blob: 5154b85d2c9f1c12d1ffeda51bf093a70ae15f5b [file] [log] [blame]
/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// independent from idl_parser, since this code is not needed for most clients
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/idl.h"
#include "flatbuffers/util.h"
#include "flatbuffers/code_generators.h"
namespace flatbuffers {
struct IsAlnum {
bool operator()(char c) { return !isalnum(c); }
};
static std::string GeneratedFileName(const std::string &path,
const std::string &file_name) {
return path + file_name + "_generated.h";
}
namespace cpp {
class CppGenerator : public BaseGenerator {
public:
CppGenerator(const Parser &parser, const std::string &path,
const std::string &file_name)
: BaseGenerator(parser, path, file_name, "", "::"),
cur_name_space_(nullptr){};
// Iterate through all definitions we haven't generate code for (enums,
// structs,
// and tables) and output them to a single file.
bool generate() {
if (IsEverythingGenerated()) return true;
std::string code;
code = code + "// " + FlatBuffersGeneratedWarning();
// Generate include guard.
std::string include_guard_ident = file_name_;
// Remove any non-alpha-numeric characters that may appear in a filename.
include_guard_ident.erase(
std::remove_if(include_guard_ident.begin(), include_guard_ident.end(),
IsAlnum()),
include_guard_ident.end());
std::string include_guard = "FLATBUFFERS_GENERATED_" + include_guard_ident;
include_guard += "_";
// For further uniqueness, also add the namespace.
auto name_space = parser_.namespaces_.back();
for (auto it = name_space->components.begin();
it != name_space->components.end(); ++it) {
include_guard += *it + "_";
}
include_guard += "H_";
std::transform(include_guard.begin(), include_guard.end(),
include_guard.begin(), ::toupper);
code += "#ifndef " + include_guard + "\n";
code += "#define " + include_guard + "\n\n";
code += "#include \"flatbuffers/flatbuffers.h\"\n\n";
if (parser_.opts.include_dependence_headers) {
int num_includes = 0;
for (auto it = parser_.included_files_.begin();
it != parser_.included_files_.end(); ++it) {
auto basename =
flatbuffers::StripPath(flatbuffers::StripExtension(it->first));
if (basename != file_name_) {
code += "#include \"" + basename + "_generated.h\"\n";
num_includes++;
}
}
if (num_includes) code += "\n";
}
assert(!cur_name_space_);
// Generate forward declarations for all structs/tables, since they may
// have circular references.
for (auto it = parser_.structs_.vec.begin();
it != parser_.structs_.vec.end(); ++it) {
auto &struct_def = **it;
if (!struct_def.generated) {
SetNameSpace(struct_def.defined_namespace, &code);
code += "struct " + struct_def.name + ";\n";
if (parser_.opts.generate_object_based_api && !struct_def.fixed) {
code += "struct " + NativeName(struct_def.name) + ";\n";
}
code += "\n";
}
}
// Generate code for all the enum declarations.
for (auto it = parser_.enums_.vec.begin(); it != parser_.enums_.vec.end();
++it) {
auto &enum_def = **it;
if (!enum_def.generated) {
SetNameSpace((**it).defined_namespace, &code);
GenEnum(**it, &code);
}
}
// Generate code for all structs, then all tables.
for (auto it = parser_.structs_.vec.begin();
it != parser_.structs_.vec.end(); ++it) {
auto &struct_def = **it;
if (struct_def.fixed && !struct_def.generated) {
SetNameSpace(struct_def.defined_namespace, &code);
GenStruct(struct_def, &code);
}
}
for (auto it = parser_.structs_.vec.begin();
it != parser_.structs_.vec.end(); ++it) {
auto &struct_def = **it;
if (!struct_def.fixed && !struct_def.generated) {
SetNameSpace(struct_def.defined_namespace, &code);
GenTable(struct_def, &code);
}
}
for (auto it = parser_.structs_.vec.begin();
it != parser_.structs_.vec.end(); ++it) {
auto &struct_def = **it;
if (!struct_def.fixed && !struct_def.generated) {
SetNameSpace(struct_def.defined_namespace, &code);
GenTablePost(struct_def, &code);
}
}
// Generate code for union verifiers.
for (auto it = parser_.enums_.vec.begin(); it != parser_.enums_.vec.end();
++it) {
auto &enum_def = **it;
if (enum_def.is_union && !enum_def.generated) {
SetNameSpace(enum_def.defined_namespace, &code);
GenUnionPost(enum_def, &code);
}
}
// Generate convenient global helper functions:
if (parser_.root_struct_def_) {
SetNameSpace((*parser_.root_struct_def_).defined_namespace, &code);
auto &name = parser_.root_struct_def_->name;
std::string qualified_name =
parser_.namespaces_.back()->GetFullyQualifiedName(name);
std::string cpp_qualified_name = TranslateNameSpace(qualified_name);
// The root datatype accessor:
code += "inline const " + cpp_qualified_name + " *Get";
code += name;
code += "(const void *buf) {\n return flatbuffers::GetRoot<";
code += cpp_qualified_name + ">(buf);\n}\n\n";
if (parser_.opts.mutable_buffer) {
code += "inline " + name + " *GetMutable";
code += name;
code += "(void *buf) {\n return flatbuffers::GetMutableRoot<";
code += name + ">(buf);\n}\n\n";
}
if (parser_.file_identifier_.length()) {
// Return the identifier
code += "inline const char *" + name;
code += "Identifier() {\n return \"" + parser_.file_identifier_;
code += "\";\n}\n\n";
// Check if a buffer has the identifier.
code += "inline bool " + name;
code += "BufferHasIdentifier(const void *buf) {\n return flatbuffers::";
code += "BufferHasIdentifier(buf, ";
code += name + "Identifier());\n}\n\n";
}
// The root verifier:
code += "inline bool Verify";
code += name;
code +=
"Buffer(flatbuffers::Verifier &verifier) {\n"
" return verifier.VerifyBuffer<";
code += cpp_qualified_name + ">(";
if (parser_.file_identifier_.length())
code += name + "Identifier()";
else
code += "nullptr";
code += ");\n}\n\n";
if (parser_.file_extension_.length()) {
// Return the extension
code += "inline const char *" + name;
code += "Extension() { return \"" + parser_.file_extension_;
code += "\"; }\n\n";
}
// Finish a buffer with a given root object:
code += "inline void Finish" + name;
code +=
"Buffer(flatbuffers::FlatBufferBuilder &fbb, flatbuffers::Offset<";
code += cpp_qualified_name + "> root) {\n fbb.Finish(root";
if (parser_.file_identifier_.length())
code += ", " + name + "Identifier()";
code += ");\n}\n\n";
if (parser_.opts.generate_object_based_api) {
// A convenient root unpack function.
