blob: a70c12d57dc0a4f747e98e38a29de72e1d5a75a2 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <pthread.h>
#define ATRACE_TAG ATRACE_TAG_AUDIO
#define LOG_TAG "AHAL_Stream"
#include <Utils.h>
#include <android-base/logging.h>
#include <android/binder_ibinder_platform.h>
#include <cutils/properties.h>
#include <utils/SystemClock.h>
#include <utils/Trace.h>
#include "core-impl/Stream.h"
using aidl::android::hardware::audio::common::AudioOffloadMetadata;
using aidl::android::hardware::audio::common::getChannelCount;
using aidl::android::hardware::audio::common::getFrameSizeInBytes;
using aidl::android::hardware::audio::common::isBitPositionFlagSet;
using aidl::android::hardware::audio::common::SinkMetadata;
using aidl::android::hardware::audio::common::SourceMetadata;
using aidl::android::media::audio::common::AudioDevice;
using aidl::android::media::audio::common::AudioDualMonoMode;
using aidl::android::media::audio::common::AudioInputFlags;
using aidl::android::media::audio::common::AudioIoFlags;
using aidl::android::media::audio::common::AudioLatencyMode;
using aidl::android::media::audio::common::AudioOffloadInfo;
using aidl::android::media::audio::common::AudioOutputFlags;
using aidl::android::media::audio::common::AudioPlaybackRate;
using aidl::android::media::audio::common::MicrophoneDynamicInfo;
using aidl::android::media::audio::common::MicrophoneInfo;
namespace aidl::android::hardware::audio::core {
void StreamContext::fillDescriptor(StreamDescriptor* desc) {
if (mCommandMQ) {
desc->command = mCommandMQ->dupeDesc();
}
if (mReplyMQ) {
desc->reply = mReplyMQ->dupeDesc();
}
if (mDataMQ) {
desc->frameSizeBytes = getFrameSize();
desc->bufferSizeFrames = getBufferSizeInFrames();
desc->audio.set<StreamDescriptor::AudioBuffer::Tag::fmq>(mDataMQ->dupeDesc());
}
}
size_t StreamContext::getBufferSizeInFrames() const {
if (mDataMQ) {
return mDataMQ->getQuantumCount() * mDataMQ->getQuantumSize() / getFrameSize();
}
return 0;
}
size_t StreamContext::getFrameSize() const {
return getFrameSizeInBytes(mFormat, mChannelLayout);
}
bool StreamContext::isValid() const {
if (mCommandMQ && !mCommandMQ->isValid()) {
LOG(ERROR) << "command FMQ is invalid";
return false;
}
if (mReplyMQ && !mReplyMQ->isValid()) {
LOG(ERROR) << "reply FMQ is invalid";
return false;
}
if (getFrameSize() == 0) {
LOG(ERROR) << "frame size is invalid";
return false;
}
if (mDataMQ && !mDataMQ->isValid()) {
LOG(ERROR) << "data FMQ is invalid";
return false;
}
return true;
}
void StreamContext::startStreamDataProcessor() {
auto streamDataProcessor = mStreamDataProcessor.lock();
if (streamDataProcessor != nullptr) {
streamDataProcessor->startDataProcessor(mSampleRate, getChannelCount(mChannelLayout),
mFormat);
}
}
void StreamContext::reset() {
mCommandMQ.reset();
mReplyMQ.reset();
mDataMQ.reset();
}
pid_t StreamWorkerCommonLogic::getTid() const {
#if defined(__ANDROID__)
return pthread_gettid_np(pthread_self());
#else
return 0;
#endif
}
std::string StreamWorkerCommonLogic::init() {
if (mContext->getCommandMQ() == nullptr) return "Command MQ is null";
if (mContext->getReplyMQ() == nullptr) return "Reply MQ is null";
StreamContext::DataMQ* const dataMQ = mContext->getDataMQ();
if (dataMQ == nullptr) return "Data MQ is null";
if (sizeof(DataBufferElement) != dataMQ->getQuantumSize()) {
return "Unexpected Data MQ quantum size: " + std::to_string(dataMQ->getQuantumSize());
}
mDataBufferSize = dataMQ->getQuantumCount() * dataMQ->getQuantumSize();
mDataBuffer.reset(new (std::nothrow) DataBufferElement[mDataBufferSize]);
if (mDataBuffer == nullptr) {
return "Failed to allocate data buffer for element count " +
std::to_string(dataMQ->getQuantumCount()) +
", size in bytes: " + std::to_string(mDataBufferSize);
}
if (::android::status_t status = mDriver->init(); status != STATUS_OK) {
