blob: 81e7fe2e281257b5b344b9cfe8af22e4f3779ee5 [file] [log] [blame]
/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <list>
#ifdef _WIN32
#if !defined(_USE_MATH_DEFINES)
#define _USE_MATH_DEFINES // For M_PI.
#endif // !defined(_USE_MATH_DEFINES)
#endif // _WIN32
#include <math.h>
#include "flatbuffers/idl.h"
#include "flatbuffers/util.h"
namespace flatbuffers {
const char *const kTypeNames[] = {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \
IDLTYPE,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
nullptr
};
const char kTypeSizes[] = {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \
sizeof(CTYPE),
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
// The enums in the reflection schema should match the ones we use internally.
// Compare the last element to check if these go out of sync.
static_assert(BASE_TYPE_UNION ==
static_cast<BaseType>(reflection::Union),
"enums don't match");
// Any parsing calls have to be wrapped in this macro, which automates
// handling of recursive error checking a bit. It will check the received
// CheckedError object, and return straight away on error.
#define ECHECK(call) { auto ce = (call); if (ce.Check()) return ce; }
// These two functions are called hundreds of times below, so define a short
// form:
#define NEXT() ECHECK(Next())
#define EXPECT(tok) ECHECK(Expect(tok))
static bool ValidateUTF8(const std::string &str) {
const char *s = &str[0];
const char * const sEnd = s + str.length();
while (s < sEnd) {
if (FromUTF8(&s) < 0) {
return false;
}
}
return true;
}
CheckedError Parser::Error(const std::string &msg) {
error_ = file_being_parsed_.length() ? AbsolutePath(file_being_parsed_) : "";
#ifdef _WIN32
error_ += "(" + NumToString(line_) + ")"; // MSVC alike
#else
if (file_being_parsed_.length()) error_ += ":";
error_ += NumToString(line_) + ":0"; // gcc alike
#endif
error_ += ": error: " + msg;
return CheckedError(true);
}
inline CheckedError NoError() { return CheckedError(false); }
// Ensure that integer values we parse fit inside the declared integer type.
CheckedError Parser::CheckBitsFit(int64_t val, size_t bits) {
// Left-shifting a 64-bit value by 64 bits or more is undefined
// behavior (C99 6.5.7), so check *before* we shift.
if (bits < 64) {
// Bits we allow to be used.
auto mask = static_cast<int64_t>((1ull << bits) - 1);
if ((val & ~mask) != 0 && // Positive or unsigned.
(val | mask) != -1) // Negative.
return Error("constant does not fit in a " + NumToString(bits) +
"-bit field");
}
return NoError();
}
// atot: templated version of atoi/atof: convert a string to an instance of T.
template<typename T> inline CheckedError atot(const char *s, Parser &parser,
T *val) {
int64_t i = StringToInt(s);
ECHECK(parser.CheckBitsFit(i, sizeof(T) * 8));
*val = (T)i;
return NoError();
}
template<> inline CheckedError atot<bool>(const char *s, Parser &parser,
bool *val) {
(void)parser;
*val = 0 != atoi(s);
return NoError();
}
template<> inline CheckedError atot<float>(const char *s, Parser &parser,
float *val) {
(void)parser;
*val = static_cast<float>(strtod(s, nullptr));
return NoError();
}
template<> inline CheckedError atot<double>(const char *s, Parser &parser,
double *val) {
(void)parser;
*val = strtod(s, nullptr);
return NoError();
}
template<> inline CheckedError atot<Offset<void>>(const char *s, Parser &parser,
Offset<void> *val) {
(void)parser;
*val = Offset<void>(atoi(s));
return NoError();
}
std::string Namespace::GetFullyQualifiedName(const std::string &name,
size_t max_components) const {
// Early exit if we don't have a defined namespace.
if (components.size() == 0 || !max_components) {
return name;
}
std::stringstream stream;
for (size_t i = 0; i < std::min(components.size(), max_components);
i++) {
if (i) {
stream << ".";
}
stream << components[i];
}
stream << "." << name;
return stream.str();
}
// Declare tokens we'll use. Single character tokens are represented by their
// ascii character code (e.g. '{'), others above 256.
#define FLATBUFFERS_GEN_TOKENS(TD) \
TD(Eof, 256, "end of file") \
TD(StringConstant, 257, "string constant") \
TD(IntegerConstant, 258, "integer constant") \
TD(FloatConstant, 259, "float constant") \
TD(Identifier, 260, "identifier") \
TD(Table, 261, "table") \
TD(Struct, 262, "struct") \
TD(Enum, 263, "enum") \
TD(Union, 264, "union") \
TD(NameSpace, 265, "namespace") \
TD(RootType, 266, "root_type") \
TD(FileIdentifier, 267, "file_identifier") \
TD(FileExtension, 268, "file_extension") \
TD(Include, 269, "include") \
TD(Attribute, 270, "attribute") \
TD(Null, 271, "null") \
TD(Service, 272, "rpc_service")
#ifdef __GNUC__
__extension__ // Stop GCC complaining about trailing comma with -Wpendantic.
#endif
enum {
#define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) kToken ## NAME = VALUE,
FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
#undef FLATBUFFERS_TOKEN
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \
kToken ## ENUM,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
static std::string TokenToString(int t) {
static const char *tokens[] = {
#define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) STRING,
FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
#undef FLATBUFFERS_TOKEN
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \
IDLTYPE,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
if (t < 256) { // A single ascii char token.
std::string s;
s.append(1, static_cast<char>(t));
return s;
} else { // Other tokens.
return tokens[t - 256];
}
}
std::string Parser::TokenToStringId(int t) {
return TokenToString(t) + (t == kTokenIdentifier ? ": " + attribute_ : "");
}
// Parses exactly nibbles worth of hex digits into a number, or error.
CheckedError Parser::ParseHexNum(int nibbles, int64_t *val) {
for (int i = 0; i < nibbles; i++)
if (!isxdigit(static_cast<const unsigned char>(cursor_[i])))
return Error("escape code must be followed by " + NumToString(nibbles) +
" hex digits");
std::string target(cursor_, cursor_ + nibbles);
*val = StringToUInt(target.c_str(), nullptr, 16);
cursor_ += nibbles;
return NoError();
}
CheckedError Parser::SkipByteOrderMark() {
if (static_cast<unsigned char>(*cursor_) != 0xef) return NoError();
cursor_++;
if (static_cast<unsigned char>(*cursor_) != 0xbb) return Error("invalid utf-8 byte order mark");
cursor_++;
if (static_cast<unsigned char>(*cursor_) != 0xbf) return Error("invalid utf-8 byte order mark");
cursor_++;
return NoError();
}
bool IsIdentifierStart(char c) {
return isalpha(static_cast<unsigned char>(c)) || c == '_';
}
CheckedError Parser::Next() {
doc_comment_.clear();
bool seen_newline = false;
attribute_.clear();
for (;;) {
char c = *cursor_++;
token_ = c;
switch (c) {
case '\0': cursor_--; token_ = kTokenEof; return NoError();
case ' ': case '\r': case '\t': break;
case '\n': line_++; seen_newline = true; break;
case '{': case '}': case '(': case ')': case '[': case ']':
case ',': case ':': case ';': case '=': return NoError();
case '.':
if(!isdigit(static_cast<const unsigned char>(*cursor_))) return NoError();
return Error("floating point constant can\'t start with \".\"");
case '\"':
case '\'': {
int unicode_high_surrogate = -1;
while (*cursor_ != c) {
if (*cursor_ < ' ' && *cursor_ >= 0)
return Error("illegal character in string constant");
if (*cursor_ == '\\') {
cursor_++;
if (unicode_high_surrogate != -1 &&
*cursor_ != 'u') {
return Error(
"illegal Unicode sequence (unpaired high surrogate)");
}
switch (*cursor_) {
case 'n': attribute_ += '\n'; cursor_++; break;
case 't': attribute_ += '\t'; cursor_++; break;
case 'r': attribute_ += '\r'; cursor_++; break;
case 'b': attribute_ += '\b'; cursor_++; break;
case 'f': attribute_ += '\f'; cursor_++; break;
case '\"': attribute_ += '\"'; cursor_++; break;
case '\'': attribute_ += '\''; cursor_++; break;
case '\\': attribute_ += '\\'; cursor_++; break;
case '/': attribute_ += '/'; cursor_++; break;
case 'x': { // Not in the JSON standard
cursor_++;
int64_t val;
ECHECK(ParseHexNum(2, &val));
attribute_ += static_cast<char>(val);
break;
}
case 'u': {
cursor_++;
int64_t val;
ECHECK(ParseHexNum(4, &val));
if (val >= 0xD800 && val <= 0xDBFF) {
if (unicode_high_surrogate != -1) {
return Error(
"illegal Unicode sequence (multiple high surrogates)");
} else {
unicode_high_surrogate = static_cast<int>(val);
}
} else if (val >= 0xDC00 && val <= 0xDFFF) {
if (unicode_high_surrogate == -1) {
return Error(
"illegal Unicode sequence (unpaired low surrogate)");
} else {
int code_point = 0x10000 +
((unicode_high_surrogate & 0x03FF) << 10) +
(val & 0x03FF);
ToUTF8(code_point, &attribute_);
unicode_high_surrogate = -1;
}
} else {
if (unicode_high_surrogate != -1) {
return Error(
"illegal Unicode sequence (unpaired high surrogate)");
}
ToUTF8(static_cast<int>(val), &attribute_);
}
break;
}
default: return Error("unknown escape code in string constant");
}
} else { // printable chars + UTF-8 bytes
if (unicode_high_surrogate != -1) {
return Error(
"illegal Unicode sequence (unpaired high surrogate)");
}
attribute_ += *cursor_++;
}
}
if (unicode_high_surrogate != -1) {
return Error(
"illegal Unicode sequence (unpaired high surrogate)");
}
cursor_++;
if (!opts.allow_non_utf8 && !ValidateUTF8(attribute_)) {
return Error("illegal UTF-8 sequence");
}
token_ = kTokenStringConstant;
return NoError();
}
case '/':
if (*cursor_ == '/') {
const char *start = ++cursor_;
while (*cursor_ && *cursor_ != '\n' && *cursor_ != '\r') cursor_++;
if (*start == '/') { // documentation comment
if (cursor_ != source_ && !seen_newline)
return Error(
"a documentation comment should be on a line on its own");
doc_comment_.push_back(std::string(start + 1, cursor_));
}
break;
} else if (*cursor_ == '*') {
cursor_++;
// TODO: make nested.