auto native_name =
NativeName(WrapInNameSpace(*parser_.root_struct_def_));
code += "inline " + GenTypeNativePtr(native_name, nullptr, false);
code += " UnPack" + name;
code += "(const void *buf, const flatbuffers::resolver_function_t *";
code += "resolver = nullptr) {\n return ";
code += GenTypeNativePtr(native_name, nullptr, true);
code += "(Get" + name + "(buf)->UnPack(resolver));\n}\n\n";
}
}
assert(cur_name_space_);
SetNameSpace(nullptr, &code);
// Close the include guard.
code += "#endif // " + include_guard + "\n";
return SaveFile(GeneratedFileName(path_, file_name_).c_str(), code, false);
}
private:
// This tracks the current namespace so we can insert namespace declarations.
const Namespace *cur_name_space_;
const Namespace *CurrentNameSpace() { return cur_name_space_; }
// Translates a qualified name in flatbuffer text format to the same name in
// the equivalent C++ namespace.
static std::string TranslateNameSpace(const std::string &qualified_name) {
std::string cpp_qualified_name = qualified_name;
size_t start_pos = 0;
while ((start_pos = cpp_qualified_name.find(".", start_pos)) !=
std::string::npos) {
cpp_qualified_name.replace(start_pos, 1, "::");
}
return cpp_qualified_name;
}
// Return a C++ type from the table in idl.h
std::string GenTypeBasic(const Type &type, bool user_facing_type) {
static const char *ctypename[] = {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \
#CTYPE,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
if (user_facing_type) {
if (type.enum_def) return WrapInNameSpace(*type.enum_def);
if (type.base_type == BASE_TYPE_BOOL) return "bool";
}
return ctypename[type.base_type];
}
// Return a C++ pointer type, specialized to the actual struct/table types,
// and vector element types.
std::string GenTypePointer(const Type &type) {
switch (type.base_type) {
case BASE_TYPE_STRING:
return "flatbuffers::String";
case BASE_TYPE_VECTOR:
return "flatbuffers::Vector<" +
GenTypeWire(type.VectorType(), "", false) + ">";
case BASE_TYPE_STRUCT:
return WrapInNameSpace(*type.struct_def);
case BASE_TYPE_UNION:
// fall through
default:
return "void";
}
}
// Return a C++ type for any type (scalar/pointer) specifically for
// building a flatbuffer.
std::string GenTypeWire(const Type &type, const char *postfix,
bool user_facing_type) {
return IsScalar(type.base_type)
? GenTypeBasic(type, user_facing_type) + postfix
: IsStruct(type) ? "const " + GenTypePointer(type) + " *"
: "flatbuffers::Offset<" +
GenTypePointer(type) + ">" + postfix;
}
// Return a C++ type for any type (scalar/pointer) that reflects its
// serialized size.
std::string GenTypeSize(const Type &type) {
return IsScalar(type.base_type) ? GenTypeBasic(type, false)
: IsStruct(type) ? GenTypePointer(type)
: "flatbuffers::uoffset_t";
}
// TODO(wvo): make this configurable.
std::string NativeName(const std::string &name) { return name + "T"; }
const std::string &PtrType(const FieldDef *field) {
auto attr = field ? field->attributes.Lookup("cpp_ptr_type") : nullptr;
return attr ? attr->constant : parser_.opts.cpp_object_api_pointer_type;
}
std::string GenTypeNativePtr(const std::string &type, const FieldDef *field,
bool is_constructor) {
auto &ptr_type = PtrType(field);
if (ptr_type == "naked") return is_constructor ? "" : type + " *";
return ptr_type + "<" + type + ">";
}
std::string GenPtrGet(const FieldDef &field) {
auto &ptr_type = PtrType(&field);
return ptr_type == "naked" ? "" : ".get()";
}
std::string GenTypeNative(const Type &type, bool invector,
const FieldDef &field) {
switch (type.base_type) {
case BASE_TYPE_STRING:
return "std::string";
case BASE_TYPE_VECTOR:
return "std::vector<" + GenTypeNative(type.VectorType(), true, field) +
">";
case BASE_TYPE_STRUCT:
if (IsStruct(type)) {
if (invector || field.native_inline) {
return WrapInNameSpace(*type.struct_def);
} else {
return GenTypeNativePtr(WrapInNameSpace(*type.struct_def), &field,
false);
}
} else {
return GenTypeNativePtr(NativeName(WrapInNameSpace(*type.struct_def)),
&field, false);
}
case BASE_TYPE_UNION:
return type.enum_def->name + "Union";
default:
return GenTypeBasic(type, true);
}
}
// Return a C++ type for any type (scalar/pointer) specifically for
// using a flatbuffer.