return "Failed to initialize the driver: " + std::to_string(status);
}
return "";
}
void StreamWorkerCommonLogic::populateReply(StreamDescriptor::Reply* reply,
bool isConnected) const {
reply->status = STATUS_OK;
if (isConnected) {
reply->observable.frames = mContext->getFrameCount();
reply->observable.timeNs = ::android::uptimeNanos();
if (auto status = mDriver->refinePosition(&reply->observable); status == ::android::OK) {
return;
}
}
reply->observable.frames = StreamDescriptor::Position::UNKNOWN;
reply->observable.timeNs = StreamDescriptor::Position::UNKNOWN;
}
void StreamWorkerCommonLogic::populateReplyWrongState(
StreamDescriptor::Reply* reply, const StreamDescriptor::Command& command) const {
LOG(WARNING) << "command '" << toString(command.getTag())
<< "' can not be handled in the state " << toString(mState);
reply->status = STATUS_INVALID_OPERATION;
}
const std::string StreamInWorkerLogic::kThreadName = "reader";
StreamInWorkerLogic::Status StreamInWorkerLogic::cycle() {
// Note: for input streams, draining is driven by the client, thus
// "empty buffer" condition can only happen while handling the 'burst'
// command. Thus, unlike for output streams, it does not make sense to
// delay the 'DRAINING' state here by 'mTransientStateDelayMs'.
// TODO: Add a delay for transitions of async operations when/if they added.
StreamDescriptor::Command command{};
if (!mContext->getCommandMQ()->readBlocking(&command, 1)) {
LOG(ERROR) << __func__ << ": reading of command from MQ failed";
mState = StreamDescriptor::State::ERROR;
return Status::ABORT;
}
using Tag = StreamDescriptor::Command::Tag;
using LogSeverity = ::android::base::LogSeverity;
const LogSeverity severity =
command.getTag() == Tag::burst || command.getTag() == Tag::getStatus
? LogSeverity::VERBOSE
: LogSeverity::DEBUG;
LOG(severity) << __func__ << ": received command " << command.toString() << " in "
<< kThreadName;
StreamDescriptor::Reply reply{};
reply.status = STATUS_BAD_VALUE;
switch (command.getTag()) {
case Tag::halReservedExit: {
const int32_t cookie = command.get<Tag::halReservedExit>();
if (cookie == (mContext->getInternalCommandCookie() ^ getTid())) {
mDriver->shutdown();
setClosed();
} else {
LOG(WARNING) << __func__ << ": EXIT command has a bad cookie: " << cookie;
}
if (cookie != 0) { // This is an internal command, no need to reply.
return Status::EXIT;
} else {
break;
}
}
case Tag::getStatus:
populateReply(&reply, mIsConnected);
break;
case Tag::start:
if (mState == StreamDescriptor::State::STANDBY ||
mState == StreamDescriptor::State::DRAINING) {
if (::android::status_t status = mDriver->start(); status == ::android::OK) {
populateReply(&reply, mIsConnected);
mState = mState == StreamDescriptor::State::STANDBY
? StreamDescriptor::State::IDLE
: StreamDescriptor::State::ACTIVE;
} else {
LOG(ERROR) << __func__ << ": start failed: " << status;
mState = StreamDescriptor::State::ERROR;
}
} else {
populateReplyWrongState(&reply, command);
}
break;
case Tag::burst:
if (const int32_t fmqByteCount = command.get<Tag::burst>(); fmqByteCount >= 0) {
LOG(VERBOSE) << __func__ << ": '" << toString(command.getTag()) << "' command for "
<< fmqByteCount << " bytes";
if (mState == StreamDescriptor::State::IDLE ||
mState == StreamDescriptor::State::ACTIVE ||
mState == StreamDescriptor::State::PAUSED ||
mState == StreamDescriptor::State::DRAINING) {
if (!read(fmqByteCount, &reply)) {
mState = StreamDescriptor::State::ERROR;
}
if (mState == StreamDescriptor::State::IDLE ||
mState == StreamDescriptor::State::PAUSED) {
mState = StreamDescriptor::State::ACTIVE;
} else if (mState == StreamDescriptor::State::DRAINING) {
// To simplify the reference code, we assume that the read operation
// has consumed all the data remaining in the hardware buffer.