while (*cursor_ != '*' || cursor_[1] != '/') {
if (*cursor_ == '\n') line_++;
if (!*cursor_) return Error("end of file in comment");
cursor_++;
}
cursor_ += 2;
break;
}
// fall thru
default:
if (IsIdentifierStart(c)) {
// Collect all chars of an identifier:
const char *start = cursor_ - 1;
while (isalnum(static_cast<unsigned char>(*cursor_)) ||
*cursor_ == '_')
cursor_++;
attribute_.append(start, cursor_);
// First, see if it is a type keyword from the table of types:
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, \
PTYPE) \
if (attribute_ == IDLTYPE) { \
token_ = kToken ## ENUM; \
return NoError(); \
}
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
// If it's a boolean constant keyword, turn those into integers,
// which simplifies our logic downstream.
if (attribute_ == "true" || attribute_ == "false") {
attribute_ = NumToString(attribute_ == "true");
token_ = kTokenIntegerConstant;
return NoError();
}
// Check for declaration keywords:
if (attribute_ == "table") {
token_ = kTokenTable;
return NoError();
}
if (attribute_ == "struct") {
token_ = kTokenStruct;
return NoError();
}
if (attribute_ == "enum") {
token_ = kTokenEnum;
return NoError();
}
if (attribute_ == "union") {
token_ = kTokenUnion;
return NoError();
}
if (attribute_ == "namespace") {
token_ = kTokenNameSpace;
return NoError();
}
if (attribute_ == "root_type") {
token_ = kTokenRootType;
return NoError();
}
if (attribute_ == "include") {
token_ = kTokenInclude;
return NoError();
}
if (attribute_ == "attribute") {
token_ = kTokenAttribute;
return NoError();
}
if (attribute_ == "file_identifier") {
token_ = kTokenFileIdentifier;
return NoError();
}
if (attribute_ == "file_extension") {
token_ = kTokenFileExtension;
return NoError();
}
if (attribute_ == "null") {
token_ = kTokenNull;
return NoError();
}
if (attribute_ == "rpc_service") {
token_ = kTokenService;
return NoError();
}
// If not, it is a user-defined identifier:
token_ = kTokenIdentifier;
return NoError();
} else if (isdigit(static_cast<unsigned char>(c)) || c == '-') {
const char *start = cursor_ - 1;
if (c == '-' && *cursor_ == '0' && (cursor_[1] == 'x' || cursor_[1] == 'X')) {
++start;
++cursor_;
attribute_.append(&c, &c + 1);
c = '0';
}
if (c == '0' && (*cursor_ == 'x' || *cursor_ == 'X')) {
cursor_++;
while (isxdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
attribute_.append(start + 2, cursor_);
attribute_ = NumToString(StringToUInt(attribute_.c_str(), nullptr, 16));
token_ = kTokenIntegerConstant;
return NoError();
}
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
if (*cursor_ == '.' || *cursor_ == 'e' || *cursor_ == 'E') {
if (*cursor_ == '.') {
cursor_++;
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
}
// See if this float has a scientific notation suffix. Both JSON
// and C++ (through strtod() we use) have the same format:
if (*cursor_ == 'e' || *cursor_ == 'E') {
cursor_++;
if (*cursor_ == '+' || *cursor_ == '-') cursor_++;
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
}
token_ = kTokenFloatConstant;
} else {
token_ = kTokenIntegerConstant;
}
attribute_.append(start, cursor_);
return NoError();
}
std::string ch;
ch = c;
if (c < ' ' || c > '~') ch = "code: " + NumToString(c);
return Error("illegal character: " + ch);
}
}
}
// Check if a given token is next.
bool Parser::Is(int t) {
return t == token_;
}
// Expect a given token to be next, consume it, or error if not present.
CheckedError Parser::Expect(int t) {
if (t != token_) {
return Error("expecting: " + TokenToString(t) + " instead got: " +
TokenToStringId(token_));
}
NEXT();
return NoError();
}
CheckedError Parser::ParseNamespacing(std::string *id, std::string *last) {
while (Is('.')) {
NEXT();
*id += ".";
*id += attribute_;
if (last) *last = attribute_;
EXPECT(kTokenIdentifier);
}
return NoError();
}
EnumDef *Parser::LookupEnum(const std::string &id) {
// Search thru parent namespaces.
for (int components = static_cast<int>(namespaces_.back()->components.size());
components >= 0; components--) {
auto ed = enums_.Lookup(
namespaces_.back()->GetFullyQualifiedName(id, components));
if (ed) return ed;
}
return nullptr;
}
CheckedError Parser::ParseTypeIdent(Type &type) {
std::string id = attribute_;
EXPECT(kTokenIdentifier);
ECHECK(ParseNamespacing(&id, nullptr));
auto enum_def = LookupEnum(id);
if (enum_def) {
type = enum_def->underlying_type;
if (enum_def->is_union) type.base_type = BASE_TYPE_UNION;
} else {
type.base_type = BASE_TYPE_STRUCT;
type.struct_def = LookupCreateStruct(id);
}
return NoError();
}
// Parse any IDL type.
CheckedError Parser::ParseType(Type &type) {
if (token_ >= kTokenBOOL && token_ <= kTokenSTRING) {
type.base_type = static_cast<BaseType>(token_ - kTokenNONE);
NEXT();
} else {
if (token_ == kTokenIdentifier) {
ECHECK(ParseTypeIdent(type));
} else if (token_ == '[') {
NEXT();
Type subtype;
ECHECK(ParseType(subtype));
if (subtype.base_type == BASE_TYPE_VECTOR) {
// We could support this, but it will complicate things, and it's
// easier to work around with a struct around the inner vector.
return Error(
"nested vector types not supported (wrap in table first).");
}
if (subtype.base_type == BASE_TYPE_UNION) {
// We could support this if we stored a struct of 2 elements per
// union element.
return Error(
"vector of union types not supported (wrap in table first).");
}
type = Type(BASE_TYPE_VECTOR, subtype.struct_def, subtype.enum_def);
type.element = subtype.base_type;
EXPECT(']');
} else {
return Error("illegal type syntax");
}
}
return NoError();
}
CheckedError Parser::AddField(StructDef &struct_def, const std::string &name,
const Type &type, FieldDef **dest) {
auto &field = *new FieldDef();
field.value.offset =
FieldIndexToOffset(static_cast<voffset_t>(struct_def.fields.vec.size()));
field.name = name;
field.file = struct_def.file;
field.value.type = type;
if (struct_def.fixed) { // statically compute the field offset
auto size = InlineSize(type);
auto alignment = InlineAlignment(type);
// structs_ need to have a predictable format, so we need to align to
// the largest scalar
struct_def.minalign = std::max(struct_def.minalign, alignment);
struct_def.PadLastField(alignment);
field.value.offset = static_cast<voffset_t>(struct_def.bytesize);
struct_def.bytesize += size;
}
if (struct_def.fields.Add(name, &field))
return Error("field already exists: " + name);
*dest = &field;
return NoError();
}
CheckedError Parser::ParseField(StructDef &struct_def) {
std::string name = attribute_;
std::vector<std::string> dc = doc_comment_;
EXPECT(kTokenIdentifier);
EXPECT(':');
Type type;
ECHECK(ParseType(type));
if (struct_def.fixed && !IsScalar(type.base_type) && !IsStruct(type))
return Error("structs_ may contain only scalar or struct fields");
FieldDef *typefield = nullptr;
if (type.base_type == BASE_TYPE_UNION) {
// For union fields, add a second auto-generated field to hold the type,
// with a special suffix.
