blob: f7f172dd994aa94560e7b6813b67b40c04c08c7f [file] [log] [blame]
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "f2fs.h"
#include <fcntl.h>
#include <inttypes.h>
#include <lib/syslog/cpp/macros.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include "src/lib/uuid/uuid.h"
#include "zircon/errors.h"
#include "zircon/types.h"
#include <memory>
#include <lib/zx/event.h>
#include <zircon/assert.h>
#include <lib/trace-provider/provider.h>
namespace f2fs {
const char *media_ext_lists[] = {"jpg", "gif", "png", "avi", "divx", "mp4", "mp3", "3gp",
"wmv", "wma", "mpeg", "mkv", "mov", "asx", "asf", "wmx",
"svi", "wvx", "wm", "mpg", "mpe", "rm", "ogg", nullptr};
F2fsMkfs::F2fsMkfs(std::unique_ptr<f2fs::Bcache> bc, const MkfsOptions &mkfs_options)
: bc_(std::move(bc)), mkfs_options_(mkfs_options) {}
zx_status_t F2fsMkfs::Mkfs() {
char extension_list[] = "";
#ifdef F2FS_BU_DEBUG
// TODO: lable, extention list
std::cout << "f2fs mkfs heap-based allocation = " << mkfs_options_.heap_based_allocation
<< std::endl;
std::cout << "f2fs mkfs overprovision ratio = " << mkfs_options_.overprovision_ratio << std::endl;
std::cout << "f2fs mkfs # of segments per section = " << mkfs_options_.num_of_seg_per_sec
<< std::endl;
std::cout << "f2fs mkfs overprovision ratio = " << mkfs_options_.num_of_sec_per_zone << std::endl;
#endif
// TODO: parse mkfs options
f2fs_params.extension_list = extension_list;
F2fsInitGlobalParameters();
if (F2fsGetDeviceInfo() < 0)
return -1;
if (F2fsFormatDevice() < 0)
return -1;
printf("Info: format successful\n");
return ZX_OK;
}
void F2fsMkfs::ASCIIToUNICODE(uint16_t *out_buf, uint8_t *in_buf) {
uint8_t *pchTempPtr = in_buf;
uint16_t *pwTempPtr = out_buf;
while (*pchTempPtr != '\0') {
/* Copy the string elements character by character
* to the output string with typecasting the source.
*/
*pwTempPtr = static_cast<uint16_t>(*pchTempPtr);
pchTempPtr++;
pwTempPtr++;
}
*pwTempPtr = '\0';
}
void F2fsMkfs::F2fsInitGlobalParameters() {
static_assert(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__);
f2fs_params.sector_size = DEFAULT_SECTOR_SIZE;
f2fs_params.sectors_per_blk = DEFAULT_SECTORS_PER_BLOCK;
f2fs_params.blks_per_seg = DEFAULT_BLOCKS_PER_SEGMENT;
f2fs_params.reserved_segments = 20; /* calculated by overprovision ratio */
f2fs_params.overprovision = 5;
f2fs_params.segs_per_sec = 1;
f2fs_params.secs_per_zone = 1;
f2fs_params.heap = 1;
memset(f2fs_params.vol_label, 0, sizeof(f2fs_params.vol_label));
f2fs_params.vol_label[0] = 'F';
f2fs_params.vol_label[1] = '2';
f2fs_params.vol_label[2] = 'F';
f2fs_params.vol_label[3] = 'S';
f2fs_params.vol_label[4] = '\0';
f2fs_params.device_name = nullptr;
}
inline int F2fsMkfs::F2fsSetBit(unsigned int nr, unsigned char *addr) {
int mask;
int ret;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
ret = mask & *addr;
*addr |= mask;
return ret;
}
int8_t F2fsMkfs::LogBase2(uint32_t num) {
int8_t ret = 0;
if (num <= 0 || (num & (num - 1)) != 0) {
return -1;
}
while (num >>= 1) {
ret++;
}
return ret;
}
#if 0 // porting needed
void F2fsMkfs::f2fs_usage(void)
{
fprintf(stderr, "Usage: f2fs_format [options] device\n");
fprintf(stderr, "[options]\n");
fprintf(stderr, "-l label\n");
fprintf(stderr, "-a heap-based allocation [default:1]\n");
fprintf(stderr, "-o overprovision ratio [default:5]\n");
fprintf(stderr, "-s # of segments per section [default:1]\n");
fprintf(stderr, "-z # of sections per zone [default:1]\n");
fprintf(stderr, "-e [extension list] e.g. \"mp3,gif,mov\"\n");
exit(1);
}
#endif
zx_status_t F2fsMkfs::F2fsGetDeviceInfo() {
fuchsia_hardware_block_BlockInfo info;
bc_->device()->BlockGetInfo(&info);
ZX_ASSERT(info.block_size == DEFAULT_SECTOR_SIZE);
f2fs_params.sector_size = DEFAULT_SECTOR_SIZE;