std::string GenTypeGet(const Type &type, const char *afterbasic,
const char *beforeptr, const char *afterptr,
bool user_facing_type) {
return IsScalar(type.base_type)
? GenTypeBasic(type, user_facing_type) + afterbasic
: beforeptr + GenTypePointer(type) + afterptr;
}
static std::string GenEnumDecl(const EnumDef &enum_def,
const IDLOptions &opts) {
return (opts.scoped_enums ? "enum class " : "enum ") + enum_def.name;
}
static std::string GenEnumValDecl(const EnumDef &enum_def,
const std::string &enum_val,
const IDLOptions &opts) {
return opts.prefixed_enums ? enum_def.name + "_" + enum_val : enum_val;
}
static std::string GetEnumValUse(const EnumDef &enum_def,
const EnumVal &enum_val,
const IDLOptions &opts) {
if (opts.scoped_enums) {
return enum_def.name + "::" + enum_val.name;
} else if (opts.prefixed_enums) {
return enum_def.name + "_" + enum_val.name;
} else {
return enum_val.name;
}
}
std::string UnionVerifySignature(EnumDef &enum_def) {
return "inline bool Verify" + enum_def.name +
"(flatbuffers::Verifier &verifier, const void *union_obj, " +
enum_def.name + " type)";
}
std::string UnionUnPackSignature(EnumDef &enum_def, bool inclass) {
return (inclass ? "static " : "") +
std::string("flatbuffers::NativeTable *") +
(inclass ? "" : enum_def.name + "Union::") +
"UnPack(const void *union_obj, " + enum_def.name +
" type, const flatbuffers::resolver_function_t *resolver)";
}
std::string UnionPackSignature(EnumDef &enum_def, bool inclass) {
return "flatbuffers::Offset<void> " +
(inclass ? "" : enum_def.name + "Union::") +
"Pack(flatbuffers::FlatBufferBuilder &_fbb, " +
"const flatbuffers::rehasher_function_t *rehasher" +
(inclass ? " = nullptr" : "") + ") const";
}
std::string TableCreateSignature(StructDef &struct_def, bool predecl) {
return "inline flatbuffers::Offset<" + struct_def.name + "> Create" +
struct_def.name +
"(flatbuffers::FlatBufferBuilder &_fbb, const " +
NativeName(struct_def.name) +
" *_o, const flatbuffers::rehasher_function_t *rehasher" +
(predecl ? " = nullptr" : "") + ")";
}
std::string TablePackSignature(StructDef &struct_def, bool inclass) {
return std::string(inclass ? "static " : "") +
"flatbuffers::Offset<" + struct_def.name + "> " +
(inclass ? "" : struct_def.name + "::") +
"Pack(flatbuffers::FlatBufferBuilder &_fbb, " +
"const " + NativeName(struct_def.name) + "* _o, " +
"const flatbuffers::rehasher_function_t *_rehasher" +
(inclass ? " = nullptr" : "") + ")";
}
std::string TableUnPackSignature(StructDef &struct_def, bool inclass) {
return NativeName(struct_def.name) + " *" +
(inclass ? "" : struct_def.name + "::") +
"UnPack(const flatbuffers::resolver_function_t *resolver" +
(inclass ? " = nullptr" : "") + ") const";
}
// Generate an enum declaration and an enum string lookup table.
void GenEnum(EnumDef &enum_def, std::string *code_ptr) {
std::string &code = *code_ptr;
GenComment(enum_def.doc_comment, code_ptr, nullptr);
code += GenEnumDecl(enum_def, parser_.opts);
if (parser_.opts.scoped_enums)
code += " : " + GenTypeBasic(enum_def.underlying_type, false);
code += " {\n";
int64_t anyv = 0;
EnumVal *minv = nullptr, *maxv = nullptr;
for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
++it) {
auto &ev = **it;
GenComment(ev.doc_comment, code_ptr, nullptr, " ");
code += " " + GenEnumValDecl(enum_def, ev.name, parser_.opts) + " = ";
code += NumToString(ev.value);
if (it != enum_def.vals.vec.end() - 1) code += ",\n";
minv = !minv || minv->value > ev.value ? &ev : minv;
maxv = !maxv || maxv->value < ev.value ? &ev : maxv;
anyv |= ev.value;
}
if (parser_.opts.scoped_enums || parser_.opts.prefixed_enums) {
assert(minv && maxv);
if (enum_def.attributes.Lookup("bit_flags")) {
if (minv->value != 0) // If the user didn't defined NONE value
code += ",\n " + GenEnumValDecl(enum_def, "NONE", parser_.opts) + " = 0";
if (maxv->value != anyv) // If the user didn't defined ANY value
code += ",\n " + GenEnumValDecl(enum_def, "ANY", parser_.opts) + " = " +
NumToString(anyv);
} else { // MIN & MAX are useless for bit_flags
code += ",\n " + GenEnumValDecl(enum_def, "MIN", parser_.opts) + " = ";
code += GenEnumValDecl(enum_def, minv->name, parser_.opts);
code += ",\n " + GenEnumValDecl(enum_def, "MAX", parser_.opts) + " = ";
code += GenEnumValDecl(enum_def, maxv->name, parser_.opts);
}
}
code += "\n};\n";
if (parser_.opts.scoped_enums && enum_def.attributes.Lookup("bit_flags"))
code += "DEFINE_BITMASK_OPERATORS(" + enum_def.name + ", " +
GenTypeBasic(enum_def.underlying_type, false) + ")\n";
code += "\n";
// Generate a generate string table for enum values.
// Problem is, if values are very sparse that could generate really big
// tables. Ideally in that case we generate a map lookup instead, but for
// the moment we simply don't output a table at all.
auto range =
enum_def.vals.vec.back()->value - enum_def.vals.vec.front()->value + 1;
// Average distance between values above which we consider a table
// "too sparse". Change at will.
static const int kMaxSparseness = 5;
if (range / static_cast<int64_t>(enum_def.vals.vec.size()) <
kMaxSparseness) {
code += "inline const char **EnumNames" + enum_def.name + "() {\n";
code += " static const char *names[] = { ";
auto val = enum_def.vals.vec.front()->value;
for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
++it) {
while (val++ != (*it)->value) code += "\"\", ";
code += "\"" + (*it)->name + "\", ";
}
code += "nullptr };\n return names;\n}\n\n";
code += "inline const char *EnumName" + enum_def.name;
code += "(" + enum_def.name + " e) { return EnumNames" + enum_def.name;
code += "()[static_cast<int>(e)";
if (enum_def.vals.vec.front()->value) {
code += " - static_cast<int>(";
code += GetEnumValUse(enum_def, *enum_def.vals.vec.front(), parser_.opts) +
")";
}
code += "]; }\n\n";
}
// Generate type traits for unions to map from a type to union enum value.