// In a real implementation, here we would either remain in
// the 'DRAINING' state, or transfer to 'STANDBY' depending on the
// buffer state.
mState = StreamDescriptor::State::STANDBY;
}
} else {
populateReplyWrongState(&reply, command);
}
} else {
LOG(WARNING) << __func__ << ": invalid burst byte count: " << fmqByteCount;
}
break;
case Tag::drain:
if (const auto mode = command.get<Tag::drain>();
mode == StreamDescriptor::DrainMode::DRAIN_UNSPECIFIED) {
if (mState == StreamDescriptor::State::ACTIVE) {
if (::android::status_t status = mDriver->drain(mode);
status == ::android::OK) {
populateReply(&reply, mIsConnected);
mState = StreamDescriptor::State::DRAINING;
} else {
LOG(ERROR) << __func__ << ": drain failed: " << status;
mState = StreamDescriptor::State::ERROR;
}
} else {
populateReplyWrongState(&reply, command);
}
} else {
LOG(WARNING) << __func__ << ": invalid drain mode: " << toString(mode);
}
break;
case Tag::standby:
if (mState == StreamDescriptor::State::IDLE) {
populateReply(&reply, mIsConnected);
if (::android::status_t status = mDriver->standby(); status == ::android::OK) {
mState = StreamDescriptor::State::STANDBY;
} else {
LOG(ERROR) << __func__ << ": standby failed: " << status;
mState = StreamDescriptor::State::ERROR;
}
} else {
populateReplyWrongState(&reply, command);
}
break;
case Tag::pause:
if (mState == StreamDescriptor::State::ACTIVE) {
if (::android::status_t status = mDriver->pause(); status == ::android::OK) {
populateReply(&reply, mIsConnected);
mState = StreamDescriptor::State::PAUSED;
} else {
LOG(ERROR) << __func__ << ": pause failed: " << status;
mState = StreamDescriptor::State::ERROR;
}
} else {
populateReplyWrongState(&reply, command);
}
break;
case Tag::flush:
if (mState == StreamDescriptor::State::PAUSED) {
if (::android::status_t status = mDriver->flush(); status == ::android::OK) {
populateReply(&reply, mIsConnected);
mState = StreamDescriptor::State::STANDBY;
} else {
LOG(ERROR) << __func__ << ": flush failed: " << status;
mState = StreamDescriptor::State::ERROR;
}
} else {
populateReplyWrongState(&reply, command);
}
break;
}
reply.state = mState;
LOG(severity) << __func__ << ": writing reply " << reply.toString();
if (!mContext->getReplyMQ()->writeBlocking(&reply, 1)) {
LOG(ERROR) << __func__ << ": writing of reply " << reply.toString() << " to MQ failed";
mState = StreamDescriptor::State::ERROR;
return Status::ABORT;
}
return Status::CONTINUE;
}
bool StreamInWorkerLogic::read(size_t clientSize, StreamDescriptor::Reply* reply) {
ATRACE_CALL();
StreamContext::DataMQ* const dataMQ = mContext->getDataMQ();
StreamContext::DataMQ::Error fmqError = StreamContext::DataMQ::Error::NONE;
std::string fmqErrorMsg;
const size_t byteCount = std::min(
{clientSize, dataMQ->availableToWrite(&fmqError, &fmqErrorMsg), mDataBufferSize});
CHECK(fmqError == StreamContext::DataMQ::Error::NONE) << fmqErrorMsg;
const bool isConnected = mIsConnected;
const size_t frameSize = mContext->getFrameSize();
size_t actualFrameCount = 0;
bool fatal = false;
int32_t latency = mContext->getNominalLatencyMs();
if (isConnected) {
if (::android::status_t status = mDriver->transfer(mDataBuffer.get(), byteCount / frameSize,
&actualFrameCount, &latency);
status != ::android::OK) {
fatal = true;
LOG(ERROR) << __func__ << ": read failed: " << status;
}
} else {
usleep(3000); // Simulate blocking transfer delay.