f2fs_params.sectors_per_blk = kF2fsBlockSize / DEFAULT_SECTOR_SIZE;
f2fs_params.total_sectors = info.block_count;
f2fs_params.start_sector = kSuperblockStart;
if (f2fs_params.total_sectors < (F2FS_MIN_VOLUME_SIZE / DEFAULT_SECTOR_SIZE)) {
printf("Error: Min volume size supported is %d\n", F2FS_MIN_VOLUME_SIZE);
return ZX_ERR_NO_RESOURCES;
}
return ZX_OK;
}
void F2fsMkfs::ConfigureExtensionList() {
const char **extlist = media_ext_lists;
char *ext_str = f2fs_params.extension_list;
char *ue;
int name_len;
int i = 0;
super_block.extension_count = 0;
memset(super_block.extension_list, 0, sizeof(super_block.extension_list));
while (*extlist) {
name_len = static_cast<int>(strlen(*extlist));
memcpy(super_block.extension_list[i++], *extlist, name_len);
extlist++;
}
super_block.extension_count = i - 1;
if (!ext_str)
return;
/* add user ext list */
ue = strtok(ext_str, ",");
while (ue != nullptr) {
name_len = static_cast<int>(strlen(ue));
memcpy(super_block.extension_list[i++], ue, name_len);
ue = strtok(nullptr, ",");
if (i > F2FS_MAX_EXTENSION)
break;
}
super_block.extension_count = i - 1;
#if 0 // porting needed
// TODO: strdup in f2fs_parse_options
// free(f2fs_params.extension_list);
#endif
}
zx_status_t F2fsMkfs::WriteToDisk(void *buf, uint64_t offset, size_t length) {
zx_status_t status = 0;
uint64_t curr_offset = offset;
#ifdef F2FS_BU_DEBUG
std::cout << std::hex << "writetodeisk: offset= 0x" << offset << " length= 0x" << length
<< std::endl;
#endif
if (offset % kF2fsBlockSize) {
std::cout << std::hex << "block is not aligned: offset = " << offset << " length = " << length
<< std::endl;
return ZX_ERR_INVALID_ARGS;
}
if (length % kF2fsBlockSize) {
std::cout << std::hex << "block size is not aligned: offset = " << offset
<< " length = " << length << std::endl;
return ZX_ERR_INVALID_ARGS;
}
for (uint64_t i = 0; i < length / kF2fsBlockSize; i++) {
if ((status = bc_->Writeblk((offset / kF2fsBlockSize) + i, buf)) != ZX_OK) {
std::cout << "mkfs: Failed to write root directory: " << status << std::endl;
}
curr_offset += kF2fsBlockSize;
}
ZX_ASSERT(curr_offset == offset + length);
return status;
}
zx_status_t F2fsMkfs::F2fsPrepareSuperBlock() {
uint32_t blk_size_bytes;
uint32_t log_sectorsize, log_sectors_per_block;
uint32_t log_blocksize, log_blks_per_seg;
uint32_t segment_size_bytes, zone_size_bytes;
uint32_t sit_segments;
uint32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa;
uint32_t total_valid_blks_available;
uint64_t zone_align_start_offset, diff, total_meta_segments;
uint32_t sit_bitmap_size, max_nat_bitmap_size, max_nat_segments;
uint32_t total_zones;
super_block.magic = cpu_to_le32(F2FS_SUPER_MAGIC);
super_block.major_ver = cpu_to_le16(F2FS_MAJOR_VERSION);
super_block.minor_ver = cpu_to_le16(F2FS_MINOR_VERSION);
log_sectorsize = LogBase2(f2fs_params.sector_size);
log_sectors_per_block = LogBase2(f2fs_params.sectors_per_blk);
log_blocksize = log_sectorsize + log_sectors_per_block;
log_blks_per_seg = LogBase2(f2fs_params.blks_per_seg);
super_block.log_sectorsize = cpu_to_le32(log_sectorsize);
if (log_sectorsize < 0) {
printf("\n\tError: Failed to get the sector size: %u!\n", f2fs_params.sector_size);
return ZX_ERR_INVALID_ARGS;
}
super_block.log_sectors_per_block = cpu_to_le32(log_sectors_per_block);
if (log_sectors_per_block < 0) {
printf("\n\tError: Failed to get sectors per block: %u!\n", f2fs_params.sectors_per_blk);
return ZX_ERR_INVALID_ARGS;
}
super_block.log_blocksize = cpu_to_le32(log_blocksize);
super_block.log_blocks_per_seg = cpu_to_le32(log_blks_per_seg);
if (log_blks_per_seg < 0) {
printf("\n\tError: Failed to get block per segment: %u!\n", f2fs_params.blks_per_seg);
return ZX_ERR_INVALID_ARGS;
}
super_block.segs_per_sec = cpu_to_le32(f2fs_params.segs_per_sec);