if (enum_def.is_union) {
for (auto it = enum_def.vals.vec.begin();
it != enum_def.vals.vec.end();
++it) {
auto &ev = **it;
if (it == enum_def.vals.vec.begin()) {
code += "template<typename T> struct " + enum_def.name + "Traits {\n";
}
else {
code += "template<> struct " + enum_def.name + "Traits<" +
WrapInNameSpace(*ev.struct_def) + "> {\n";
}
code += " static const " + enum_def.name + " enum_value = " +
GetEnumValUse(enum_def, ev, parser_.opts) + ";\n";
code += "};\n\n";
}
}
if (parser_.opts.generate_object_based_api && enum_def.is_union) {
// Generate a union type
code += "struct " + enum_def.name + "Union {\n";
code += " " + enum_def.name + " type;\n\n";
code += " flatbuffers::NativeTable *table;\n";
code += " " + enum_def.name + "Union() : type(";
code += GetEnumValUse(enum_def, *enum_def.vals.Lookup("NONE"), parser_.opts);
code += "), table(nullptr) {}\n";
code += " " + enum_def.name + "Union(const ";
code += enum_def.name + "Union &);\n";
code += " " + enum_def.name + "Union &operator=(const ";
code += enum_def.name + "Union &);\n";
code += " ~" + enum_def.name + "Union() { Reset(); }\n";
code += " void Reset();\n\n";
code += " template <typename T>\n";
code += " void Set(T&& value) {\n";
code += " Reset();\n";
code += " type = " + enum_def.name;
code += "Traits<typename T::TableType>::enum_value;\n";
code += " if (type != ";
code += GetEnumValUse(enum_def, *enum_def.vals.Lookup("NONE"), parser_.opts);
code += ") {\n";
code += " table = new T(std::forward<T>(value));\n";
code += " }\n";
code += " }\n\n";
code += " " + UnionUnPackSignature(enum_def, true) + ";\n";
code += " " + UnionPackSignature(enum_def, true) + ";\n\n";
for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
++it) {
auto &ev = **it;
if (ev.value) {
auto native_name = NativeName(WrapInNameSpace(*ev.struct_def));
code += " " + native_name + " *As";
code += ev.name + "() { return type == ";
code += GetEnumValUse(enum_def, ev, parser_.opts);
code += " ? reinterpret_cast<" + native_name;
code += " *>(table) : nullptr; }\n";
}
}
code += "};\n\n";
}
if (enum_def.is_union) {
code += UnionVerifySignature(enum_def) + ";\n\n";
}
}
void GenUnionPost(EnumDef &enum_def, std::string *code_ptr) {
// Generate a verifier function for this union that can be called by the
// table verifier functions. It uses a switch case to select a specific
// verifier function to call, this should be safe even if the union type
// has been corrupted, since the verifiers will simply fail when called
// on the wrong type.
std::string &code = *code_ptr;
code += UnionVerifySignature(enum_def) + " {\n switch (type) {\n";
for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
++it) {
auto &ev = **it;
code += " case " + GetEnumValUse(enum_def, ev, parser_.opts);
if (!ev.value) {
code += ": return true;\n"; // "NONE" enum value.
} else {
code += ": return verifier.VerifyTable(reinterpret_cast<const ";
code += WrapInNameSpace(*ev.struct_def);
code += " *>(union_obj));\n";
}
}
code += " default: return false;\n }\n}\n\n";
if (parser_.opts.generate_object_based_api) {
// Generate a union pack & unpack function.
code += "inline " + UnionUnPackSignature(enum_def, false);
code += " {\n switch (type) {\n";
for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
++it) {
auto &ev = **it;
code += " case " + GetEnumValUse(enum_def, ev, parser_.opts);
if (!ev.value) {
code += ": return nullptr;\n"; // "NONE" enum value.
} else {
code += ": return reinterpret_cast<const ";
code += WrapInNameSpace(*ev.struct_def);
code += " *>(union_obj)->UnPack(resolver);\n";
}
}
code += " default: return nullptr;\n }\n}\n\n";
code += "inline " + UnionPackSignature(enum_def, false);
code += " {\n switch (type) {\n";
for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
++it) {
auto &ev = **it;
code += " case " + GetEnumValUse(enum_def, ev, parser_.opts);
if (!ev.value) {
code += ": return 0;\n"; // "NONE" enum value.
} else {
code += ": return Create" + ev.struct_def->name;
code += "(_fbb, reinterpret_cast<const ";
code += NativeName(WrapInNameSpace(*ev.struct_def));
code += " *>(table), rehasher).Union();\n";
}
}
code += " default: return 0;\n }\n}\n\n";
// Generate a union destructor.
code += "inline void " + enum_def.name + "Union::Reset() {\n";
code += " switch (type) {\n";
for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
++it) {
auto &ev = **it;
if (ev.value) {
code += " case " + GetEnumValUse(enum_def, ev, parser_.opts);
code += ": delete reinterpret_cast<";
code += NativeName(WrapInNameSpace(*ev.struct_def));
code += " *>(table); break;\n";
}
}
code += " default: break;\n";
code += " }\n";
code += " table = nullptr;\n";
code += " type = ";
code += GetEnumValUse(enum_def, *enum_def.vals.Lookup("NONE"), parser_.opts);
code += ";\n";
code += "}\n\n";
}
}
// Generates a value with optionally a cast applied if the field has a
// different underlying type from its interface type (currently only the
// case for enums. "from" specify the direction, true meaning from the
// underlying type to the interface type.
std::string GenUnderlyingCast(const FieldDef &field, bool from,
const std::string &val) {
if (from && field.value.type.base_type == BASE_TYPE_BOOL) {
return val + " != 0";
} else if ((field.value.type.enum_def &&
IsScalar(field.value.type.base_type)) ||
field.value.type.base_type == BASE_TYPE_BOOL) {
return "static_cast<" + GenTypeBasic(field.value.type, from) + ">(" +
val + ")";
} else {
return val;
}
}
std::string GenFieldOffsetName(const FieldDef &field) {
std::string uname = field.name;
std::transform(uname.begin(), uname.end(), uname.begin(), ::toupper);
return "VT_" + uname;
}
void GenFullyQualifiedNameGetter(const std::string &name, std::string &code) {
if (parser_.opts.generate_name_strings) {
code +=
" static FLATBUFFERS_CONSTEXPR const char *GetFullyQualifiedName() "
"{\n";
code += " return \"" +
parser_.namespaces_.back()->GetFullyQualifiedName(name) + "\";\n";
code += " }\n";
}
}
std::string GenDefaultConstant(const FieldDef &field) {
return field.value.type.base_type == BASE_TYPE_FLOAT
? field.value.constant + "f"
: field.value.constant;
}
std::string GetDefaultScalarValue(const FieldDef &field) {
if (field.value.type.enum_def && IsScalar(field.value.type.base_type)) {
auto ev = field.value.type.enum_def->ReverseLookup(
static_cast<int>(StringToInt(field.value.constant.c_str())), false);
if (ev) {
return WrapInNameSpace(
field.value.type.enum_def->defined_namespace,
GetEnumValUse(*field.value.type.enum_def, *ev, parser_.opts));
} else {
return GenUnderlyingCast(field, true, field.value.constant);
}
} else if (field.value.type.base_type == BASE_TYPE_BOOL) {
return field.value.constant == "0" ? "false" : "true";
} else {
return GenDefaultConstant(field);
}
}
void GenSimpleParam(std::string &code, FieldDef &field) {
code += ",\n " + GenTypeWire(field.value.type, " ", true);
code += field.name + " = " + GetDefaultScalarValue(field);
}
// Generate a member, including a default value for scalars and raw pointers.