ECHECK(AddField(struct_def, name + UnionTypeFieldSuffix(),
type.enum_def->underlying_type, &typefield));
}
FieldDef *field;
ECHECK(AddField(struct_def, name, type, &field));
if (token_ == '=') {
NEXT();
if (!IsScalar(type.base_type))
return Error("default values currently only supported for scalars");
ECHECK(ParseSingleValue(field->value));
}
if (IsFloat(field->value.type.base_type)) {
if (!strpbrk(field->value.constant.c_str(), ".eE"))
field->value.constant += ".0";
}
if (type.enum_def &&
IsScalar(type.base_type) &&
!struct_def.fixed &&
!type.enum_def->attributes.Lookup("bit_flags") &&
!type.enum_def->ReverseLookup(static_cast<int>(
StringToInt(field->value.constant.c_str()))))
return Error("enum " + type.enum_def->name +
" does not have a declaration for this field\'s default of " +
field->value.constant);
field->doc_comment = dc;
ECHECK(ParseMetaData(&field->attributes));
field->deprecated = field->attributes.Lookup("deprecated") != nullptr;
auto hash_name = field->attributes.Lookup("hash");
if (hash_name) {
switch (type.base_type) {
case BASE_TYPE_INT:
case BASE_TYPE_UINT: {
if (FindHashFunction32(hash_name->constant.c_str()) == nullptr)
return Error("Unknown hashing algorithm for 32 bit types: " +
hash_name->constant);
break;
}
case BASE_TYPE_LONG:
case BASE_TYPE_ULONG: {
if (FindHashFunction64(hash_name->constant.c_str()) == nullptr)
return Error("Unknown hashing algorithm for 64 bit types: " +
hash_name->constant);
break;
}
default:
return Error(
"only int, uint, long and ulong data types support hashing.");
}
}
auto cpp_type = field->attributes.Lookup("cpp_type");
if (cpp_type) {
if (!hash_name)
return Error("cpp_type can only be used with a hashed field");
}
if (field->deprecated && struct_def.fixed)
return Error("can't deprecate fields in a struct");
field->required = field->attributes.Lookup("required") != nullptr;
if (field->required && (struct_def.fixed ||
IsScalar(field->value.type.base_type)))
return Error("only non-scalar fields in tables may be 'required'");
field->key = field->attributes.Lookup("key") != nullptr;
if (field->key) {
if (struct_def.has_key)
return Error("only one field may be set as 'key'");
struct_def.has_key = true;
if (!IsScalar(field->value.type.base_type)) {
field->required = true;
if (field->value.type.base_type != BASE_TYPE_STRING)
return Error("'key' field must be string or scalar type");
}
}
field->native_inline = field->attributes.Lookup("native_inline") != nullptr;
if (field->native_inline && !IsStruct(field->value.type))
return Error("native_inline can only be defined on structs'");
auto nested = field->attributes.Lookup("nested_flatbuffer");
if (nested) {
if (nested->type.base_type != BASE_TYPE_STRING)
return Error(
"nested_flatbuffer attribute must be a string (the root type)");
if (field->value.type.base_type != BASE_TYPE_VECTOR ||
field->value.type.element != BASE_TYPE_UCHAR)
return Error(
"nested_flatbuffer attribute may only apply to a vector of ubyte");
// This will cause an error if the root type of the nested flatbuffer
// wasn't defined elsewhere.
LookupCreateStruct(nested->constant);
}
if (typefield) {
// If this field is a union, and it has a manually assigned id,
// the automatically added type field should have an id as well (of N - 1).
auto attr = field->attributes.Lookup("id");
if (attr) {
auto id = atoi(attr->constant.c_str());
auto val = new Value();
val->type = attr->type;
val->constant = NumToString(id - 1);
typefield->attributes.Add("id", val);
}
}
EXPECT(';');
return NoError();
}
CheckedError Parser::ParseAnyValue(Value &val, FieldDef *field,
size_t parent_fieldn,
const StructDef *parent_struct_def) {
switch (val.type.base_type) {
case BASE_TYPE_UNION: {
assert(field);
std::string constant;
if (!parent_fieldn ||
field_stack_.back().second->value.type.base_type != BASE_TYPE_UTYPE) {
// We haven't seen the type field yet. Sadly a lot of JSON writers
// output these in alphabetical order, meaning it comes after this
// value. So we scan past the value to find it, then come back here.
auto type_name = field->name + UnionTypeFieldSuffix();
assert(parent_struct_def);
auto type_field = parent_struct_def->fields.Lookup(type_name);
assert(type_field); // Guaranteed by ParseField().
// Remember where we are in the source file, so we can come back here.
auto backup = *static_cast<ParserState *>(this);
ECHECK(SkipAnyJsonValue()); // The table.
EXPECT(',');
auto next_name = attribute_;
if (Is(kTokenStringConstant)) {
NEXT();
} else {
EXPECT(kTokenIdentifier);
}
if (next_name != type_name)
return Error("missing type field after this union value: " +
type_name);
EXPECT(':');
Value type_val = type_field->value;
ECHECK(ParseAnyValue(type_val, type_field, 0, nullptr));
constant = type_val.constant;
// Got the information we needed, now rewind:
*static_cast<ParserState *>(this) = backup;
} else {
constant = field_stack_.back().first.constant;
}
uint8_t enum_idx;
ECHECK(atot(constant.c_str(), *this, &enum_idx));
auto enum_val = val.type.enum_def->ReverseLookup(enum_idx);
if (!enum_val) return Error("illegal type id for: " + field->name);
ECHECK(ParseTable(*enum_val->struct_def, &val.constant, nullptr));
break;
}
case BASE_TYPE_STRUCT:
ECHECK(ParseTable(*val.type.struct_def, &val.constant, nullptr));
break;
case BASE_TYPE_STRING: {
auto s = attribute_;
EXPECT(kTokenStringConstant);
val.constant = NumToString(builder_.CreateString(s).o);
break;
}
case BASE_TYPE_VECTOR: {
EXPECT('[');
uoffset_t off;
ECHECK(ParseVector(val.type.VectorType(), &off));
val.constant = NumToString(off);
break;
}
case BASE_TYPE_INT:
case BASE_TYPE_UINT:
case BASE_TYPE_LONG:
case BASE_TYPE_ULONG: {
if (field && field->attributes.Lookup("hash") &&
(token_ == kTokenIdentifier || token_ == kTokenStringConstant)) {
ECHECK(ParseHash(val, field));
} else {
ECHECK(ParseSingleValue(val));
}
break;
}
default:
ECHECK(ParseSingleValue(val));
break;
}
return NoError();
}
void Parser::SerializeStruct(const StructDef &struct_def, const Value &val) {
assert(val.constant.length() == struct_def.bytesize);
builder_.Align(struct_def.minalign);
builder_.PushBytes(reinterpret_cast<const uint8_t *>(val.constant.c_str()),
struct_def.bytesize);
builder_.AddStructOffset(val.offset, builder_.GetSize());
}
CheckedError Parser::ParseTable(const StructDef &struct_def, std::string *value,
uoffset_t *ovalue) {
EXPECT('{');
size_t fieldn = 0;
for (;;) {
if ((!opts.strict_json || !fieldn) && Is('}')) { NEXT(); break; }
std::string name = attribute_;
if (Is(kTokenStringConstant)) {
NEXT();
} else {
EXPECT(opts.strict_json ? kTokenStringConstant : kTokenIdentifier);
}
auto field = struct_def.fields.Lookup(name);
if (!field) {
if (!opts.skip_unexpected_fields_in_json) {
return Error("unknown field: " + name);
} else {
EXPECT(':');
ECHECK(SkipAnyJsonValue());
}
} else {
EXPECT(':');
if (Is(kTokenNull)) {
NEXT(); // Ignore this field.
} else {
Value val = field->value;
ECHECK(ParseAnyValue(val, field, fieldn, &struct_def));
size_t i = field_stack_.size();
// Hardcoded insertion-sort with error-check.
