cover sampling error
* in the interval clock
*/
uint64_t sample_interval = end - begin + 1;
*pMaxDeviation = sample_interval + max_clock_period;
return VK_SUCCESS;
}
/* vk_icd.h does not declare this function, so we declare it here to
* suppress Wmissing-prototypes.
*/
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
{
/* For the full details on loader interface versioning, see
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
* What follows is a condensed summary, to help you navigate the large and
* confusing official doc.
*
* - Loader interface v0 is incompatible with later versions. We don't
* support it.
*
* - In loader interface v1:
* - The first ICD entrypoint called by the loader is
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
* entrypoint.
* - The ICD must statically expose no other Vulkan symbol unless it is
* linked with -Bsymbolic.
* - Each dispatchable Vulkan handle created by the ICD must be
* a pointer to a struct whose first member is VK_LOADER_DATA. The
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
* vkDestroySurfaceKHR(). The ICD must be capable of working with
* such loader-managed surfaces.
*
* - Loader interface v2 differs from v1 in:
* - The first ICD entrypoint called by the loader is
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
* statically expose this entrypoint.
*
* - Loader interface v3 differs from v2 in:
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
* because the loader no longer does so.
*
* - Loader interface v4 differs from v3 in:
* - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
*/
*pSupportedVersion = MIN2(*pSupportedVersion, 4u);
return VK_SUCCESS;
}