void GenMember(std::string& code, const FieldDef &field) {
if (!field.deprecated && // Deprecated fields won't be accessible.
field.value.type.base_type != BASE_TYPE_UTYPE) {
auto type = GenTypeNative(field.value.type, false, field);
auto cpp_type = field.attributes.Lookup("cpp_type");
code += " " + (cpp_type ? cpp_type->constant + " *" : type+ " ") +
field.name + ";\n";
}
}
// Generate the default constructor for this struct. Properly initialize all
// scalar members with default values.
void GenDefaultConstructor(std::string& code, const StructDef& struct_def) {
code += " " + NativeName(struct_def.name) + "()";
std::string initializer_list;
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (!field.deprecated && // Deprecated fields won't be accessible.
field.value.type.base_type != BASE_TYPE_UTYPE) {
auto cpp_type = field.attributes.Lookup("cpp_type");
// Scalar types get parsed defaults, raw pointers get nullptrs.
if (IsScalar(field.value.type.base_type)) {
if (!initializer_list.empty()) {
initializer_list += ",\n ";
}
initializer_list += field.name + "(" +GetDefaultScalarValue(field) +
")";
} else if (cpp_type) {
if (!initializer_list.empty()) {
code += ",\n ";
}
initializer_list += field.name + "(0)";
}
}
}
if (!initializer_list.empty()) {
code += "\n : " + initializer_list;
}
code += " {}\n";
}
// Generate an accessor struct, builder structs & function for a table.
void GenTable(StructDef &struct_def, std::string *code_ptr) {
std::string &code = *code_ptr;
if (parser_.opts.generate_object_based_api) {
// Generate a C++ object that can hold an unpacked version of this
// table.
code += "struct " + NativeName(struct_def.name);
code += " : public flatbuffers::NativeTable {\n";
code += " typedef " + struct_def.name + " TableType;\n";
// Generate GetFullyQualifiedName
GenFullyQualifiedNameGetter(NativeName(struct_def.name), code);
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
GenMember(code, field);
}
GenDefaultConstructor(code, struct_def);
code += "};\n\n";
}
// Generate an accessor struct, with methods of the form:
// type name() const { return GetField<type>(offset, defaultval); }
GenComment(struct_def.doc_comment, code_ptr, nullptr);
code += "struct " + struct_def.name;
code += " FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table";
code += " {\n";
if (parser_.opts.generate_object_based_api) {
code += " typedef " + NativeName(struct_def.name) +
" NativeTableType;\n";
}
// Generate GetFullyQualifiedName
GenFullyQualifiedNameGetter(struct_def.name, code);
// Generate field id constants.
if (struct_def.fields.vec.size() > 0) {
code += " enum {\n";
bool is_first_field =
true; // track the first field that's not deprecated
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (!field.deprecated) { // Deprecated fields won't be accessible.
if (!is_first_field) {
// Add trailing comma and newline to previous element. Don't add
// trailing comma to
// last element since older versions of gcc complain about this.
code += ",\n";
} else {
is_first_field = false;
}
code += " " + GenFieldOffsetName(field) + " = ";
code += NumToString(field.value.offset);
}
}
code += "\n };\n";
}
// Generate the accessors.
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (!field.deprecated) { // Deprecated fields won't be accessible.
auto is_scalar = IsScalar(field.value.type.base_type);
GenComment(field.doc_comment, code_ptr, nullptr, " ");
code += " " + GenTypeGet(field.value.type, " ", "const ", " *", true);
code += field.name + "() const { return ";
// Call a different accessor for pointers, that indirects.
auto accessor =
is_scalar
? "GetField<"
: (IsStruct(field.value.type) ? "GetStruct<" : "GetPointer<");
auto offsetstr = GenFieldOffsetName(field);
auto call = accessor +
GenTypeGet(field.value.type, "", "const ", " *", false) +
">(" + offsetstr;
// Default value as second arg for non-pointer types.
if (IsScalar(field.value.type.base_type))
call += ", " + GenDefaultConstant(field);
call += ")";
code += GenUnderlyingCast(field, true, call);
code += "; }\n";
if (parser_.opts.mutable_buffer) {
if (is_scalar) {
code += " bool mutate_" + field.name + "(";
code += GenTypeBasic(field.value.type, true);
code +=
" _" + field.name + ") { return SetField(" + offsetstr + ", ";
code += GenUnderlyingCast(field, false, "_" + field.name);
code += "); }\n";
} else {
auto type = GenTypeGet(field.value.type, " ", "", " *", true);
code += " " + type + "mutable_" + field.name + "() { return ";
code += GenUnderlyingCast(field, true,
accessor + type + ">(" + offsetstr + ")");
code += "; }\n";
}
}
auto nested = field.attributes.Lookup("nested_flatbuffer");
if (nested) {
std::string qualified_name =
parser_.namespaces_.back()->GetFullyQualifiedName(
nested->constant);
auto nested_root = parser_.structs_.Lookup(qualified_name);
assert(nested_root); // Guaranteed to exist by parser.
(void)nested_root;
std::string cpp_qualified_name = TranslateNameSpace(qualified_name);
code += " const " + cpp_qualified_name + " *" + field.name;
code += "_nested_root() const { return flatbuffers::GetRoot<";
code += cpp_qualified_name + ">(" + field.name + "()->Data()); }\n";
}
// Generate a comparison function for this field if it is a key.
if (field.key) {
code += " bool KeyCompareLessThan(const " + struct_def.name;
code += " *o) const { return ";
if (field.value.type.base_type == BASE_TYPE_STRING) code += "*";
code += field.name + "() < ";
if (field.value.type.base_type == BASE_TYPE_STRING) code += "*";
code += "o->" + field.name + "(); }\n";
code += " int KeyCompareWithValue(";
if (field.value.type.base_type == BASE_TYPE_STRING) {
code += "const char *val) const { return strcmp(" + field.name;
code += "()->c_str(), val); }\n";
} else {
if (parser_.opts.scoped_enums && field.value.type.enum_def &&
IsScalar(field.value.type.base_type)) {
code += GenTypeGet(field.value.type, " ", "const ", " *", true);
} else {
code += GenTypeBasic(field.value.type, false);
}
code += " val) const { return " + field.name + "() < val ? -1 : ";
code += field.name + "() > val; }\n";
}
}
}
}
// Generate a verifier function that can check a buffer from an untrusted
// source will never cause reads outside the buffer.