// If fields are specified in order, then this loop exits immediately.
for (; i > field_stack_.size() - fieldn; i--) {
auto existing_field = field_stack_[i - 1].second;
if (existing_field == field)
return Error("field set more than once: " + field->name);
if (existing_field->value.offset < field->value.offset) break;
}
field_stack_.insert(field_stack_.begin() + i, std::make_pair(val, field));
fieldn++;
}
}
if (Is('}')) { NEXT(); break; }
EXPECT(',');
}
if (struct_def.fixed && fieldn != struct_def.fields.vec.size())
return Error("struct: wrong number of initializers: " + struct_def.name);
auto start = struct_def.fixed
? builder_.StartStruct(struct_def.minalign)
: builder_.StartTable();
for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1;
size;
size /= 2) {
// Go through elements in reverse, since we're building the data backwards.
for (auto it = field_stack_.rbegin();
it != field_stack_.rbegin() + fieldn; ++it) {
auto &field_value = it->first;
auto field = it->second;
if (!struct_def.sortbysize ||
size == SizeOf(field_value.type.base_type)) {
switch (field_value.type.base_type) {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, \
PTYPE) \
case BASE_TYPE_ ## ENUM: \
builder_.Pad(field->padding); \
if (struct_def.fixed) { \
CTYPE val; \
ECHECK(atot(field_value.constant.c_str(), *this, &val)); \
builder_.PushElement(val); \
} else { \
CTYPE val, valdef; \
ECHECK(atot(field_value.constant.c_str(), *this, &val)); \
ECHECK(atot(field->value.constant.c_str(), *this, &valdef)); \
builder_.AddElement(field_value.offset, val, valdef); \
} \
break;
FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD);
#undef FLATBUFFERS_TD
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, \
PTYPE) \
case BASE_TYPE_ ## ENUM: \
builder_.Pad(field->padding); \
if (IsStruct(field->value.type)) { \
SerializeStruct(*field->value.type.struct_def, field_value); \
} else { \
CTYPE val; \
ECHECK(atot(field_value.constant.c_str(), *this, &val)); \
builder_.AddOffset(field_value.offset, val); \
} \
break;
FLATBUFFERS_GEN_TYPES_POINTER(FLATBUFFERS_TD);
#undef FLATBUFFERS_TD
}
}
}
}
for (size_t i = 0; i < fieldn; i++) field_stack_.pop_back();
if (struct_def.fixed) {
builder_.ClearOffsets();
builder_.EndStruct();
assert(value);
// Temporarily store this struct in the value string, since it is to
// be serialized in-place elsewhere.
value->assign(
reinterpret_cast<const char *>(builder_.GetCurrentBufferPointer()),
struct_def.bytesize);
builder_.PopBytes(struct_def.bytesize);
assert(!ovalue);
} else {
auto val = builder_.EndTable(start,
static_cast<voffset_t>(struct_def.fields.vec.size()));
if (ovalue) *ovalue = val;
if (value) *value = NumToString(val);
}
return NoError();
}
CheckedError Parser::ParseVector(const Type &type, uoffset_t *ovalue) {
int count = 0;
for (;;) {
if ((!opts.strict_json || !count) && Is(']')) { NEXT(); break; }
Value val;
val.type = type;
ECHECK(ParseAnyValue(val, nullptr, 0, nullptr));
field_stack_.push_back(std::make_pair(val, nullptr));
count++;
if (Is(']')) { NEXT(); break; }
EXPECT(',');
}
builder_.StartVector(count * InlineSize(type) / InlineAlignment(type),
InlineAlignment(type));
for (int i = 0; i < count; i++) {
// start at the back, since we're building the data backwards.
auto &val = field_stack_.back().first;
switch (val.type.base_type) {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \
case BASE_TYPE_ ## ENUM: \
if (IsStruct(val.type)) SerializeStruct(*val.type.struct_def, val); \
else { \
CTYPE elem; \
ECHECK(atot(val.constant.c_str(), *this, &elem)); \
builder_.PushElement(elem); \
} \
break;
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
}
field_stack_.pop_back();
}
builder_.ClearOffsets();
*ovalue = builder_.EndVector(count);
return NoError();
}
CheckedError Parser::ParseMetaData(SymbolTable<Value> *attributes) {
if (Is('(')) {
NEXT();
for (;;) {
auto name = attribute_;
EXPECT(kTokenIdentifier);
if (known_attributes_.find(name) == known_attributes_.end())
return Error("user define attributes must be declared before use: " +
name);
auto e = new Value();
attributes->Add(name, e);
if (Is(':')) {
NEXT();
ECHECK(ParseSingleValue(*e));
}
if (Is(')')) { NEXT(); break; }
EXPECT(',');
}
}
return NoError();
}
CheckedError Parser::TryTypedValue(int dtoken, bool check, Value &e,
BaseType req, bool *destmatch) {
bool match = dtoken == token_;
if (match) {
*destmatch = true;
e.constant = attribute_;
if (!check) {
if (e.type.base_type == BASE_TYPE_NONE) {
e.type.base_type = req;
} else {
return Error(std::string("type mismatch: expecting: ") +
kTypeNames[e.type.base_type] +
", found: " +
kTypeNames[req]);
}
}
NEXT();
}
return NoError();
}
CheckedError Parser::ParseEnumFromString(Type &type, int64_t *result) {
*result = 0;
// Parse one or more enum identifiers, separated by spaces.
const char *next = attribute_.c_str();
do {
const char *divider = strchr(next, ' ');
std::string word;
if (divider) {
word = std::string(next, divider);
next = divider + strspn(divider, " ");
} else {
word = next;
next += word.length();
}
if (type.enum_def) { // The field has an enum type
auto enum_val = type.enum_def->vals.Lookup(word);
if (!enum_val)
return Error("unknown enum value: " + word +
", for enum: " + type.enum_def->name);
*result |= enum_val->value;
} else { // No enum type, probably integral field.
if (!IsInteger(type.base_type))
return Error("not a valid value for this field: " + word);
// TODO: could check if its a valid number constant here.
const char *dot = strrchr(word.c_str(), '.');
if (!dot)
return Error("enum values need to be qualified by an enum type");
std::string enum_def_str(word.c_str(), dot);
std::string enum_val_str(dot + 1, word.c_str() + word.length());
auto enum_def = LookupEnum(enum_def_str);
if (!enum_def) return Error("unknown enum: " + enum_def_str);
auto enum_val = enum_def->vals.Lookup(enum_val_str);
if (!enum_val) return Error("unknown enum value: " + enum_val_str);
*result |= enum_val->value;
}
} while(*next);
return NoError();
}
CheckedError Parser::ParseHash(Value &e, FieldDef* field) {
assert(field);
Value *hash_name = field->attributes.Lookup("hash");
switch (e.type.base_type) {
case BASE_TYPE_INT:
case BASE_TYPE_UINT: {
auto hash = FindHashFunction32(hash_name->constant.c_str());
uint32_t hashed_value = hash(attribute_.c_str());
e.constant = NumToString(hashed_value);
break;
}
case BASE_TYPE_LONG:
case BASE_TYPE_ULONG: {
auto hash = FindHashFunction64(hash_name->constant.c_str());
uint64_t hashed_value = hash(attribute_.c_str());
e.constant = NumToString(hashed_value);
break;
}
default:
assert(0);
}
NEXT();
return NoError();
}
CheckedError Parser::ParseSingleValue(Value &e) {
// First see if this could be a conversion function:
if (token_ == kTokenIdentifier && *cursor_ == '(') {
auto functionname = attribute_;
NEXT();
EXPECT('(');
ECHECK(ParseSingleValue(e));
EXPECT(')');
#define FLATBUFFERS_FN_DOUBLE(name, op) \
if (functionname == name) { \
auto x = strtod(e.constant.c_str(), nullptr); \
e.constant = NumToString(op); \
}
FLATBUFFERS_FN_DOUBLE("deg", x / M_PI * 180);
FLATBUFFERS_FN_DOUBLE("rad", x * M_PI / 180);
FLATBUFFERS_FN_DOUBLE("sin", sin(x));
FLATBUFFERS_FN_DOUBLE("cos", cos(x));
FLATBUFFERS_FN_DOUBLE("tan", tan(x));
FLATBUFFERS_FN_DOUBLE("asin", asin(x));
FLATBUFFERS_FN_DOUBLE("acos", acos(x));
FLATBUFFERS_FN_DOUBLE("atan", atan(x));
// TODO(wvo): add more useful conversion functions here.
#undef FLATBUFFERS_FN_DOUBLE
// Then check if this could be a string/identifier enum value:
} else if (e.type.base_type != BASE_TYPE_STRING &&
e.type.base_type != BASE_TYPE_NONE &&
(token_ == kTokenIdentifier || token_ == kTokenStringConstant)) {
if (IsIdentifierStart(attribute_[0])) { // Enum value.
int64_t val;
ECHECK(ParseEnumFromString(e.type, &val));
e.constant = NumToString(val);
NEXT();
} else { // Numeric constant in string.
if (IsInteger(e.type.base_type)) {
char *end;
e.constant = NumToString(StringToInt(attribute_.c_str(), &end));
if (*end)
return Error("invalid integer: " + attribute_);
} else if (IsFloat(e.type.base_type)) {
char *end;
e.constant = NumToString(strtod(attribute_.c_str(), &end));
if (*end)
return Error("invalid float: " + attribute_);
} else {
assert(0); // Shouldn't happen, we covered all types.
e.constant = "0";
}
NEXT();
}
} else {
bool match = false;
ECHECK(TryTypedValue(kTokenIntegerConstant,
IsScalar(e.type.base_type),
e,
BASE_TYPE_INT,
&match));
ECHECK(TryTypedValue(kTokenFloatConstant,
IsFloat(e.type.base_type),
e,
BASE_TYPE_FLOAT,
&match));
ECHECK(TryTypedValue(kTokenStringConstant,
e.type.base_type == BASE_TYPE_STRING,
e,
BASE_TYPE_STRING,
&match));
if (!match)
return Error("cannot parse value starting with: " +
TokenToStringId(token_));
}
return NoError();
}
StructDef *Parser::LookupCreateStruct(const std::string &name,
bool create_if_new, bool definition) {
std::string qualified_name = namespaces_.back()->GetFullyQualifiedName(name);
// See if it exists pre-declared by an unqualified use.
auto struct_def = structs_.Lookup(name);
if (struct_def && struct_def->predecl) {
if (definition) {
// Make sure it has the current namespace, and is registered under its
// qualified name.
struct_def->defined_namespace = namespaces_.back();
structs_.Move(name, qualified_name);
}
return struct_def;
}
// See if it exists pre-declared by an qualified use.
struct_def = structs_.Lookup(qualified_name);
if (struct_def && struct_def->predecl) {
if (definition) {
// Make sure it has the current namespace.
struct_def->defined_namespace = namespaces_.back();
}
return struct_def;
}
if (!definition) {
// Search thru parent namespaces.
for (size_t components = namespaces_.back()->components.size();
components && !struct_def; components--) {
struct_def = structs_.Lookup(
namespaces_.back()->GetFullyQualifiedName(name, components - 1));
}
}
if (!struct_def && create_if_new) {
struct_def = new StructDef();
if (definition) {
structs_.Add(qualified_name, struct_def);
struct_def->name = name;
struct_def->defined_namespace = namespaces_.back();
} else {
// Not a definition.