for (size_t i = 0; i < byteCount; ++i) mDataBuffer[i] = 0;
actualFrameCount = byteCount / frameSize;
}
const size_t actualByteCount = actualFrameCount * frameSize;
if (bool success = actualByteCount > 0 ? dataMQ->write(&mDataBuffer[0], actualByteCount) : true;
success) {
LOG(VERBOSE) << __func__ << ": writing of " << actualByteCount << " bytes into data MQ"
<< " succeeded; connected? " << isConnected;
// Frames are provided and counted regardless of connection status.
reply->fmqByteCount += actualByteCount;
mContext->advanceFrameCount(actualFrameCount);
populateReply(reply, isConnected);
} else {
LOG(WARNING) << __func__ << ": writing of " << actualByteCount
<< " bytes of data to MQ failed";
reply->status = STATUS_NOT_ENOUGH_DATA;
}
reply->latencyMs = latency;
return !fatal;
}
const std::string StreamOutWorkerLogic::kThreadName = "writer";
StreamOutWorkerLogic::Status StreamOutWorkerLogic::cycle() {
if (mState == StreamDescriptor::State::DRAINING ||
mState == StreamDescriptor::State::TRANSFERRING) {
if (auto stateDurationMs = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now() - mTransientStateStart);
stateDurationMs >= mTransientStateDelayMs) {
std::shared_ptr<IStreamCallback> asyncCallback = mContext->getAsyncCallback();
if (asyncCallback == nullptr) {
// In blocking mode, mState can only be DRAINING.
mState = StreamDescriptor::State::IDLE;
} else {
// In a real implementation, the driver should notify the HAL about
// drain or transfer completion. In the stub, we switch unconditionally.
if (mState == StreamDescriptor::State::DRAINING) {
mState = StreamDescriptor::State::IDLE;
ndk::ScopedAStatus status = asyncCallback->onDrainReady();
if (!status.isOk()) {
LOG(ERROR) << __func__ << ": error from onDrainReady: " << status;
}
} else {
mState = StreamDescriptor::State::ACTIVE;
ndk::ScopedAStatus status = asyncCallback->onTransferReady();
if (!status.isOk()) {
LOG(ERROR) << __func__ << ": error from onTransferReady: " << status;
}
}
}
if (mTransientStateDelayMs.count() != 0) {
LOG(DEBUG) << __func__ << ": switched to state " << toString(mState)
<< " after a timeout";
}
}
}
StreamDescriptor::Command command{};
if (!mContext->getCommandMQ()->readBlocking(&command, 1)) {
LOG(ERROR) << __func__ << ": reading of command from MQ failed";
mState = StreamDescriptor::State::ERROR;
return Status::ABORT;
}
using Tag = StreamDescriptor::Command::Tag;
using LogSeverity = ::android::base::LogSeverity;
const LogSeverity severity =
command.getTag() == Tag::burst || command.getTag() == Tag::getStatus
? LogSeverity::VERBOSE
: LogSeverity::DEBUG;
LOG(severity) << __func__ << ": received command " << command.toString() << " in "
<< kThreadName;
StreamDescriptor::Reply reply{};
reply.status = STATUS_BAD_VALUE;
using Tag = StreamDescriptor::Command::Tag;
switch (command.getTag()) {
case Tag::halReservedExit: {
const int32_t cookie = command.get<Tag::halReservedExit>();
if (cookie == (mContext->getInternalCommandCookie() ^ getTid())) {
mDriver->shutdown();
setClosed();
} else {
LOG(WARNING) << __func__ << ": EXIT command has a bad cookie: " << cookie;
}
if (cookie != 0) { // This is an internal command, no need to reply.