super_block.secs_per_zone = cpu_to_le32(f2fs_params.secs_per_zone);
blk_size_bytes = 1 << log_blocksize;
segment_size_bytes = blk_size_bytes * f2fs_params.blks_per_seg;
zone_size_bytes = blk_size_bytes * f2fs_params.secs_per_zone * f2fs_params.segs_per_sec *
f2fs_params.blks_per_seg;
super_block.checksum_offset = 0;
super_block.block_count =
cpu_to_le64((f2fs_params.total_sectors * DEFAULT_SECTOR_SIZE) / blk_size_bytes);
zone_align_start_offset =
(f2fs_params.start_sector * DEFAULT_SECTOR_SIZE + 2 * F2FS_BLKSIZE + zone_size_bytes - 1) /
zone_size_bytes * zone_size_bytes -
f2fs_params.start_sector * DEFAULT_SECTOR_SIZE;
if (f2fs_params.start_sector % DEFAULT_SECTORS_PER_BLOCK) {
printf("WARN: Align start sector number in a unit of pages\n");
printf("\ti.e., start sector: %d, ofs:%d (sectors per page: %d)\n", f2fs_params.start_sector,
f2fs_params.start_sector % DEFAULT_SECTORS_PER_BLOCK, DEFAULT_SECTORS_PER_BLOCK);
}
super_block.segment_count =
cpu_to_le32(((f2fs_params.total_sectors * DEFAULT_SECTOR_SIZE) - zone_align_start_offset) /
segment_size_bytes);
super_block.segment0_blkaddr = cpu_to_le32(zone_align_start_offset / blk_size_bytes);
super_block.cp_blkaddr = super_block.segment0_blkaddr;
super_block.segment_count_ckpt = cpu_to_le32(F2FS_NUMBER_OF_CHECKPOINT_PACK);
super_block.sit_blkaddr =
cpu_to_le32(le32_to_cpu(super_block.segment0_blkaddr) +
(le32_to_cpu(super_block.segment_count_ckpt) * (1 << log_blks_per_seg)));
blocks_for_sit =
(le32_to_cpu(super_block.segment_count) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK;
sit_segments = (blocks_for_sit + f2fs_params.blks_per_seg - 1) / f2fs_params.blks_per_seg;
super_block.segment_count_sit = cpu_to_le32(sit_segments * 2);
super_block.nat_blkaddr =
cpu_to_le32(le32_to_cpu(super_block.sit_blkaddr) +
(le32_to_cpu(super_block.segment_count_sit) * f2fs_params.blks_per_seg));
total_valid_blks_available =
(le32_to_cpu(super_block.segment_count) -
(le32_to_cpu(super_block.segment_count_ckpt) + le32_to_cpu(super_block.segment_count_sit))) *
f2fs_params.blks_per_seg;
blocks_for_nat = (total_valid_blks_available + NAT_ENTRY_PER_BLOCK - 1) / NAT_ENTRY_PER_BLOCK;
super_block.segment_count_nat =
cpu_to_le32((blocks_for_nat + f2fs_params.blks_per_seg - 1) / f2fs_params.blks_per_seg);
/*
* The number of node segments should not be exceeded a "Threshold".
* This number resizes NAT bitmap area in a CP page.
* So the threshold is determined not to overflow one CP page
*/
sit_bitmap_size = ((le32_to_cpu(super_block.segment_count_sit) / 2) << log_blks_per_seg) / 8;
max_nat_bitmap_size = 4096 - sizeof(struct f2fs_checkpoint) + 1 - sit_bitmap_size;
max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg;
if (le32_to_cpu(super_block.segment_count_nat) > max_nat_segments)
super_block.segment_count_nat = cpu_to_le32(max_nat_segments);
super_block.segment_count_nat = cpu_to_le32(le32_to_cpu(super_block.segment_count_nat) * 2);
super_block.ssa_blkaddr =
cpu_to_le32(le32_to_cpu(super_block.nat_blkaddr) +
le32_to_cpu(super_block.segment_count_nat) * f2fs_params.blks_per_seg);
total_valid_blks_available =
(le32_to_cpu(super_block.segment_count) -
(le32_to_cpu(super_block.segment_count_ckpt) + le32_to_cpu(super_block.segment_count_sit) +
le32_to_cpu(super_block.segment_count_nat))) *
f2fs_params.blks_per_seg;
blocks_for_ssa = total_valid_blks_available / f2fs_params.blks_per_seg + 1;
super_block.segment_count_ssa =
cpu_to_le32((blocks_for_ssa + f2fs_params.blks_per_seg - 1) / f2fs_params.blks_per_seg);
total_meta_segments =
le32_to_cpu(super_block.segment_count_ckpt) + le32_to_cpu(super_block.segment_count_sit) +
le32_to_cpu(super_block.segment_count_nat) + le32_to_cpu(super_block.segment_count_ssa);
diff = total_meta_segments % (f2fs_params.segs_per_sec * f2fs_params.secs_per_zone);