// Rather than failing, we create a "pre declared" StructDef, due to
// circular references, and check for errors at the end of parsing.
// It is defined in the root namespace, since we don't know what the
// final namespace will be.
// TODO: maybe safer to use special namespace?
structs_.Add(name, struct_def);
struct_def->name = name;
struct_def->defined_namespace = new Namespace();
namespaces_.insert(namespaces_.begin(), struct_def->defined_namespace);
}
}
return struct_def;
}
CheckedError Parser::ParseEnum(bool is_union, EnumDef **dest) {
std::vector<std::string> enum_comment = doc_comment_;
NEXT();
std::string enum_name = attribute_;
EXPECT(kTokenIdentifier);
auto &enum_def = *new EnumDef();
enum_def.name = enum_name;
enum_def.file = file_being_parsed_;
enum_def.doc_comment = enum_comment;
enum_def.is_union = is_union;
enum_def.defined_namespace = namespaces_.back();
if (enums_.Add(namespaces_.back()->GetFullyQualifiedName(enum_name),
&enum_def))
return Error("enum already exists: " + enum_name);
if (is_union) {
enum_def.underlying_type.base_type = BASE_TYPE_UTYPE;
enum_def.underlying_type.enum_def = &enum_def;
} else {
if (opts.proto_mode) {
enum_def.underlying_type.base_type = BASE_TYPE_INT;
} else {
// Give specialized error message, since this type spec used to
// be optional in the first FlatBuffers release.
if (!Is(':')) {
return Error("must specify the underlying integer type for this"
" enum (e.g. \': short\', which was the default).");
} else {
NEXT();
}
// Specify the integer type underlying this enum.
ECHECK(ParseType(enum_def.underlying_type));
if (!IsInteger(enum_def.underlying_type.base_type))
return Error("underlying enum type must be integral");
}
// Make this type refer back to the enum it was derived from.
enum_def.underlying_type.enum_def = &enum_def;
}
ECHECK(ParseMetaData(&enum_def.attributes));
EXPECT('{');
if (is_union) enum_def.vals.Add("NONE", new EnumVal("NONE", 0));
for (;;) {
if (opts.proto_mode && attribute_ == "option") {
ECHECK(ParseProtoOption());
} else {
auto value_name = attribute_;
auto full_name = value_name;
std::vector<std::string> value_comment = doc_comment_;
EXPECT(kTokenIdentifier);
if (is_union) {
ECHECK(ParseNamespacing(&full_name, &value_name));
if (opts.union_value_namespacing) {
// Since we can't namespace the actual enum identifiers, turn
// namespace parts into part of the identifier.
value_name = full_name;
std::replace(value_name.begin(), value_name.end(), '.', '_');
}
}
auto prevsize = enum_def.vals.vec.size();
auto value = enum_def.vals.vec.size()
? enum_def.vals.vec.back()->value + 1
: 0;
auto &ev = *new EnumVal(value_name, value);
if (enum_def.vals.Add(value_name, &ev))
return Error("enum value already exists: " + value_name);
ev.doc_comment = value_comment;
if (is_union) {
ev.struct_def = LookupCreateStruct(full_name);
}
if (Is('=')) {
NEXT();
ev.value = StringToInt(attribute_.c_str());
EXPECT(kTokenIntegerConstant);
if (!opts.proto_mode && prevsize &&
enum_def.vals.vec[prevsize - 1]->value >= ev.value)
return Error("enum values must be specified in ascending order");
}
if (opts.proto_mode && Is('[')) {
NEXT();
// ignore attributes on enums.
while (token_ != ']') NEXT();
NEXT();
}
}
if (!Is(opts.proto_mode ? ';' : ',')) break;
NEXT();
if (Is('}')) break;
}
EXPECT('}');
if (enum_def.attributes.Lookup("bit_flags")) {
for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
++it) {
if (static_cast<size_t>((*it)->value) >=
SizeOf(enum_def.underlying_type.base_type) * 8)
return Error("bit flag out of range of underlying integral type");
(*it)->value = 1LL << (*it)->value;
}
}
if (dest) *dest = &enum_def;
return NoError();
}
CheckedError Parser::StartStruct(const std::string &name, StructDef **dest) {
auto &struct_def = *LookupCreateStruct(name, true, true);
if (!struct_def.predecl) return Error("datatype already exists: " + name);
struct_def.predecl = false;
struct_def.name = name;
struct_def.file = file_being_parsed_;
// Move this struct to the back of the vector just in case it was predeclared,
// to preserve declaration order.
*remove(structs_.vec.begin(), structs_.vec.end(), &struct_def) = &struct_def;
*dest = &struct_def;
return NoError();
}
CheckedError Parser::CheckClash(std::vector<FieldDef*> &fields,
StructDef *struct_def,
const char *suffix,
BaseType basetype) {
auto len = strlen(suffix);
for (auto it = fields.begin(); it != fields.end(); ++it) {
auto &fname = (*it)->name;
if (fname.length() > len &&
fname.compare(fname.length() - len, len, suffix) == 0 &&
(*it)->value.type.base_type != BASE_TYPE_UTYPE) {
auto field = struct_def->fields.Lookup(
fname.substr(0, fname.length() - len));
if (field && field->value.type.base_type == basetype)
return Error("Field " + fname +
" would clash with generated functions for field " +
field->name);
}
}
return NoError();
}
static bool compareFieldDefs(const FieldDef *a, const FieldDef *b) {
auto a_id = atoi(a->attributes.Lookup("id")->constant.c_str());
auto b_id = atoi(b->attributes.Lookup("id")->constant.c_str());
return a_id < b_id;
}
CheckedError Parser::ParseDecl() {
std::vector<std::string> dc = doc_comment_;
bool fixed = Is(kTokenStruct);
if (fixed) NEXT() else EXPECT(kTokenTable);
std::string name = attribute_;
EXPECT(kTokenIdentifier);
StructDef *struct_def;
ECHECK(StartStruct(name, &struct_def));
struct_def->doc_comment = dc;
struct_def->fixed = fixed;
ECHECK(ParseMetaData(&struct_def->attributes));
struct_def->sortbysize =
struct_def->attributes.Lookup("original_order") == nullptr && !fixed;
EXPECT('{');
while (token_ != '}') ECHECK(ParseField(*struct_def));
auto force_align = struct_def->attributes.Lookup("force_align");
if (fixed && force_align) {
auto align = static_cast<size_t>(atoi(force_align->constant.c_str()));
if (force_align->type.base_type != BASE_TYPE_INT ||
align < struct_def->minalign ||
align > FLATBUFFERS_MAX_ALIGNMENT ||
align & (align - 1))
return Error("force_align must be a power of two integer ranging from the"
"struct\'s natural alignment to " +
NumToString(FLATBUFFERS_MAX_ALIGNMENT));
struct_def->minalign = align;
}
struct_def->PadLastField(struct_def->minalign);
// Check if this is a table that has manual id assignments
auto &fields = struct_def->fields.vec;
if (!struct_def->fixed && fields.size()) {
size_t num_id_fields = 0;
for (auto it = fields.begin(); it != fields.end(); ++it) {
if ((*it)->attributes.Lookup("id")) num_id_fields++;
}
// If any fields have ids..
if (num_id_fields) {
// Then all fields must have them.
if (num_id_fields != fields.size())
return Error(
"either all fields or no fields must have an 'id' attribute");
// Simply sort by id, then the fields are the same as if no ids had
// been specified.
std::sort(fields.begin(), fields.end(), compareFieldDefs);
// Verify we have a contiguous set, and reassign vtable offsets.
