blob: 3bdd8b6f1b57fce5624e730b79fd21d977abc300 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "sensors-impl/Sensor.h"
#include "utils/SystemClock.h"
#include <cmath>
using ::ndk::ScopedAStatus;
namespace aidl {
namespace android {
namespace hardware {
namespace sensors {
static constexpr int32_t kDefaultMaxDelayUs = 10 * 1000 * 1000;
Sensor::Sensor(ISensorsEventCallback* callback)
: mIsEnabled(false),
mSamplingPeriodNs(0),
mLastSampleTimeNs(0),
mCallback(callback),
mMode(OperationMode::NORMAL) {
mRunThread = std::thread(startThread, this);
}
Sensor::~Sensor() {
std::unique_lock<std::mutex> lock(mRunMutex);
mStopThread = true;
mIsEnabled = false;
mWaitCV.notify_all();
lock.release();
mRunThread.join();
}
const SensorInfo& Sensor::getSensorInfo() const {
return mSensorInfo;
}
void Sensor::batch(int64_t samplingPeriodNs) {
if (samplingPeriodNs < mSensorInfo.minDelayUs * 1000LL) {
samplingPeriodNs = mSensorInfo.minDelayUs * 1000LL;
} else if (samplingPeriodNs > mSensorInfo.maxDelayUs * 1000LL) {
samplingPeriodNs = mSensorInfo.maxDelayUs * 1000LL;
}
if (mSamplingPeriodNs != samplingPeriodNs) {
mSamplingPeriodNs = samplingPeriodNs;
// Wake up the 'run' thread to check if a new event should be generated now
mWaitCV.notify_all();
}
}
void Sensor::activate(bool enable) {
if (mIsEnabled != enable) {
std::unique_lock<std::mutex> lock(mRunMutex);
mIsEnabled = enable;
mWaitCV.notify_all();
}
}
ScopedAStatus Sensor::flush() {
// Only generate a flush complete event if the sensor is enabled and if the sensor is not a
// one-shot sensor.
if (!mIsEnabled ||
(mSensorInfo.flags & static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE))) {
return ScopedAStatus::fromServiceSpecificError(
static_cast<int32_t>(BnSensors::ERROR_BAD_VALUE));
}
// Note: If a sensor supports batching, write all of the currently batched events for the sensor
// to the Event FMQ prior to writing the flush complete event.
Event ev;
ev.sensorHandle = mSensorInfo.sensorHandle;
ev.sensorType = SensorType::META_DATA;
EventPayload::MetaData meta = {
.what = MetaDataEventType::META_DATA_FLUSH_COMPLETE,
};
ev.payload.set<EventPayload::Tag::meta>(meta);
std::vector<Event> evs{ev};
mCallback->postEvents(evs, isWakeUpSensor());
return ScopedAStatus::ok();
}
void Sensor::startThread(Sensor* sensor) {
sensor->run();
}
void Sensor::run() {
std::unique_lock<std::mutex> runLock(mRunMutex);
constexpr int64_t kNanosecondsInSeconds = 1000 * 1000 * 1000;
while (!mStopThread) {
if (!mIsEnabled || mMode == OperationMode::DATA_INJECTION) {
mWaitCV.wait(runLock, [&] {
return ((mIsEnabled && mMode == OperationMode::NORMAL) || mStopThread);
});
} else {
timespec curTime;
clock_gettime(CLOCK_BOOTTIME, &curTime);
int64_t now = (curTime.tv_sec * kNanosecondsInSeconds) + curTime.tv_nsec;
int64_t nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs;
if (now >= nextSampleTime) {
mLastSampleTimeNs = now;
nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs;
mCallback->postEvents(readEvents(), isWakeUpSensor());
}
mWaitCV.wait_for(runLock, std::chrono::nanoseconds(nextSampleTime - now));
}
}
}
bool Sensor::isWakeUpSensor() {
return mSensorInfo.flags & static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_WAKE_UP);
}
std::vector<Event> Sensor::readEvents() {
std::vector<Event> events;
Event event;
event.sensorHandle = mSensorInfo.sensorHandle;
event.sensorType = mSensorInfo.type;
event.timestamp = ::android::elapsedRealtimeNano();
memset(&event.payload, 0, sizeof(event.payload));
readEventPayload(event.payload);
events.push_back(event);
return events;
}
void Sensor::setOperationMode(OperationMode mode) {
if (mMode != mode) {
std::unique_lock<std::mutex> lock(mRunMutex);
mMode = mode;
mWaitCV.notify_all();
}
}
bool Sensor::supportsDataInjection() const {
return mSensorInfo.flags & static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION);
}
ScopedAStatus Sensor::injectEvent(const Event& event) {
if (event.sensorType == SensorType::ADDITIONAL_INFO) {
return ScopedAStatus::ok();
// When in OperationMode::NORMAL, SensorType::ADDITIONAL_INFO is used to push operation
// environment data into the device.