if (diff)
super_block.segment_count_ssa =
cpu_to_le32(le32_to_cpu(super_block.segment_count_ssa) +
(f2fs_params.segs_per_sec * f2fs_params.secs_per_zone - diff));
super_block.main_blkaddr =
cpu_to_le32(le32_to_cpu(super_block.ssa_blkaddr) +
(le32_to_cpu(super_block.segment_count_ssa) * f2fs_params.blks_per_seg));
super_block.segment_count_main = cpu_to_le32(
le32_to_cpu(super_block.segment_count) -
(le32_to_cpu(super_block.segment_count_ckpt) + le32_to_cpu(super_block.segment_count_sit) +
le32_to_cpu(super_block.segment_count_nat) + le32_to_cpu(super_block.segment_count_ssa)));
super_block.section_count =
cpu_to_le32(le32_to_cpu(super_block.segment_count_main) / f2fs_params.segs_per_sec);
super_block.segment_count_main =
cpu_to_le32(le32_to_cpu(super_block.section_count) * f2fs_params.segs_per_sec);
if ((le32_to_cpu(super_block.segment_count_main) - 2) < f2fs_params.reserved_segments) {
printf(
"Error: Device size is not sufficient for F2FS volume, \
more segment needed =%u",
f2fs_params.reserved_segments - (le32_to_cpu(super_block.segment_count_main) - 2));
return ZX_ERR_NO_SPACE;
}
memcpy(super_block.uuid, uuid::Uuid::Generate().bytes(), 16);
ASCIIToUNICODE(super_block.volume_name, f2fs_params.vol_label);
super_block.node_ino = cpu_to_le32(1);
super_block.meta_ino = cpu_to_le32(2);
super_block.root_ino = cpu_to_le32(3);
total_zones = ((le32_to_cpu(super_block.segment_count_main) - 1) / f2fs_params.segs_per_sec) /
f2fs_params.secs_per_zone;
if (total_zones <= 6) {
printf(
"\n\tError: %d zones: Need more zones \
by shrinking zone size\n",
total_zones);
return ZX_ERR_NO_SPACE;
}
if (f2fs_params.heap) {
f2fs_params.cur_seg[CURSEG_HOT_NODE] =
(total_zones - 1) * f2fs_params.segs_per_sec * f2fs_params.secs_per_zone +
((f2fs_params.secs_per_zone - 1) * f2fs_params.segs_per_sec);
f2fs_params.cur_seg[CURSEG_WARM_NODE] =
f2fs_params.cur_seg[CURSEG_HOT_NODE] - f2fs_params.segs_per_sec * f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_COLD_NODE] = f2fs_params.cur_seg[CURSEG_WARM_NODE] -
f2fs_params.segs_per_sec * f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_HOT_DATA] = f2fs_params.cur_seg[CURSEG_COLD_NODE] -
f2fs_params.segs_per_sec * f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_COLD_DATA] = 0;
f2fs_params.cur_seg[CURSEG_WARM_DATA] = f2fs_params.cur_seg[CURSEG_COLD_DATA] +
f2fs_params.segs_per_sec * f2fs_params.secs_per_zone;
} else {
f2fs_params.cur_seg[CURSEG_HOT_NODE] = 0;
f2fs_params.cur_seg[CURSEG_WARM_NODE] =
f2fs_params.cur_seg[CURSEG_HOT_NODE] + f2fs_params.segs_per_sec * f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_COLD_NODE] = f2fs_params.cur_seg[CURSEG_WARM_NODE] +
f2fs_params.segs_per_sec * f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_HOT_DATA] = f2fs_params.cur_seg[CURSEG_COLD_NODE] +
f2fs_params.segs_per_sec * f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_COLD_DATA] =
f2fs_params.cur_seg[CURSEG_HOT_DATA] + f2fs_params.segs_per_sec * f2fs_params.secs_per_zone;
f2fs_params.cur_seg[CURSEG_WARM_DATA] = f2fs_params.cur_seg[CURSEG_COLD_DATA] +
f2fs_params.segs_per_sec * f2fs_params.secs_per_zone;
}
ConfigureExtensionList();
return 0;
}
zx_status_t F2fsMkfs::F2fsInitSitArea() {
uint32_t blk_size_bytes;
uint32_t seg_size_bytes;
uint32_t index = 0;
uint64_t sit_seg_blk_offset = 0;
uint8_t *zero_buf = nullptr;
zx_status_t ret;
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
seg_size_bytes = (1 << le32_to_cpu(super_block.log_blocks_per_seg)) * blk_size_bytes;
zero_buf = static_cast<uint8_t *>(calloc(sizeof(uint8_t), seg_size_bytes));
if (zero_buf == nullptr) {
printf("\n\tError: Calloc Failed for sit_zero_buf!!!\n");
return ZX_ERR_NO_MEMORY;
}
sit_seg_blk_offset = le32_to_cpu(super_block.sit_blkaddr) * blk_size_bytes;