return Status::EXIT;
} else {
break;
}
}
case Tag::getStatus:
populateReply(&reply, mIsConnected);
break;
case Tag::start: {
std::optional<StreamDescriptor::State> nextState;
switch (mState) {
case StreamDescriptor::State::STANDBY:
nextState = StreamDescriptor::State::IDLE;
break;
case StreamDescriptor::State::PAUSED:
nextState = StreamDescriptor::State::ACTIVE;
break;
case StreamDescriptor::State::DRAIN_PAUSED:
nextState = StreamDescriptor::State::DRAINING;
break;
case StreamDescriptor::State::TRANSFER_PAUSED:
nextState = StreamDescriptor::State::TRANSFERRING;
break;
default:
populateReplyWrongState(&reply, command);
}
if (nextState.has_value()) {
if (::android::status_t status = mDriver->start(); status == ::android::OK) {
populateReply(&reply, mIsConnected);
if (*nextState == StreamDescriptor::State::IDLE ||
*nextState == StreamDescriptor::State::ACTIVE) {
mState = *nextState;
} else {
switchToTransientState(*nextState);
}
} else {
LOG(ERROR) << __func__ << ": start failed: " << status;
mState = StreamDescriptor::State::ERROR;
}
}
} break;
case Tag::burst:
if (const int32_t fmqByteCount = command.get<Tag::burst>(); fmqByteCount >= 0) {
LOG(VERBOSE) << __func__ << ": '" << toString(command.getTag()) << "' command for "
<< fmqByteCount << " bytes";
if (mState != StreamDescriptor::State::ERROR &&
mState != StreamDescriptor::State::TRANSFERRING &&
mState != StreamDescriptor::State::TRANSFER_PAUSED) {
if (!write(fmqByteCount, &reply)) {
mState = StreamDescriptor::State::ERROR;
}
std::shared_ptr<IStreamCallback> asyncCallback = mContext->getAsyncCallback();
if (mState == StreamDescriptor::State::STANDBY ||
mState == StreamDescriptor::State::DRAIN_PAUSED ||
mState == StreamDescriptor::State::PAUSED) {
if (asyncCallback == nullptr ||
mState != StreamDescriptor::State::DRAIN_PAUSED) {
mState = StreamDescriptor::State::PAUSED;
} else {
mState = StreamDescriptor::State::TRANSFER_PAUSED;
}
} else if (mState == StreamDescriptor::State::IDLE ||
mState == StreamDescriptor::State::DRAINING ||
mState == StreamDescriptor::State::ACTIVE) {
if (asyncCallback == nullptr || reply.fmqByteCount == fmqByteCount) {
mState = StreamDescriptor::State::ACTIVE;
} else {
switchToTransientState(StreamDescriptor::State::TRANSFERRING);
}
}
} else {
populateReplyWrongState(&reply, command);
}
} else {
LOG(WARNING) << __func__ << ": invalid burst byte count: " << fmqByteCount;
}
break;
case Tag::drain:
if (const auto mode = command.get<Tag::drain>();
mode == StreamDescriptor::DrainMode::DRAIN_ALL ||
mode == StreamDescriptor::DrainMode::DRAIN_EARLY_NOTIFY) {
if (mState == StreamDescriptor::State::ACTIVE ||
mState == StreamDescriptor::State::TRANSFERRING) {
if (::android::status_t status = mDriver->drain(mode);
status == ::android::OK) {
populateReply(&reply, mIsConnected);
if (mState == StreamDescriptor::State::ACTIVE &&
mContext->getForceSynchronousDrain()) {
mState = StreamDescriptor::State::IDLE;
} else {
switchToTransientState(StreamDescriptor::State::DRAINING);
}
} else {
LOG(ERROR) << __func__ << ": drain failed: " << status;
mState = StreamDescriptor::State::ERROR;
}
} else if (mState == StreamDescriptor::State::TRANSFER_PAUSED) {
mState = StreamDescriptor::State::DRAIN_PAUSED;
populateReply(&reply, mIsConnected);