for (int i = 0; i < static_cast<int>(fields.size()); i++) {
if (i != atoi(fields[i]->attributes.Lookup("id")->constant.c_str()))
return Error("field id\'s must be consecutive from 0, id " +
NumToString(i) + " missing or set twice");
fields[i]->value.offset = FieldIndexToOffset(static_cast<voffset_t>(i));
}
}
}
ECHECK(CheckClash(fields, struct_def, UnionTypeFieldSuffix(),
BASE_TYPE_UNION));
ECHECK(CheckClash(fields, struct_def, "Type", BASE_TYPE_UNION));
ECHECK(CheckClash(fields, struct_def, "_length", BASE_TYPE_VECTOR));
ECHECK(CheckClash(fields, struct_def, "Length", BASE_TYPE_VECTOR));
ECHECK(CheckClash(fields, struct_def, "_byte_vector", BASE_TYPE_STRING));
ECHECK(CheckClash(fields, struct_def, "ByteVector", BASE_TYPE_STRING));
EXPECT('}');
return NoError();
}
CheckedError Parser::ParseService() {
std::vector<std::string> service_comment = doc_comment_;
NEXT();
auto service_name = attribute_;
EXPECT(kTokenIdentifier);
auto &service_def = *new ServiceDef();
service_def.name = service_name;
service_def.file = file_being_parsed_;
service_def.doc_comment = service_comment;
service_def.defined_namespace = namespaces_.back();
if (services_.Add(namespaces_.back()->GetFullyQualifiedName(service_name),
&service_def))
return Error("service already exists: " + service_name);
ECHECK(ParseMetaData(&service_def.attributes));
EXPECT('{');
do {
auto rpc_name = attribute_;
EXPECT(kTokenIdentifier);
EXPECT('(');
Type reqtype, resptype;
ECHECK(ParseTypeIdent(reqtype));
EXPECT(')');
EXPECT(':');
ECHECK(ParseTypeIdent(resptype));
if (reqtype.base_type != BASE_TYPE_STRUCT || reqtype.struct_def->fixed ||
resptype.base_type != BASE_TYPE_STRUCT || resptype.struct_def->fixed)
return Error("rpc request and response types must be tables");
auto &rpc = *new RPCCall();
rpc.name = rpc_name;
rpc.request = reqtype.struct_def;
rpc.response = resptype.struct_def;
if (service_def.calls.Add(rpc_name, &rpc))
return Error("rpc already exists: " + rpc_name);
ECHECK(ParseMetaData(&rpc.attributes));
EXPECT(';');
} while (token_ != '}');
NEXT();
return NoError();
}
bool Parser::SetRootType(const char *name) {
root_struct_def_ = structs_.Lookup(name);
if (!root_struct_def_)
root_struct_def_ = structs_.Lookup(
namespaces_.back()->GetFullyQualifiedName(name));
return root_struct_def_ != nullptr;
}
void Parser::MarkGenerated() {
// This function marks all existing definitions as having already
// been generated, which signals no code for included files should be
// generated.
for (auto it = enums_.vec.begin();
it != enums_.vec.end(); ++it) {
(*it)->generated = true;
}
for (auto it = structs_.vec.begin();
it != structs_.vec.end(); ++it) {
(*it)->generated = true;
}
for (auto it = services_.vec.begin();
it != services_.vec.end(); ++it) {
(*it)->generated = true;
}
}
CheckedError Parser::ParseNamespace() {
NEXT();
auto ns = new Namespace();
namespaces_.push_back(ns);
if (token_ != ';') {
for (;;) {
ns->components.push_back(attribute_);
EXPECT(kTokenIdentifier);
if (Is('.')) NEXT() else break;
}
}
EXPECT(';');
return NoError();
}
static bool compareEnumVals(const EnumVal *a, const EnumVal* b) {
return a->value < b->value;
}
// Best effort parsing of .proto declarations, with the aim to turn them
// in the closest corresponding FlatBuffer equivalent.
// We parse everything as identifiers instead of keywords, since we don't
// want protobuf keywords to become invalid identifiers in FlatBuffers.
CheckedError Parser::ParseProtoDecl() {
bool isextend = attribute_ == "extend";
if (attribute_ == "package") {
// These are identical in syntax to FlatBuffer's namespace decl.
ECHECK(ParseNamespace());
} else if (attribute_ == "message" || isextend) {
std::vector<std::string> struct_comment = doc_comment_;
NEXT();
StructDef *struct_def = nullptr;
if (isextend) {
if (Is('.')) NEXT(); // qualified names may start with a . ?
auto id = attribute_;
EXPECT(kTokenIdentifier);
ECHECK(ParseNamespacing(&id, nullptr));
struct_def = LookupCreateStruct(id, false);
if (!struct_def)
return Error("cannot extend unknown message type: " + id);
} else {
std::string name = attribute_;
EXPECT(kTokenIdentifier);
ECHECK(StartStruct(name, &struct_def));
// Since message definitions can be nested, we create a new namespace.
auto ns = new Namespace();
// Copy of current namespace.
*ns = *namespaces_.back();
// But with current message name.
ns->components.push_back(name);
namespaces_.push_back(ns);
}
struct_def->doc_comment = struct_comment;
ECHECK(ParseProtoFields(struct_def, isextend, false));
if (!isextend) {
// We have to remove the nested namespace, but we can't just throw it
// away, so put it at the beginning of the vector.
auto ns = namespaces_.back();
namespaces_.pop_back();
namespaces_.insert(namespaces_.begin(), ns);
}
if (Is(';')) NEXT();
} else if (attribute_ == "enum") {
// These are almost the same, just with different terminator:
EnumDef *enum_def;
ECHECK(ParseEnum(false, &enum_def));
if (Is(';')) NEXT();
// Protobuf allows them to be specified in any order, so sort afterwards.
auto &v = enum_def->vals.vec;
std::sort(v.begin(), v.end(), compareEnumVals);
// Temp: remove any duplicates, as .fbs files can't handle them.
for (auto it = v.begin(); it != v.end(); ) {
if (it != v.begin() && it[0]->value == it[-1]->value) it = v.erase(it);
else ++it;
}
} else if (attribute_ == "syntax") { // Skip these.
NEXT();
EXPECT('=');
EXPECT(kTokenStringConstant);
EXPECT(';');
} else if (attribute_ == "option") { // Skip these.
ECHECK(ParseProtoOption());
EXPECT(';');
} else if (attribute_ == "service") { // Skip these.
NEXT();
EXPECT(kTokenIdentifier);
ECHECK(ParseProtoCurliesOrIdent());
} else {
return Error("don\'t know how to parse .proto declaration starting with " +
TokenToStringId(token_));
}
return NoError();
}
CheckedError Parser::ParseProtoFields(StructDef *struct_def, bool isextend,
bool inside_oneof) {
EXPECT('{');
while (token_ != '}') {
if (attribute_ == "message" || attribute_ == "extend" ||
attribute_ == "enum") {
// Nested declarations.
ECHECK(ParseProtoDecl());
} else if (attribute_ == "extensions") { // Skip these.
NEXT();
EXPECT(kTokenIntegerConstant);
if (Is(kTokenIdentifier)) {
NEXT(); // to
NEXT(); // num
}
EXPECT(';');
} else if (attribute_ == "option") { // Skip these.
ECHECK(ParseProtoOption());
EXPECT(';');
} else if (attribute_ == "reserved") { // Skip these.
NEXT();
EXPECT(kTokenIntegerConstant);
while (Is(',')) { NEXT(); EXPECT(kTokenIntegerConstant); }
EXPECT(';');
} else {
std::vector<std::string> field_comment = doc_comment_;
// Parse the qualifier.
bool required = false;
bool repeated = false;
bool oneof = false;
if (!inside_oneof) {
if (attribute_ == "optional") {
// This is the default.
EXPECT(kTokenIdentifier);
} else if (attribute_ == "required") {
required = true;
EXPECT(kTokenIdentifier);
} else if (attribute_ == "repeated") {
repeated = true;
EXPECT(kTokenIdentifier);
} else if (attribute_ == "oneof") {
oneof = true;
EXPECT(kTokenIdentifier);
} else {
// can't error, proto3 allows decls without any of the above.
}
}
StructDef *anonymous_struct = nullptr;
Type type;
if (attribute_ == "group" || oneof) {
if (!oneof) EXPECT(kTokenIdentifier);
auto name = "Anonymous" + NumToString(anonymous_counter++);
ECHECK(StartStruct(name, &anonymous_struct));
type = Type(BASE_TYPE_STRUCT, anonymous_struct);
} else {
ECHECK(ParseTypeFromProtoType(&type));
}
// Repeated elements get mapped to a vector.
if (repeated) {
type.element = type.base_type;
type.base_type = BASE_TYPE_VECTOR;
}
std::string name = attribute_;
// Protos may use our keywords "attribute" & "namespace" as an identifier.
if (Is(kTokenAttribute) || Is(kTokenNameSpace)) {
NEXT();
// TODO: simpler to just not make these keywords?
name += "_"; // Have to make it not a keyword.
} else {
EXPECT(kTokenIdentifier);
}
if (!oneof) {
// Parse the field id. Since we're just translating schemas, not
// any kind of binary compatibility, we can safely ignore these, and
// assign our own.