for (index = 0; index < (le32_to_cpu(super_block.segment_count_sit) / 2); index++) {
ret = WriteToDisk(zero_buf, sit_seg_blk_offset, seg_size_bytes);
if (ret < 0) {
printf(
"\n\tError: While zeroing out the sit area \
on disk!!!\n");
return ret;
}
sit_seg_blk_offset = sit_seg_blk_offset + seg_size_bytes;
}
free(zero_buf);
return ZX_OK;
}
zx_status_t F2fsMkfs::F2fsInitNatArea() {
uint32_t blk_size_bytes;
uint32_t seg_size_bytes;
uint32_t index = 0;
uint64_t nat_seg_blk_offset = 0;
uint8_t *nat_buf = nullptr;
zx_status_t ret;
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
seg_size_bytes = (1 << le32_to_cpu(super_block.log_blocks_per_seg)) * blk_size_bytes;
nat_buf = static_cast<uint8_t *>(calloc(sizeof(uint8_t), seg_size_bytes));
if (nat_buf == nullptr) {
printf("\n\tError: Calloc Failed for nat_zero_blk!!!\n");
return ZX_ERR_NO_MEMORY;
}
nat_seg_blk_offset = le32_to_cpu(super_block.nat_blkaddr) * blk_size_bytes;
for (index = 0; index < (le32_to_cpu(super_block.segment_count_nat) / 2); index++) {
ret = WriteToDisk(nat_buf, nat_seg_blk_offset, seg_size_bytes);
if (ret < 0) {
printf(
"\n\tError: While zeroing out the nat area \
on disk!!!\n");
return ret;
}
nat_seg_blk_offset = nat_seg_blk_offset + (2 * seg_size_bytes);
}
free(nat_buf);
return ZX_OK;
}
zx_status_t F2fsMkfs::F2fsWriteCheckPointPack() {
struct f2fs_checkpoint *ckp = nullptr;
struct f2fs_summary_block *sum = nullptr;
uint32_t blk_size_bytes;
uint64_t cp_seg_blk_offset = 0;
uint32_t crc = 0;
zx_status_t ret;
int i;
ckp = static_cast<struct f2fs_checkpoint *>(calloc(F2FS_BLKSIZE, 1));
if (ckp == nullptr) {
printf("\n\tError: Calloc Failed for f2fs_checkpoint!!!\n");
return ZX_ERR_NO_MEMORY;
}
sum = static_cast<struct f2fs_summary_block *>(calloc(F2FS_BLKSIZE, 1));
if (sum == nullptr) {
printf("\n\tError: Calloc Failed for summay_node!!!\n");
return ZX_ERR_NO_MEMORY;
}
/* 1. cp page 1 of checkpoint pack 1 */
ckp->checkpoint_ver = 1;
ckp->cur_node_segno[0] = cpu_to_le32(f2fs_params.cur_seg[CURSEG_HOT_NODE]);
ckp->cur_node_segno[1] = cpu_to_le32(f2fs_params.cur_seg[CURSEG_WARM_NODE]);
ckp->cur_node_segno[2] = cpu_to_le32(f2fs_params.cur_seg[CURSEG_COLD_NODE]);
ckp->cur_data_segno[0] = cpu_to_le32(f2fs_params.cur_seg[CURSEG_HOT_DATA]);
ckp->cur_data_segno[1] = cpu_to_le32(f2fs_params.cur_seg[CURSEG_WARM_DATA]);
ckp->cur_data_segno[2] = cpu_to_le32(f2fs_params.cur_seg[CURSEG_COLD_DATA]);
for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) {
ckp->cur_node_segno[i] = 0xffffffff;
ckp->cur_data_segno[i] = 0xffffffff;
}
ckp->cur_node_blkoff[0] = cpu_to_le16(1);
ckp->cur_data_blkoff[0] = cpu_to_le16(1);
ckp->valid_block_count = cpu_to_le64(2);
ckp->rsvd_segment_count = cpu_to_le32(f2fs_params.reserved_segments);
ckp->overprov_segment_count = cpu_to_le32(
(le32_to_cpu(super_block.segment_count_main) - le32_to_cpu(ckp->rsvd_segment_count)) *
f2fs_params.overprovision / 100);
ckp->overprov_segment_count =
cpu_to_le32(le32_to_cpu(ckp->overprov_segment_count) + le32_to_cpu(ckp->rsvd_segment_count));
/* main segments - reserved segments - (node + data segments) */
ckp->free_segment_count = cpu_to_le32(le32_to_cpu(super_block.segment_count_main) - 6);
ckp->user_block_count = cpu_to_le64(
((le32_to_cpu(ckp->free_segment_count) + 6 - le32_to_cpu(ckp->overprov_segment_count)) *
f2fs_params.blks_per_seg));
ckp->cp_pack_total_block_count = cpu_to_le32(8);
ckp->ckpt_flags |= CP_UMOUNT_FLAG;
ckp->cp_pack_start_sum = cpu_to_le32(1);
ckp->valid_node_count = cpu_to_le32(1);
ckp->valid_inode_count = cpu_to_le32(1);
ckp->next_free_nid = cpu_to_le32(le32_to_cpu(super_block.root_ino) + 1);
ckp->sit_ver_bitmap_bytesize = cpu_to_le32(((le32_to_cpu(super_block.segment_count_sit) / 2)
<< le32_to_cpu(super_block.log_blocks_per_seg)) /
8);