code += " bool Verify(flatbuffers::Verifier &verifier) const {\n";
code += " return VerifyTableStart(verifier)";
std::string prefix = " &&\n ";
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (!field.deprecated) {
code += prefix + "VerifyField";
if (field.required) code += "Required";
code += "<" + GenTypeSize(field.value.type);
code += ">(verifier, " + GenFieldOffsetName(field) + ")";
switch (field.value.type.base_type) {
case BASE_TYPE_UNION:
code += prefix + "Verify" + field.value.type.enum_def->name;
code += "(verifier, " + field.name + "(), " + field.name +
UnionTypeFieldSuffix() + "())";
break;
case BASE_TYPE_STRUCT:
if (!field.value.type.struct_def->fixed) {
code += prefix + "verifier.VerifyTable(" + field.name;
code += "())";
}
break;
case BASE_TYPE_STRING:
code += prefix + "verifier.Verify(" + field.name + "())";
break;
case BASE_TYPE_VECTOR:
code += prefix + "verifier.Verify(" + field.name + "())";
switch (field.value.type.element) {
case BASE_TYPE_STRING: {
code += prefix + "verifier.VerifyVectorOfStrings(" + field.name;
code += "())";
break;
}
case BASE_TYPE_STRUCT: {
if (!field.value.type.struct_def->fixed) {
code +=
prefix + "verifier.VerifyVectorOfTables(" + field.name;
code += "())";
}
break;
}
default:
break;
}
break;
default:
break;
}
}
}
code += prefix + "verifier.EndTable()";
code += ";\n }\n";
if (parser_.opts.generate_object_based_api) {
// Generate the UnPack() pre declaration.
code += " " + TableUnPackSignature(struct_def, true) + ";\n";
code += " " + TablePackSignature(struct_def, true) + ";\n";
}
code += "};\n\n"; // End of table.
// Generate a builder struct, with methods of the form:
// void add_name(type name) { fbb_.AddElement<type>(offset, name, default);
// }
code += "struct " + struct_def.name;
code += "Builder {\n flatbuffers::FlatBufferBuilder &fbb_;\n";
code += " flatbuffers::uoffset_t start_;\n";
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (!field.deprecated) {
code += " void add_" + field.name + "(";
code += GenTypeWire(field.value.type, " ", true) + field.name;
code += ") { fbb_.Add";
if (IsScalar(field.value.type.base_type)) {
code += "Element<" + GenTypeWire(field.value.type, "", false);
code += ">";
} else if (IsStruct(field.value.type)) {
code += "Struct";
} else {
code += "Offset";
}
code += "(" + struct_def.name + "::" + GenFieldOffsetName(field) + ", ";
code += GenUnderlyingCast(field, false, field.name);
if (IsScalar(field.value.type.base_type))
code += ", " + GenDefaultConstant(field);
code += "); }\n";
}
}
code += " " + struct_def.name;
code += "Builder(flatbuffers::FlatBufferBuilder &_fbb) : fbb_(_fbb) ";
code += "{ start_ = fbb_.StartTable(); }\n";
code += " " + struct_def.name + "Builder &operator=(const ";
code += struct_def.name + "Builder &);\n";
code += " flatbuffers::Offset<" + struct_def.name;
code += "> Finish() {\n auto o = flatbuffers::Offset<" + struct_def.name;
code += ">(fbb_.EndTable(start_, ";
code += NumToString(struct_def.fields.vec.size()) + "));\n";
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (!field.deprecated && field.required) {
code += " fbb_.Required(o, ";
code += struct_def.name + "::" + GenFieldOffsetName(field);
code += "); // " + field.name + "\n";
}
}
code += " return o;\n }\n};\n\n";
// Generate a convenient CreateX function that uses the above builder
// to create a table in one go.
bool gen_vector_pars = false;
code += "inline flatbuffers::Offset<" + struct_def.name + "> Create";
code += struct_def.name;
code += "(flatbuffers::FlatBufferBuilder &_fbb";
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (!field.deprecated) {
if (field.value.type.base_type == BASE_TYPE_STRING ||
field.value.type.base_type == BASE_TYPE_VECTOR) {
gen_vector_pars = true;
}
GenSimpleParam(code, field);
}
}
code += ") {\n " + struct_def.name + "Builder builder_(_fbb);\n";
for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1;
size; size /= 2) {
for (auto it = struct_def.fields.vec.rbegin();
it != struct_def.fields.vec.rend(); ++it) {
auto &field = **it;
if (!field.deprecated && (!struct_def.sortbysize ||
size == SizeOf(field.value.type.base_type))) {
code += " builder_.add_" + field.name + "(" + field.name + ");\n";
}
}
}
code += " return builder_.Finish();\n}\n\n";
// Generate a CreateXDirect function with vector types as parameters
if (gen_vector_pars) {
code += "inline flatbuffers::Offset<" + struct_def.name + "> Create";
code += struct_def.name;
code += "Direct(flatbuffers::FlatBufferBuilder &_fbb";
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (!field.deprecated) {
if (field.value.type.base_type == BASE_TYPE_STRING) {
code += ",\n const char *";
code += field.name + " = nullptr";
} else if (field.value.type.base_type == BASE_TYPE_VECTOR) {
code += ",\n const std::vector<";
code += GenTypeWire(field.value.type.VectorType(), "", false);
code += "> *" + field.name + " = nullptr";
} else {
GenSimpleParam(code, field);
}
}
}
code += ") {\n ";
code += "return Create";
code += struct_def.name;
code += "(_fbb";
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (!field.deprecated) {
if (field.value.type.base_type == BASE_TYPE_STRING) {
code += ", " + field.name + " ? ";
code += "_fbb.CreateString(" + field.name + ") : 0";
} else if (field.value.type.base_type == BASE_TYPE_VECTOR) {
code += ", " + field.name + " ? ";
code += "_fbb.CreateVector<";
code += GenTypeWire(field.value.type.VectorType(), "", false);
code += ">(*" + field.name + ") : 0";
} else {
code += ", " + field.name;
}
}
}
code += ");\n}\n\n";
}
if (parser_.opts.generate_object_based_api) {
// Generate a pre-declaration for a CreateX method that works with an
// unpacked C++ object.
code += TableCreateSignature(struct_def, true) + ";\n\n";
}
}
std::string GenUnpackVal(const Type &type, const std::string &val,
bool invector, const FieldDef &afield) {
switch (type.base_type) {
case BASE_TYPE_STRING:
return val + "->str()";
case BASE_TYPE_STRUCT:
if (IsStruct(type)) {
if (invector || afield.native_inline) {
return "*" + val;
} else {
return GenTypeNativePtr(WrapInNameSpace(*type.struct_def),
&afield, true) +
"(new " +
WrapInNameSpace(*type.struct_def) + "(*" + val + "))";
}
} else {
return GenTypeNativePtr(NativeName(WrapInNameSpace(
*type.struct_def)), &afield, true) +
"(" + val + "->UnPack(resolver))";
}
default:
return val;
break;
}
};
// Generate code for tables that needs to come after the regular definition.
