blob: c17aa22e5b9da9446b66bbd7ba34c9b1b3e20bab [file] [log] [blame]
#ifndef QUAD_H
#define QUAD_H
//==============================================================================================
// To the extent possible under law, the author(s) have dedicated all copyright
// and related and neighboring rights to this software to the public domain
// worldwide. This software is distributed without any warranty.
//
// You should have received a copy (see file COPYING.txt) of the CC0 Public
// Domain Dedication along with this software. If not, see
// <http://creativecommons.org/publicdomain/zero/1.0/>.
//
// The original source code is from
// https://github.com/RayTracing/raytracing.github.io/tree/release/src/TheNextWeek
//
// Changes to the original code follow the following license.
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//==============================================================================================
#include "rtweekend.h"
#include "hittable.h"
#include "hittable_list.h"
class quad : public hittable {
public:
__host__ __device__ quad(const point3 &_Q, const vec3 &_u, const vec3 &_v,
SharedPtr<material> m)
: Q(_Q), u(_u), v(_v), mat(m) {
auto n = cross(u, v);
normal = unit_vector(n);
D = dot(normal, Q);
w = n / dot(n, n);
set_bounding_box();
}
__host__ __device__ virtual void set_bounding_box() {
bbox = aabb(Q, Q + u + v).pad();
}
__host__ __device__ aabb bounding_box() const override { return bbox; }
__host__ __device__ bool hit(const ray &r, interval ray_t, hit_record &rec,
unsigned &rng) const override {
auto denom = dot(normal, r.direction());
// No hit if the ray is parallel to the plane.
if (fabs(denom) < 1e-8)
return false;
// Return false if the hit point parameter t is outside the ray interval.
auto t = (D - dot(normal, r.origin())) / denom;
if (!ray_t.contains(t))
return false;
// Determine the hit point lies within the planar shape using its plane
// coordinates.
auto intersection = r.at(t);
vec3 planar_hitpt_vector = intersection - Q;
auto alpha = dot(w, cross(planar_hitpt_vector, v));
auto beta = dot(w, cross(u, planar_hitpt_vector));
if (!is_interior(alpha, beta, rec))
return false;
// Ray hits the 2D shape; set the rest of the hit record and return true.
rec.t = t;
rec.p = intersection;
rec.mat = mat;
rec.set_face_normal(r, normal);
return true;
}
__host__ __device__ virtual bool is_interior(double a, double b,
hit_record &rec) const {
// Given the hit point in plane coordinates, return false if it is outside
// the primitive, otherwise set the hit record UV coordinates and return
// true.
if ((a < 0) || (1 < a) || (b < 0) || (1 < b))
return false;
rec.u = a;
rec.v = b;
return true;
}
private:
point3 Q;
vec3 u, v;
SharedPtr<material> mat;
aabb bbox;
vec3 normal;
double D;
vec3 w;
};
__host__ __device__ inline SharedPtr<hittable_list>
box(const point3 &a, const point3 &b, SharedPtr<material> mat) {
// Returns the 3D box (six sides) that contains the two opposite vertices a &
// b.
auto sides = makeShared<hittable_list>();
// Construct the two opposite vertices with the minimum and maximum
// coordinates.
auto min = point3(fmin(a.x(), b.x()), fmin(a.y(), b.y()), fmin(a.z(), b.z()));
auto max = point3(fmax(a.x(), b.x()), fmax(a.y(), b.y()), fmax(a.z(), b.z()));
auto dx = vec3(max.x() - min.x(), 0, 0);
auto dy = vec3(0, max.y() - min.y(), 0);
auto dz = vec3(0, 0, max.z() - min.z());
sides->add(makeShared<quad>(point3(min.x(), min.y(), max.z()), dx, dy,
mat)); // front
sides->add(makeShared<quad>(point3(max.x(), min.y(), max.z()), -dz, dy,
mat)); // right
sides->add(makeShared<quad>(point3(max.x(), min.y(), min.z()), -dx, dy,
mat)); // back
sides->add(
makeShared<quad>(point3(min.x(), min.y(), min.z()), dz, dy, mat)); // left
sides->add(
makeShared<quad>(point3(min.x(), max.y(), max.z()), dx, -dz, mat)); // top
sides->add(makeShared<quad>(point3(min.x(), min.y(), min.z()), dx, dz,
mat)); // bottom
return sides;
}
#endif