ckp->nat_ver_bitmap_bytesize = cpu_to_le32(((le32_to_cpu(super_block.segment_count_nat) / 2)
<< le32_to_cpu(super_block.log_blocks_per_seg)) /
8);
ckp->checksum_offset = cpu_to_le32(4092);
crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, ckp, le32_to_cpu(ckp->checksum_offset));
*(reinterpret_cast<uint32_t *>(reinterpret_cast<unsigned char *>(ckp) +
le32_to_cpu(ckp->checksum_offset))) = crc;
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
cp_seg_blk_offset = le32_to_cpu(super_block.segment0_blkaddr) * blk_size_bytes;
ret = WriteToDisk(ckp, cp_seg_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the ckp to disk!!!\n");
return ret;
}
/* 2. Prepare and write Segment summary for data blocks */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
sum->entries[0].nid = super_block.root_ino;
sum->entries[0].ofs_in_node = 0;
cp_seg_blk_offset += blk_size_bytes;
ret = WriteToDisk(sum, cp_seg_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return ret;
}
/* 3. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
cp_seg_blk_offset += blk_size_bytes;
ret = WriteToDisk(sum, cp_seg_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return ret;
}
/* 4. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
/* inode sit for root */
sum->n_sits = cpu_to_le16(6);
sum->sit_j.entries[0].segno = ckp->cur_node_segno[0];
sum->sit_j.entries[0].se.vblocks = cpu_to_le16((CURSEG_HOT_NODE << 10) | 1);
F2fsSetBit(0, sum->sit_j.entries[0].se.valid_map);
sum->sit_j.entries[1].segno = ckp->cur_node_segno[1];
sum->sit_j.entries[1].se.vblocks = cpu_to_le16((CURSEG_WARM_NODE << 10));
sum->sit_j.entries[2].segno = ckp->cur_node_segno[2];
sum->sit_j.entries[2].se.vblocks = cpu_to_le16((CURSEG_COLD_NODE << 10));
/* data sit for root */
sum->sit_j.entries[3].segno = ckp->cur_data_segno[0];
sum->sit_j.entries[3].se.vblocks = cpu_to_le16((CURSEG_HOT_DATA << 10) | 1);
F2fsSetBit(0, sum->sit_j.entries[3].se.valid_map);
sum->sit_j.entries[4].segno = ckp->cur_data_segno[1];
sum->sit_j.entries[4].se.vblocks = cpu_to_le16((CURSEG_WARM_DATA << 10));
sum->sit_j.entries[5].segno = ckp->cur_data_segno[2];
sum->sit_j.entries[5].se.vblocks = cpu_to_le16((CURSEG_COLD_DATA << 10));
cp_seg_blk_offset += blk_size_bytes;
ret = WriteToDisk(sum, cp_seg_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return ret;
}
/* 5. Prepare and write Segment summary for node blocks */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
sum->entries[0].nid = super_block.root_ino;
sum->entries[0].ofs_in_node = 0;
cp_seg_blk_offset += blk_size_bytes;
ret = WriteToDisk(sum, cp_seg_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return ret;
}
/* 6. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
cp_seg_blk_offset += blk_size_bytes;
ret = WriteToDisk(sum, cp_seg_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return ret;
}
/* 7. Fill segment summary for data block to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
cp_seg_blk_offset += blk_size_bytes;
ret = WriteToDisk(sum, cp_seg_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the sum_blk to disk!!!\n");
return ret;
}
/* 8. cp page2 */
cp_seg_blk_offset += blk_size_bytes;
ret = WriteToDisk(ckp, cp_seg_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the ckp to disk!!!\n");
return ret;
}
/* 9. cp page 1 of check point pack 2
* Initiatialize other checkpoint pack with version zero
*/
ckp->checkpoint_ver = 0;
crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, ckp, le32_to_cpu(ckp->checksum_offset));
*(reinterpret_cast<uint32_t *>(reinterpret_cast<unsigned char *>(ckp) +
le32_to_cpu(ckp->checksum_offset))) = crc;
cp_seg_blk_offset =
(le32_to_cpu(super_block.segment0_blkaddr) + f2fs_params.blks_per_seg) * blk_size_bytes;