void GenTablePost(StructDef &struct_def, std::string *code_ptr) {
std::string &code = *code_ptr;
if (parser_.opts.generate_object_based_api) {
// Generate the UnPack() method.
code += "inline " + TableUnPackSignature(struct_def, false) + " {\n";
code += " (void)resolver;\n";
code += " auto _o = new " + NativeName(struct_def.name) + "();\n";
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (!field.deprecated) {
auto prefix = " { auto _e = " + field.name + "(); ";
if (!IsScalar(field.value.type.base_type)) prefix += "if (_e) ";
auto deref = "_o->";
auto dest = deref + field.name;
auto assign = prefix + dest + " = ";
switch (field.value.type.base_type) {
case BASE_TYPE_VECTOR: {
code += prefix;
code += "{ for (flatbuffers::uoffset_t _i = 0;";
code += " _i < _e->size(); _i++) { ";
code += dest + ".push_back(";
std::string indexing;
if (field.value.type.enum_def) {
indexing += "(" + field.value.type.enum_def->name + ")";
}
indexing += "_e->Get(_i)";
if (field.value.type.element == BASE_TYPE_BOOL)
indexing += "!=0";
code += GenUnpackVal(field.value.type.VectorType(),
indexing, true, field);
code += "); } }";
break;
}
case BASE_TYPE_UTYPE: {
auto &union_field = **(it + 1);
assert(union_field.value.type.base_type == BASE_TYPE_UNION);
code += prefix + deref + union_field.name + ".type = _e;";
break;
}
case BASE_TYPE_UNION: {
code += prefix + dest + ".table = ";
code += field.value.type.enum_def->name;
code += "Union::UnPack(_e, ";
code += field.name + UnionTypeFieldSuffix() + "(), resolver);";
break;
}
default: {
auto cpp_type = field.attributes.Lookup("cpp_type");
if (cpp_type) {
code += prefix;
code += "if (resolver) (*resolver)(reinterpret_cast<void **>(&";
code += dest;
code += "), static_cast<flatbuffers::hash_value_t>(_e)); else ";
code += dest + " = nullptr";
} else {
code += assign;
code += GenUnpackVal(field.value.type, "_e", false, field);
}
code += ";";
break;
}
}
code += " };\n";
}
}
code += " return _o;\n}\n\n";
// Generate the X::Pack member function that simply calls the global
// CreateX function.
code += "inline " + TablePackSignature(struct_def, false) + " {\n";
code += " return Create" + struct_def.name + "(_fbb, _o, _rehasher);\n";
code += "}\n\n";
// Generate a CreateX method that works with an unpacked C++ object.
code += TableCreateSignature(struct_def, false) + " {\n";
code += " (void)rehasher;\n";
auto before_return_statement = code.size();
code += " return Create";
code += struct_def.name + "(_fbb";
bool any_fields = false;
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (!field.deprecated) {
any_fields = true;
auto field_name = field.name;
if (field.value.type.base_type == BASE_TYPE_UTYPE) {
field_name = field_name.substr(0, field_name.size() -
strlen(UnionTypeFieldSuffix()));
field_name += ".type";
}
auto accessor = "_o->" + field_name;
if (field.attributes.Lookup("cpp_type"))
accessor = "rehasher ? static_cast<" +
GenTypeBasic(field.value.type, false) +
">((*rehasher)(" + accessor + ")) : 0";
auto ptrprefix = accessor + " ? ";
auto stlprefix = accessor + ".size() ? ";
auto postfix = " : 0";
if (field.required &&
(field.value.type.base_type == BASE_TYPE_STRING ||
field.value.type.base_type == BASE_TYPE_VECTOR)) {
stlprefix = "";
postfix = "";
}
code += ",\n ";
switch (field.value.type.base_type) {
case BASE_TYPE_STRING:
code += stlprefix + "_fbb.CreateString(" + accessor + ")";
code += postfix;
break;
case BASE_TYPE_VECTOR: {
auto vector_type = field.value.type.VectorType();
code += stlprefix;
switch (vector_type.base_type) {
case BASE_TYPE_STRING:
code += "_fbb.CreateVectorOfStrings(" + accessor + ")";
break;
case BASE_TYPE_STRUCT:
if (IsStruct(vector_type)) {
code += "_fbb.CreateVectorOfStructs(" + accessor + ")";
} else {
code += "_fbb.CreateVector<flatbuffers::Offset<";
code += WrapInNameSpace(*vector_type.struct_def) + ">>(" +
accessor;
code += ".size(), [&](size_t i) { return Create";
code += vector_type.struct_def->name + "(_fbb, " + accessor;
code += "[i]" + GenPtrGet(field) + ", rehasher); })";
}
break;
case BASE_TYPE_BOOL:
code += "_fbb.CreateVector(" + accessor + ")";
break;
default: {
std::string args = accessor;
if (field.value.type.enum_def) {
const std::string basetype = GenTypeBasic(
field.value.type.enum_def->underlying_type, false);
args = "(const " + basetype + "*)" + accessor +
".data(), " + accessor + ".size()";
}
code += "_fbb.CreateVector(" + args + ")";
break;
}
}
code += postfix;
break;
}
case BASE_TYPE_UNION:
code += accessor + ".Pack(_fbb)";
break;
case BASE_TYPE_STRUCT:
if (IsStruct(field.value.type)) {
if (field.native_inline) {
code += "&" + accessor;
} else {
code += ptrprefix + accessor + GenPtrGet(field) + postfix;
}
} else {
code += ptrprefix + "Create";
code += field.value.type.struct_def->name;
code += "(_fbb, " + accessor + GenPtrGet(field) + ", rehasher)";
code += postfix;
}
break;
default:
code += accessor;
break;
}
}
}
code += ");\n}\n\n";
if (!any_fields) code.insert(before_return_statement, " (void)_o;\n");
}
}
static void GenPadding(const FieldDef &field, std::string &code,
int &padding_id,
const std::function<void(int bits, std::string &code,
int &padding_id)> &f) {
if (field.padding) {
for (int i = 0; i < 4; i++)
if (static_cast<int>(field.padding) & (1 << i))
f((1 << i) * 8, code, padding_id);
assert(!(field.padding & ~0xF));
}
}
static void PaddingDefinition(int bits, std::string &code, int &padding_id) {
code += " int" + NumToString(bits) + "_t __padding" +
NumToString(padding_id++) + ";\n";
}
static void PaddingDeclaration(int bits, std::string &code, int &padding_id) {
(void)bits;
code += " (void)__padding" + NumToString(padding_id++) + ";";
}
static void PaddingInitializer(int bits, std::string &code, int &padding_id) {
(void)bits;
code += ", __padding" + NumToString(padding_id++) + "(0)";
}
// Generate an accessor struct with constructor for a flatbuffers struct.
void GenStruct(StructDef &struct_def, std::string *code_ptr) {
if (struct_def.generated) return;
std::string &code = *code_ptr;
// Generate an accessor struct, with private variables of the form:
// type name_;
// Generates manual padding and alignment.