EXPECT('=');
EXPECT(kTokenIntegerConstant);
}
FieldDef *field = nullptr;
if (isextend) {
// We allow a field to be re-defined when extending.
// TODO: are there situations where that is problematic?
field = struct_def->fields.Lookup(name);
}
if (!field) ECHECK(AddField(*struct_def, name, type, &field));
field->doc_comment = field_comment;
if (!IsScalar(type.base_type)) field->required = required;
// See if there's a default specified.
if (Is('[')) {
NEXT();
for (;;) {
auto key = attribute_;
ECHECK(ParseProtoKey());
EXPECT('=');
auto val = attribute_;
ECHECK(ParseProtoCurliesOrIdent());
if (key == "default") {
// Temp: skip non-numeric defaults (enums).
auto numeric = strpbrk(val.c_str(), "0123456789-+.");
if (IsScalar(type.base_type) && numeric == val.c_str())
field->value.constant = val;
} else if (key == "deprecated") {
field->deprecated = val == "true";
}
if (!Is(',')) break;
NEXT();
}
EXPECT(']');
}
if (anonymous_struct) {
ECHECK(ParseProtoFields(anonymous_struct, false, oneof));
if (Is(';')) NEXT();
} else {
EXPECT(';');
}
}
}
NEXT();
return NoError();
}
CheckedError Parser::ParseProtoKey() {
if (token_ == '(') {
NEXT();
// Skip "(a.b)" style custom attributes.
while (token_ == '.' || token_ == kTokenIdentifier) NEXT();
EXPECT(')');
while (Is('.')) { NEXT(); EXPECT(kTokenIdentifier); }
} else {
EXPECT(kTokenIdentifier);
}
return NoError();
}
CheckedError Parser::ParseProtoCurliesOrIdent() {
if (Is('{')) {
NEXT();
for (int nesting = 1; nesting; ) {
if (token_ == '{') nesting++;
else if (token_ == '}') nesting--;
NEXT();
}
} else {
NEXT(); // Any single token.
}
return NoError();
}
CheckedError Parser::ParseProtoOption() {
NEXT();
ECHECK(ParseProtoKey());
EXPECT('=');
ECHECK(ParseProtoCurliesOrIdent());
return NoError();
}
// Parse a protobuf type, and map it to the corresponding FlatBuffer one.
CheckedError Parser::ParseTypeFromProtoType(Type *type) {
struct type_lookup { const char *proto_type; BaseType fb_type; };
static type_lookup lookup[] = {
{ "float", BASE_TYPE_FLOAT }, { "double", BASE_TYPE_DOUBLE },
{ "int32", BASE_TYPE_INT }, { "int64", BASE_TYPE_LONG },
{ "uint32", BASE_TYPE_UINT }, { "uint64", BASE_TYPE_ULONG },
{ "sint32", BASE_TYPE_INT }, { "sint64", BASE_TYPE_LONG },
{ "fixed32", BASE_TYPE_UINT }, { "fixed64", BASE_TYPE_ULONG },
{ "sfixed32", BASE_TYPE_INT }, { "sfixed64", BASE_TYPE_LONG },
{ "bool", BASE_TYPE_BOOL },
{ "string", BASE_TYPE_STRING },
{ "bytes", BASE_TYPE_STRING },
{ nullptr, BASE_TYPE_NONE }
};
for (auto tl = lookup; tl->proto_type; tl++) {
if (attribute_ == tl->proto_type) {
type->base_type = tl->fb_type;
NEXT();
return NoError();
}
}
if (Is('.')) NEXT(); // qualified names may start with a . ?
ECHECK(ParseTypeIdent(*type));
return NoError();
}
CheckedError Parser::SkipAnyJsonValue() {
switch (token_) {
case '{':
ECHECK(SkipJsonObject());
break;
case kTokenStringConstant:
ECHECK(SkipJsonString());
break;
case '[':
ECHECK(SkipJsonArray());
break;
case kTokenIntegerConstant:
EXPECT(kTokenIntegerConstant);
break;
case kTokenFloatConstant:
EXPECT(kTokenFloatConstant);
break;
default:
return Error(std::string("Unexpected token:") + std::string(1, static_cast<char>(token_)));
}
return NoError();
}
CheckedError Parser::SkipJsonObject() {
EXPECT('{');
size_t fieldn = 0;
for (;;) {
if ((!opts.strict_json || !fieldn) && Is('}')) break;
if (!Is(kTokenStringConstant)) {
EXPECT(opts.strict_json ? kTokenStringConstant : kTokenIdentifier);
}
else {
NEXT();
}
EXPECT(':');
ECHECK(SkipAnyJsonValue());
fieldn++;
if (Is('}')) break;
EXPECT(',');
}
NEXT();
return NoError();
}
CheckedError Parser::SkipJsonArray() {
EXPECT('[');
for (;;) {
if (Is(']')) break;
ECHECK(SkipAnyJsonValue());
if (Is(']')) break;
EXPECT(',');
}
NEXT();
return NoError();
}
CheckedError Parser::SkipJsonString() {
EXPECT(kTokenStringConstant);
return NoError();
}
bool Parser::Parse(const char *source, const char **include_paths,
const char *source_filename) {
return !DoParse(source, include_paths, source_filename).Check();
}
CheckedError Parser::DoParse(const char *source, const char **include_paths,
const char *source_filename) {
file_being_parsed_ = source_filename ? source_filename : "";
if (source_filename &&
included_files_.find(source_filename) == included_files_.end()) {
included_files_[source_filename] = true;
files_included_per_file_[source_filename] = std::set<std::string>();
}
if (!include_paths) {
static const char *current_directory[] = { "", nullptr };
include_paths = current_directory;
}
source_ = cursor_ = source;
line_ = 1;
error_.clear();
field_stack_.clear();
builder_.Clear();
// Start with a blank namespace just in case this file doesn't have one.
namespaces_.push_back(new Namespace());
ECHECK(SkipByteOrderMark());
NEXT();
// Includes must come before type declarations:
for (;;) {
// Parse pre-include proto statements if any:
if (opts.proto_mode &&
(attribute_ == "option" || attribute_ == "syntax" ||
attribute_ == "package")) {
ECHECK(ParseProtoDecl());
} else if (Is(kTokenInclude) ||
(opts.proto_mode &&
attribute_ == "import" &&
Is(kTokenIdentifier))) {
NEXT();
if (opts.proto_mode && attribute_ == "public") NEXT();
auto name = attribute_;
EXPECT(kTokenStringConstant);
// Look for the file in include_paths.
std::string filepath;
for (auto paths = include_paths; paths && *paths; paths++) {
filepath = flatbuffers::ConCatPathFileName(*paths, name);
if(FileExists(filepath.c_str())) break;
}
if (filepath.empty())
return Error("unable to locate include file: " + name);
if (source_filename)
files_included_per_file_[source_filename].insert(filepath);
if (included_files_.find(filepath) == included_files_.end()) {
// We found an include file that we have not parsed yet.
// Load it and parse it.
std::string contents;
if (!LoadFile(filepath.c_str(), true, &contents))
return Error("unable to load include file: " + name);
ECHECK(DoParse(contents.c_str(), include_paths, filepath.c_str()));
// We generally do not want to output code for any included files:
if (!opts.generate_all) MarkGenerated();
// This is the easiest way to continue this file after an include:
// instead of saving and restoring all the state, we simply start the
// file anew. This will cause it to encounter the same include
// statement again, but this time it will skip it, because it was
// entered into included_files_.
// This is recursive, but only go as deep as the number of include
// statements.