ret = WriteToDisk(ckp, cp_seg_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the ckp to disk!!!\n");
return ret;
}
free(sum);
free(ckp);
return ZX_OK;
}
zx_status_t F2fsMkfs::F2fsWriteSuperBlock() {
uint32_t index = 0;
uint8_t *zero_buff;
zx_status_t ret;
zero_buff = static_cast<uint8_t *>(calloc(F2FS_BLKSIZE, 1));
memcpy(zero_buff + F2FS_SUPER_OFFSET, &super_block, sizeof(super_block));
for (index = 0; index < 2; index++) {
ret = WriteToDisk(zero_buff, index * F2FS_BLKSIZE, F2FS_BLKSIZE);
if (ret < 0) {
printf(
"\n\tError: While while writing supe_blk \
on disk!!! index : %d\n",
index);
return ret;
}
}
free(zero_buff);
return ZX_OK;
}
zx_status_t F2fsMkfs::F2fsWriteRootInode() {
struct f2fs_node *raw_node = nullptr;
uint32_t blk_size_bytes;
uint64_t data_blk_nor;
uint64_t main_area_node_seg_blk_offset = 0;
zx_status_t ret;
raw_node = static_cast<struct f2fs_node *>(calloc(F2FS_BLKSIZE, 1));
if (raw_node == nullptr) {
printf("\n\tError: Calloc Failed for raw_node!!!\n");
return ZX_ERR_NO_MEMORY;
}
raw_node->footer.nid = super_block.root_ino;
raw_node->footer.ino = super_block.root_ino;
raw_node->footer.cp_ver = cpu_to_le64(1);
raw_node->footer.next_blkaddr =
cpu_to_le32(le32_to_cpu(super_block.main_blkaddr) +
f2fs_params.cur_seg[CURSEG_HOT_NODE] * f2fs_params.blks_per_seg + 1);
raw_node->i.i_mode = cpu_to_le16(0x41ed);
raw_node->i.i_links = cpu_to_le32(2);
raw_node->i.i_uid = cpu_to_le32(getuid());
raw_node->i.i_gid = cpu_to_le32(getgid());
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes); /* dentry */
raw_node->i.i_blocks = cpu_to_le64(2);
raw_node->i.i_atime = cpu_to_le32(time(nullptr));
raw_node->i.i_atime_nsec = 0;
raw_node->i.i_ctime = cpu_to_le32(time(nullptr));
raw_node->i.i_ctime_nsec = 0;
raw_node->i.i_mtime = cpu_to_le32(time(nullptr));
raw_node->i.i_mtime_nsec = 0;
raw_node->i.i_generation = 0;
raw_node->i.i_xattr_nid = 0;
raw_node->i.i_flags = 0;
raw_node->i.i_current_depth = cpu_to_le32(1);
data_blk_nor = le32_to_cpu(super_block.main_blkaddr) +
f2fs_params.cur_seg[CURSEG_HOT_DATA] * f2fs_params.blks_per_seg;
raw_node->i.i_addr[0] = cpu_to_le32(data_blk_nor);
raw_node->i.i_ext.fofs = 0;
raw_node->i.i_ext.blk_addr = cpu_to_le32(data_blk_nor);
raw_node->i.i_ext.len = cpu_to_le32(1);
main_area_node_seg_blk_offset = le32_to_cpu(super_block.main_blkaddr);
main_area_node_seg_blk_offset += f2fs_params.cur_seg[CURSEG_HOT_NODE] * f2fs_params.blks_per_seg;
main_area_node_seg_blk_offset *= blk_size_bytes;
ret = WriteToDisk(raw_node, main_area_node_seg_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the raw_node to disk!!!, size = %lu\n",
sizeof(struct f2fs_node));
return ret;
}
memset(raw_node, 0xff, sizeof(struct f2fs_node));
ret = WriteToDisk(raw_node, main_area_node_seg_blk_offset + 4096, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the raw_node to disk!!!\n");
return ret;
}
free(raw_node);
return ZX_OK;
}
zx_status_t F2fsMkfs::F2fsUpdateNatRoot() {
struct f2fs_nat_block *nat_blk = nullptr;
uint32_t blk_size_bytes;
uint64_t nat_seg_blk_offset = 0;
zx_status_t ret;
nat_blk = static_cast<struct f2fs_nat_block *>(calloc(F2FS_BLKSIZE, 1));
if (nat_blk == nullptr) {
printf("\n\tError: Calloc Failed for nat_blk!!!\n");
return ZX_ERR_NO_MEMORY;
}
/* update root */
nat_blk->entries[super_block.root_ino].block_addr =
cpu_to_le32(le32_to_cpu(super_block.main_blkaddr) +
f2fs_params.cur_seg[CURSEG_HOT_NODE] * f2fs_params.blks_per_seg);
nat_blk->entries[super_block.root_ino].ino = super_block.root_ino;
/* update node nat */
nat_blk->entries[super_block.node_ino].block_addr = cpu_to_le32(1);
nat_blk->entries[super_block.node_ino].ino = super_block.node_ino;
/* update meta nat */
nat_blk->entries[super_block.meta_ino].block_addr = cpu_to_le32(1);
nat_blk->entries[super_block.meta_ino].ino = super_block.meta_ino;