// Variables are private because they contain little endian data on all
// platforms.
GenComment(struct_def.doc_comment, code_ptr, nullptr);
code +=
"MANUALLY_ALIGNED_STRUCT(" + NumToString(struct_def.minalign) + ") ";
code += struct_def.name + " FLATBUFFERS_FINAL_CLASS {\n private:\n";
int padding_id = 0;
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
code += " " + GenTypeGet(field.value.type, " ", "", " ", false);
code += field.name + "_;\n";
GenPadding(field, code, padding_id, PaddingDefinition);
}
// Generate GetFullyQualifiedName
code += "\n public:\n";
GenFullyQualifiedNameGetter(struct_def.name, code);
// Generate a default constructor.
code += " " + struct_def.name + "() { memset(this, 0, sizeof(";
code += struct_def.name + ")); }\n";
// Generate a copy constructor.
code += " " + struct_def.name + "(const " + struct_def.name;
code += " &_o) { memcpy(this, &_o, sizeof(";
code += struct_def.name + ")); }\n";
// Generate a constructor that takes all fields as arguments.
if (struct_def.fields.vec.size()) {
code += " " + struct_def.name + "(";
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (it != struct_def.fields.vec.begin()) code += ", ";
code += GenTypeGet(field.value.type, " ", "const ", " &", true);
code += "_" + field.name;
}
code += ")\n : ";
padding_id = 0;
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
if (it != struct_def.fields.vec.begin()) code += ", ";
code += field.name + "_(";
if (IsScalar(field.value.type.base_type)) {
code += "flatbuffers::EndianScalar(";
code += GenUnderlyingCast(field, false, "_" + field.name);
code += "))";
} else {
code += "_" + field.name + ")";
}
GenPadding(field, code, padding_id, PaddingInitializer);
}
code += " {";
padding_id = 0;
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
GenPadding(field, code, padding_id, PaddingDeclaration);
}
code += " }\n\n";
}
// Generate accessor methods of the form:
// type name() const { return flatbuffers::EndianScalar(name_); }
for (auto it = struct_def.fields.vec.begin();
it != struct_def.fields.vec.end(); ++it) {
auto &field = **it;
GenComment(field.doc_comment, code_ptr, nullptr, " ");
auto is_scalar = IsScalar(field.value.type.base_type);
code += " " + GenTypeGet(field.value.type, " ", "const ", " &", true);
code += field.name + "() const { return ";
code += GenUnderlyingCast(
field, true, is_scalar
? "flatbuffers::EndianScalar(" + field.name + "_)"
: field.name + "_");
code += "; }\n";
if (parser_.opts.mutable_buffer) {
if (is_scalar) {
code += " void mutate_" + field.name + "(";
code += GenTypeBasic(field.value.type, true);
code += " _" + field.name + ") { flatbuffers::WriteScalar(&";
code += field.name + "_, ";
code += GenUnderlyingCast(field, false, "_" + field.name);
code += "); }\n";
} else {
code += " ";
code += GenTypeGet(field.value.type, "", "", " &", true);
code += "mutable_" + field.name + "() { return " + field.name;
code += "_; }\n";
}
}
}
code += "};\nSTRUCT_END(" + struct_def.name + ", ";
code += NumToString(struct_def.bytesize) + ");\n\n";
}
// Set up the correct namespace. Only open a namespace if
// the existing one is different (closing/opening only what is necessary) :
//
// the file must start and end with an empty (or null) namespace
// so that namespaces are properly opened and closed
void SetNameSpace(const Namespace *ns, std::string *code_ptr) {
if (cur_name_space_ == ns) return;
// compute the size of the longest common namespace prefix.
// if cur_name_space is A::B::C::D and ns is A::B::E::F::G,
// the common prefix is A::B:: and we have old_size = 4, new_size = 5
// and common_prefix_size = 2
auto old_size =
cur_name_space_ == nullptr ? 0 : cur_name_space_->components.size();
auto new_size = ns == nullptr ? 0 : ns->components.size();
std::vector<std::string>::size_type common_prefix_size = 0;
while (common_prefix_size < old_size && common_prefix_size < new_size &&
ns->components[common_prefix_size] ==
cur_name_space_->components[common_prefix_size])
common_prefix_size++;
// close cur_name_space in reverse order to reach the common prefix
// in the previous example, D then C are closed
for (auto j = old_size; j > common_prefix_size; --j)
*code_ptr +=
"} // namespace " + cur_name_space_->components[j - 1] + "\n";
if (old_size != common_prefix_size) *code_ptr += "\n";
// open namespace parts to reach the ns namespace
// in the previous example, E, then F, then G are opened
for (auto j = common_prefix_size; j != new_size; ++j)
*code_ptr += "namespace " + ns->components[j] + " {\n";
if (new_size != common_prefix_size) *code_ptr += "\n";
cur_name_space_ = ns;
}
};
} // namespace cpp
bool GenerateCPP(const Parser &parser, const std::string &path,
const std::string &file_name) {
cpp::CppGenerator generator(parser, path, file_name);
return generator.generate();
}
std::string CPPMakeRule(const Parser &parser, const std::string &path,
const std::string &file_name) {
std::string filebase =
flatbuffers::StripPath(flatbuffers::StripExtension(file_name));
std::string make_rule = GeneratedFileName(path, filebase) + ": ";
auto included_files = parser.GetIncludedFilesRecursive(file_name);
for (auto it = included_files.begin(); it != included_files.end(); ++it) {
make_rule += " " + *it;
}
return make_rule;
}
} // namespace flatbuffers