return DoParse(source, include_paths, source_filename);
}
EXPECT(';');
} else {
break;
}
}
// Now parse all other kinds of declarations:
while (token_ != kTokenEof) {
if (opts.proto_mode) {
ECHECK(ParseProtoDecl());
} else if (token_ == kTokenNameSpace) {
ECHECK(ParseNamespace());
} else if (token_ == '{') {
if (!root_struct_def_)
return Error("no root type set to parse json with");
if (builder_.GetSize()) {
return Error("cannot have more than one json object in a file");
}
uoffset_t toff;
ECHECK(ParseTable(*root_struct_def_, nullptr, &toff));
builder_.Finish(Offset<Table>(toff),
file_identifier_.length() ? file_identifier_.c_str() : nullptr);
} else if (token_ == kTokenEnum) {
ECHECK(ParseEnum(false, nullptr));
} else if (token_ == kTokenUnion) {
ECHECK(ParseEnum(true, nullptr));
} else if (token_ == kTokenRootType) {
NEXT();
auto root_type = attribute_;
EXPECT(kTokenIdentifier);
ECHECK(ParseNamespacing(&root_type, nullptr));
if (!SetRootType(root_type.c_str()))
return Error("unknown root type: " + root_type);
if (root_struct_def_->fixed)
return Error("root type must be a table");
EXPECT(';');
} else if (token_ == kTokenFileIdentifier) {
NEXT();
file_identifier_ = attribute_;
EXPECT(kTokenStringConstant);
if (file_identifier_.length() !=
FlatBufferBuilder::kFileIdentifierLength)
return Error("file_identifier must be exactly " +
NumToString(FlatBufferBuilder::kFileIdentifierLength) +
" characters");
EXPECT(';');
} else if (token_ == kTokenFileExtension) {
NEXT();
file_extension_ = attribute_;
EXPECT(kTokenStringConstant);
EXPECT(';');
} else if(token_ == kTokenInclude) {
return Error("includes must come before declarations");
} else if(token_ == kTokenAttribute) {
NEXT();
auto name = attribute_;
EXPECT(kTokenStringConstant);
EXPECT(';');
known_attributes_[name] = false;
} else if (token_ == kTokenService) {
ECHECK(ParseService());
} else {
ECHECK(ParseDecl());
}
}
for (auto it = structs_.vec.begin(); it != structs_.vec.end(); ++it) {
if ((*it)->predecl) {
return Error("type referenced but not defined: " + (*it)->name);
}
}
for (auto it = enums_.vec.begin(); it != enums_.vec.end(); ++it) {
auto &enum_def = **it;
if (enum_def.is_union) {
for (auto val_it = enum_def.vals.vec.begin();
val_it != enum_def.vals.vec.end();
++val_it) {
auto &val = **val_it;
if (val.struct_def && val.struct_def->fixed)
return Error("only tables can be union elements: " + val.name);
}
}
}
return NoError();
}
std::set<std::string> Parser::GetIncludedFilesRecursive(
const std::string &file_name) const {
std::set<std::string> included_files;
std::list<std::string> to_process;
if (file_name.empty()) return included_files;
to_process.push_back(file_name);
while (!to_process.empty()) {
std::string current = to_process.front();
to_process.pop_front();
included_files.insert(current);
auto new_files = files_included_per_file_.at(current);
for (auto it = new_files.begin(); it != new_files.end(); ++it) {
if (included_files.find(*it) == included_files.end())
to_process.push_back(*it);
}
}
return included_files;
}
// Schema serialization functionality:
template<typename T> bool compareName(const T* a, const T* b) {
return a->defined_namespace->GetFullyQualifiedName(a->name)
< b->defined_namespace->GetFullyQualifiedName(b->name);
}
template<typename T> void AssignIndices(const std::vector<T *> &defvec) {
// Pre-sort these vectors, such that we can set the correct indices for them.
auto vec = defvec;
std::sort(vec.begin(), vec.end(), compareName<T>);
for (int i = 0; i < static_cast<int>(vec.size()); i++) vec[i]->index = i;
}
void Parser::Serialize() {
builder_.Clear();
AssignIndices(structs_.vec);
AssignIndices(enums_.vec);
std::vector<Offset<reflection::Object>> object_offsets;
for (auto it = structs_.vec.begin(); it != structs_.vec.end(); ++it) {
auto offset = (*it)->Serialize(&builder_, *this);
object_offsets.push_back(offset);
(*it)->serialized_location = offset.o;
}
std::vector<Offset<reflection::Enum>> enum_offsets;
for (auto it = enums_.vec.begin(); it != enums_.vec.end(); ++it) {
auto offset = (*it)->Serialize(&builder_, *this);
enum_offsets.push_back(offset);
(*it)->serialized_location = offset.o;
}
auto schema_offset = reflection::CreateSchema(
builder_,
builder_.CreateVectorOfSortedTables(&object_offsets),
builder_.CreateVectorOfSortedTables(&enum_offsets),
builder_.CreateString(file_identifier_),
builder_.CreateString(file_extension_),
root_struct_def_
? root_struct_def_->serialized_location
: 0);
builder_.Finish(schema_offset, reflection::SchemaIdentifier());
}
Offset<reflection::Object> StructDef::Serialize(FlatBufferBuilder *builder,
const Parser &parser) const {
std::vector<Offset<reflection::Field>> field_offsets;
for (auto it = fields.vec.begin(); it != fields.vec.end(); ++it) {
field_offsets.push_back(
(*it)->Serialize(builder,
static_cast<uint16_t>(it - fields.vec.begin()), parser));
}
auto qualified_name = defined_namespace->GetFullyQualifiedName(name);
return reflection::CreateObject(*builder,
builder->CreateString(qualified_name),
builder->CreateVectorOfSortedTables(
&field_offsets),
fixed,
static_cast<int>(minalign),
static_cast<int>(bytesize),
SerializeAttributes(builder, parser));
}
Offset<reflection::Field> FieldDef::Serialize(FlatBufferBuilder *builder,
uint16_t id,
const Parser &parser) const {
return reflection::CreateField(*builder,
builder->CreateString(name),
value.type.Serialize(builder),
id,
value.offset,
IsInteger(value.type.base_type)
? StringToInt(value.constant.c_str())
: 0,
IsFloat(value.type.base_type)
? strtod(value.constant.c_str(), nullptr)
: 0.0,
deprecated,
required,
key,
SerializeAttributes(builder, parser));
// TODO: value.constant is almost always "0", we could save quite a bit of
// space by sharing it. Same for common values of value.type.
}
Offset<reflection::Enum> EnumDef::Serialize(FlatBufferBuilder *builder,
const Parser &parser) const {
std::vector<Offset<reflection::EnumVal>> enumval_offsets;
for (auto it = vals.vec.begin(); it != vals.vec.end(); ++it) {
enumval_offsets.push_back((*it)->Serialize(builder));
}
auto qualified_name = defined_namespace->GetFullyQualifiedName(name);
return reflection::CreateEnum(*builder,
builder->CreateString(qualified_name),
builder->CreateVector(enumval_offsets),
is_union,
underlying_type.Serialize(builder),
SerializeAttributes(builder, parser));
}
Offset<reflection::EnumVal> EnumVal::Serialize(FlatBufferBuilder *builder) const
{
return reflection::CreateEnumVal(*builder,
builder->CreateString(name),
value,
struct_def
? struct_def->serialized_location
: 0);
}
Offset<reflection::Type> Type::Serialize(FlatBufferBuilder *builder) const {
return reflection::CreateType(*builder,
static_cast<reflection::BaseType>(base_type),
static_cast<reflection::BaseType>(element),
struct_def ? struct_def->index :
(enum_def ? enum_def->index : -1));
}
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<
reflection::KeyValue>>>
Definition::SerializeAttributes(FlatBufferBuilder *builder,
const Parser &parser) const {
std::vector<flatbuffers::Offset<reflection::KeyValue>> attrs;
for (auto kv = attributes.dict.begin(); kv != attributes.dict.end(); ++kv) {
auto it = parser.known_attributes_.find(kv->first);
assert(it != parser.known_attributes_.end());
if (!it->second) { // Custom attribute.
attrs.push_back(
reflection::CreateKeyValue(*builder, builder->CreateString(kv->first),
builder->CreateString(
kv->second->constant)));
}
}
if (attrs.size()) {
return builder->CreateVectorOfSortedTables(&attrs);
} else {
return 0;
}
}
std::string Parser::ConformTo(const Parser &base) {
for (auto sit = structs_.vec.begin(); sit != structs_.vec.end(); ++sit) {
auto &struct_def = **sit;
auto qualified_name =
struct_def.defined_namespace->GetFullyQualifiedName(struct_def.name);
auto struct_def_base = base.structs_.Lookup(qualified_name);
if (!struct_def_base) continue;
for (auto fit = struct_def.fields.vec.begin();
fit != struct_def.fields.vec.end(); ++fit) {
auto &field = **fit;
auto field_base = struct_def_base->fields.Lookup(field.name);
if (field_base) {
if (field.value.offset != field_base->value.offset)
return "offsets differ for field: " + field.name;
if (field.value.constant != field_base->value.constant)
return "defaults differ for field: " + field.name;
if (!EqualByName(field.value.type, field_base->value.type))
return "types differ for field: " + field.name;
} else {
// Doesn't have to exist, deleting fields is fine.
// But we should check if there is a field that has the same offset
// but is incompatible (in the case of field renaming).
for (auto fbit = struct_def_base->fields.vec.begin();
fbit != struct_def_base->fields.vec.end(); ++fbit) {
field_base = *fbit;
if (field.value.offset == field_base->value.offset) {
if (!EqualByName(field.value.type, field_base->value.type))
return "field renamed to different type: " + field.name;
break;
}
}
}
}
}
for (auto eit = enums_.vec.begin(); eit != enums_.vec.end(); ++eit) {
auto &enum_def = **eit;
auto qualified_name =
enum_def.defined_namespace->GetFullyQualifiedName(enum_def.name);
auto enum_def_base = base.enums_.Lookup(qualified_name);
if (!enum_def_base) continue;
for (auto evit = enum_def.vals.vec.begin();
evit != enum_def.vals.vec.end(); ++evit) {
auto &enum_val = **evit;
auto enum_val_base = enum_def_base->vals.Lookup(enum_val.name);
if (enum_val_base) {
if (enum_val.value != enum_val_base->value)
return "values differ for enum: " + enum_val.name;
}
}
}
return "";
}
} // namespace flatbuffers