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
nat_seg_blk_offset = le32_to_cpu(super_block.nat_blkaddr) * blk_size_bytes;
ret = WriteToDisk(nat_blk, nat_seg_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the nat_blk set0 to disk!!!\n");
return ret;
}
free(nat_blk);
return ZX_OK;
}
zx_status_t F2fsMkfs::F2fsAddDefaultDentryRoot() {
struct f2fs_dentry_block *dent_blk = nullptr;
uint32_t blk_size_bytes;
uint64_t data_blk_offset = 0;
zx_status_t ret;
dent_blk = static_cast<struct f2fs_dentry_block *>(calloc(F2FS_BLKSIZE, 1));
if (dent_blk == nullptr) {
printf("\n\tError: Calloc Failed for dent_blk!!!\n");
return ZX_ERR_NO_MEMORY;
}
dent_blk->dentry[0].hash_code = 0;
dent_blk->dentry[0].ino = super_block.root_ino;
dent_blk->dentry[0].name_len = cpu_to_le16(1);
dent_blk->dentry[0].file_type = F2FS_FT_DIR;
memcpy(dent_blk->filename[0], ".", 1);
dent_blk->dentry[1].hash_code = 0;
dent_blk->dentry[1].ino = super_block.root_ino;
dent_blk->dentry[1].name_len = cpu_to_le16(2);
dent_blk->dentry[1].file_type = F2FS_FT_DIR;
memcpy(dent_blk->filename[1], "..", 2);
/* bitmap for . and .. */
dent_blk->dentry_bitmap[0] = (1 << 1) | (1 << 0);
blk_size_bytes = 1 << le32_to_cpu(super_block.log_blocksize);
data_blk_offset = (le32_to_cpu(super_block.main_blkaddr) +
f2fs_params.cur_seg[CURSEG_HOT_DATA] * f2fs_params.blks_per_seg) *
blk_size_bytes;
ret = WriteToDisk(dent_blk, data_blk_offset, F2FS_BLKSIZE);
if (ret < 0) {
printf("\n\tError: While writing the dentry_blk to disk!!!\n");
return ret;
}
free(dent_blk);
return ZX_OK;
}
zx_status_t F2fsMkfs::F2fsCreateRootDir() {
int8_t err = 0;
err = F2fsWriteRootInode();
if (err < 0) {
printf("\n\tError: Failed to write root inode!!!\n");
goto exit;
}
err = F2fsUpdateNatRoot();
if (err < 0) {
printf("\n\tError: Failed to update NAT for root!!!\n");
goto exit;
}
err = F2fsAddDefaultDentryRoot();
if (err < 0) {
printf("\n\tError: Failed to add default dentries for root!!!\n");
goto exit;
}
exit:
if (err)
printf("\n\tError: Could not create the root directory!!!\n");
return err;
}
#if 0 // porting needed
// int F2fsMkfs::F2fsTrimDevice()
// {
// unsigned long long range[2];
// struct stat stat_buf;
// range[0] = 0;
// range[1] = f2fs_params.total_sectors * DEFAULT_SECTOR_SIZE;
// if (fstat(f2fs_params.fd, &stat_buf) < 0 ) {
// printf("\n\tError: Failed to get the device stat!!!\n");
// return -1;
// }
// if (S_ISREG(stat_buf.st_mode))
// return 0;
// else if (S_ISBLK(stat_buf.st_mode)) {
// // if (ioctl(f2fs_params.fd, BLKDISCARD, &range) < 0)
// printf("Info: This device doesn't support TRIM\n");
// } else
// return -1;
// return 0;
// }
#endif
int8_t F2fsMkfs::F2fsFormatDevice() {
int8_t err = 0;
err = static_cast<int8_t>(F2fsPrepareSuperBlock());
if (err < 0)
goto exit;
#if 0 // porting needed
// TRIM is not supported
// err = f2fs_trim_device();
// if (err < 0) {
// printf("\n\tError: Failed to trim whole device!!!\n");
// goto exit;
// }
#endif
err = F2fsInitSitArea();
if (err < 0) {
printf("\n\tError: Failed to Initialise the SIT AREA!!!\n");
goto exit;
}
err = F2fsInitNatArea();
if (err < 0) {
printf("\n\tError: Failed to Initialise the NAT AREA!!!\n");
goto exit;
}
err = F2fsCreateRootDir();
if (err < 0) {
printf("\n\tError: Failed to create the root directory!!!\n");
goto exit;
}
err = F2fsWriteCheckPointPack();
if (err < 0) {
printf("\n\tError: Failed to write the check point pack!!!\n");
goto exit;
}
err = F2fsWriteSuperBlock();
if (err < 0) {
printf("\n\tError: Failed to write the Super Block!!!\n");
goto exit;
}
exit:
if (err)
printf("\n\tError: Could not format the device!!!\n");
/*
* We should call fsync() to flush out all the dirty pages
* in the block device page cache.
*/
bc_->Sync();
return err;
}
} // namespace f2fs