blob: ccebaa53f343449acacd177c2bbf8ed86d22b4c7 [file] [log] [blame]
#ifndef SPHERE_H
#define SPHERE_H
//==============================================================================================
// Originally written in 2016 by Peter Shirley <ptrshrl@gmail.com>
//
// To the extent possible under law, the author(s) have dedicated all copyright
// and related and neighboring rights to this software to the public domain
// worldwide. This software is distributed without any warranty.
//
// You should have received a copy (see file COPYING.txt) of the CC0 Public
// Domain Dedication along with this software. If not, see
// <http://creativecommons.org/publicdomain/zero/1.0/>.
//
// The original source code is from
// https://github.com/RayTracing/raytracing.github.io/tree/release/src/TheNextWeek
//
// Changes to the original code follow the following license.
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//==============================================================================================
#include "rtweekend.h"
#include "hittable.h"
class sphere : public hittable {
public:
// Stationary Sphere
__host__ __device__ sphere(point3 _center, double _radius,
SharedPtr<material> _material)
: center1(_center), radius(_radius), mat(_material), is_moving(false)
{
auto rvec = vec3(radius, radius, radius);
bbox = aabb(center1 - rvec, center1 + rvec);
}
// Moving Sphere
__host__ __device__ sphere(point3 _center1, point3 _center2, double _radius, SharedPtr<material> _material)
: center1(_center1), radius(_radius), mat(_material), is_moving(true)
{
auto rvec = vec3(radius, radius, radius);
aabb box1(_center1 - rvec, _center1 + rvec);
aabb box2(_center2 - rvec, _center2 + rvec);
bbox = aabb(box1, box2);
center_vec = _center2 - _center1;
}
__host__ __device__ bool hit(const ray &r, interval ray_t, hit_record &rec,
unsigned &rng) const override {
point3 center = is_moving ? sphere_center(r.time()) : center1;
vec3 oc = r.origin() - center;
auto a = r.direction().length_squared();
auto half_b = dot(oc, r.direction());
auto c = oc.length_squared() - radius * radius;
auto discriminant = half_b * half_b - a * c;
if (discriminant < 0)
return false;
// Find the nearest root that lies in the acceptable range.
auto sqrtd = sqrt(discriminant);
auto root = (-half_b - sqrtd) / a;
if (!ray_t.surrounds(root)) {
root = (-half_b + sqrtd) / a;
if (!ray_t.surrounds(root))
return false;
}
rec.t = root;
rec.p = r.at(rec.t);
vec3 outward_normal = (rec.p - center) / radius;
rec.set_face_normal(r, outward_normal);
get_sphere_uv(outward_normal, rec.u, rec.v);
rec.mat = mat;
return true;
}
__host__ __device__ aabb bounding_box() const override { return bbox; }
private:
point3 center1;
double radius;
SharedPtr<material> mat;
bool is_moving;
vec3 center_vec;
aabb bbox;
__host__ __device__ point3 sphere_center(double time) const {
// Linearly interpolate from center1 to center2 according to time, where t=0 yields
// center1, and t=1 yields center2.
return center1 + time*center_vec;
}
__host__ __device__ static void get_sphere_uv(const point3& p, double& u, double& v) {
// p: a given point on the sphere of radius one, centered at the origin.
// u: returned value [0,1] of angle around the Y axis from X=-1.
// v: returned value [0,1] of angle from Y=-1 to Y=+1.
// <1 0 0> yields <0.50 0.50> <-1 0 0> yields <0.00 0.50>
// <0 1 0> yields <0.50 1.00> < 0 -1 0> yields <0.50 0.00>
// <0 0 1> yields <0.25 0.50> < 0 0 -1> yields <0.75 0.50>
auto theta = acos(-p.y());
auto phi = atan2(-p.z(), p.x()) + pi;
u = phi / (2*pi);
v = theta / pi;
}
};
#endif