}
if (!supportsDataInjection()) {
return ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
if (mMode == OperationMode::DATA_INJECTION) {
mCallback->postEvents(std::vector<Event>{event}, isWakeUpSensor());
return ScopedAStatus::ok();
}
return ScopedAStatus::fromServiceSpecificError(
static_cast<int32_t>(BnSensors::ERROR_BAD_VALUE));
}
OnChangeSensor::OnChangeSensor(ISensorsEventCallback* callback)
: Sensor(callback), mPreviousEventSet(false) {}
void OnChangeSensor::activate(bool enable) {
Sensor::activate(enable);
if (!enable) {
mPreviousEventSet = false;
}
}
std::vector<Event> OnChangeSensor::readEvents() {
std::vector<Event> events = Sensor::readEvents();
std::vector<Event> outputEvents;
for (auto iter = events.begin(); iter != events.end(); ++iter) {
Event ev = *iter;
if (!mPreviousEventSet ||
memcmp(&mPreviousEvent.payload, &ev.payload, sizeof(ev.payload)) != 0) {
outputEvents.push_back(ev);
mPreviousEvent = ev;
mPreviousEventSet = true;
}
}
return outputEvents;
}
AccelSensor::AccelSensor(int32_t sensorHandle, ISensorsEventCallback* callback) : Sensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Accel Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::ACCELEROMETER;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 78.4f; // +/- 8g
mSensorInfo.resolution = 1.52e-5;
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelayUs = 10 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION);
};
void AccelSensor::readEventPayload(EventPayload& payload) {
EventPayload::Vec3 vec3 = {
.x = 0,
.y = 0,
.z = 9.8,
.status = SensorStatus::ACCURACY_HIGH,
};
payload.set<EventPayload::Tag::vec3>(vec3);
}
PressureSensor::PressureSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: Sensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Pressure Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::PRESSURE;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 1100.0f; // hPa
mSensorInfo.resolution = 0.005f; // hPa
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelayUs = 100 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = 0;
};
void PressureSensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(1013.25f);
}
MagnetometerSensor::MagnetometerSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: Sensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Magnetic Field Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::MAGNETIC_FIELD;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 1300.0f;
mSensorInfo.resolution = 0.01f;
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelayUs = 20 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = 0;
};
void MagnetometerSensor::readEventPayload(EventPayload& payload) {
EventPayload::Vec3 vec3 = {
.x = 100.0,
.y = 0,
.z = 50.0,
.status = SensorStatus::ACCURACY_HIGH,
};
payload.set<EventPayload::Tag::vec3>(vec3);
}
LightSensor::LightSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: OnChangeSensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Light Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::LIGHT;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 43000.0f;
mSensorInfo.resolution = 10.0f;
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelayUs = 200 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE);
};
void LightSensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(80.0f);
}
ProximitySensor::ProximitySensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: OnChangeSensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Proximity Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::PROXIMITY;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 5.0f;
mSensorInfo.resolution = 1.0f;
mSensorInfo.power = 0.012f; // mA
mSensorInfo.minDelayUs = 200 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE |
SensorInfo::SENSOR_FLAG_BITS_WAKE_UP);
};
void ProximitySensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(2.5f);
}
GyroSensor::GyroSensor(int32_t sensorHandle, ISensorsEventCallback* callback) : Sensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Gyro Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::GYROSCOPE;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 1000.0f * M_PI / 180.0f;
mSensorInfo.resolution = 1000.0f * M_PI / (180.0f * 32768.0f);
mSensorInfo.power = 0.001f;
mSensorInfo.minDelayUs = 10 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = 0;
};
void GyroSensor::readEventPayload(EventPayload& payload) {
EventPayload::Vec3 vec3 = {
.x = 0,
.y = 0,
.z = 0,
.status = SensorStatus::ACCURACY_HIGH,
};
payload.set<EventPayload::Tag::vec3>(vec3);
}
AmbientTempSensor::AmbientTempSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: OnChangeSensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Ambient Temp Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::AMBIENT_TEMPERATURE;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 80.0f;
mSensorInfo.resolution = 0.01f;
mSensorInfo.power = 0.001f;
mSensorInfo.minDelayUs = 40 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE);
};
void AmbientTempSensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(40.0f);
}
RelativeHumiditySensor::RelativeHumiditySensor(int32_t sensorHandle,
ISensorsEventCallback* callback)
: OnChangeSensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Relative Humidity Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::RELATIVE_HUMIDITY;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 100.0f;
mSensorInfo.resolution = 0.1f;
mSensorInfo.power = 0.001f;
mSensorInfo.minDelayUs = 40 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE);
}
void RelativeHumiditySensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(50.0f);
}
HingeAngleSensor::HingeAngleSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: OnChangeSensor(callback) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.name = "Hinge Angle Sensor";
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
mSensorInfo.type = SensorType::HINGE_ANGLE;
mSensorInfo.typeAsString = "";
mSensorInfo.maxRange = 360.0f;
mSensorInfo.resolution = 1.0f;
mSensorInfo.power = 0.001f;
mSensorInfo.minDelayUs = 40 * 1000; // microseconds
mSensorInfo.maxDelayUs = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = static_cast<uint32_t>(SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE |
SensorInfo::SENSOR_FLAG_BITS_WAKE_UP |
SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION);
}
void HingeAngleSensor::readEventPayload(EventPayload& payload) {
payload.set<EventPayload::Tag::scalar>(180.0f);
}
} // namespace sensors
} // namespace hardware
} // namespace android
} // namespace aidl