} else {
populateReplyWrongState(&reply, command);
}
} else {
LOG(WARNING) << __func__ << ": invalid drain mode: " << toString(mode);
}
break;
case Tag::standby:
if (mState == StreamDescriptor::State::IDLE) {
populateReply(&reply, mIsConnected);
if (::android::status_t status = mDriver->standby(); status == ::android::OK) {
mState = StreamDescriptor::State::STANDBY;
} else {
LOG(ERROR) << __func__ << ": standby failed: " << status;
mState = StreamDescriptor::State::ERROR;
}
} else {
populateReplyWrongState(&reply, command);
}
break;
case Tag::pause: {
std::optional<StreamDescriptor::State> nextState;
switch (mState) {
case StreamDescriptor::State::ACTIVE:
nextState = StreamDescriptor::State::PAUSED;
break;
case StreamDescriptor::State::DRAINING:
nextState = StreamDescriptor::State::DRAIN_PAUSED;
break;
case StreamDescriptor::State::TRANSFERRING:
nextState = StreamDescriptor::State::TRANSFER_PAUSED;
break;
default:
populateReplyWrongState(&reply, command);
}
if (nextState.has_value()) {
if (::android::status_t status = mDriver->pause(); status == ::android::OK) {
populateReply(&reply, mIsConnected);
mState = nextState.value();
} else {
LOG(ERROR) << __func__ << ": pause failed: " << status;
mState = StreamDescriptor::State::ERROR;
}
}
} break;
case Tag::flush:
if (mState == StreamDescriptor::State::PAUSED ||
mState == StreamDescriptor::State::DRAIN_PAUSED ||
mState == StreamDescriptor::State::TRANSFER_PAUSED) {
if (::android::status_t status = mDriver->flush(); status == ::android::OK) {
populateReply(&reply, mIsConnected);
mState = StreamDescriptor::State::IDLE;
} else {
LOG(ERROR) << __func__ << ": flush failed: " << status;
mState = StreamDescriptor::State::ERROR;
}
} else {
populateReplyWrongState(&reply, command);
}
break;
}
reply.state = mState;
LOG(severity) << __func__ << ": writing reply " << reply.toString();
if (!mContext->getReplyMQ()->writeBlocking(&reply, 1)) {
LOG(ERROR) << __func__ << ": writing of reply " << reply.toString() << " to MQ failed";
mState = StreamDescriptor::State::ERROR;
return Status::ABORT;
}
return Status::CONTINUE;
}
bool StreamOutWorkerLogic::write(size_t clientSize, StreamDescriptor::Reply* reply) {
ATRACE_CALL();
StreamContext::DataMQ* const dataMQ = mContext->getDataMQ();
StreamContext::DataMQ::Error fmqError = StreamContext::DataMQ::Error::NONE;
std::string fmqErrorMsg;
const size_t readByteCount = dataMQ->availableToRead(&fmqError, &fmqErrorMsg);
CHECK(fmqError == StreamContext::DataMQ::Error::NONE) << fmqErrorMsg;
const size_t frameSize = mContext->getFrameSize();
bool fatal = false;
int32_t latency = mContext->getNominalLatencyMs();
if (readByteCount > 0 ? dataMQ->read(&mDataBuffer[0], readByteCount) : true) {
const bool isConnected = mIsConnected;
LOG(VERBOSE) << __func__ << ": reading of " << readByteCount << " bytes from data MQ"
<< " succeeded; connected? " << isConnected;
// Amount of data that the HAL module is going to actually use.
size_t byteCount = std::min({clientSize, readByteCount, mDataBufferSize});
if (byteCount >= frameSize && mContext->getForceTransientBurst()) {
// In order to prevent the state machine from going to ACTIVE state,
// simulate partial write.
byteCount -= frameSize;
}
size_t actualFrameCount = 0;
if (isConnected) {
if (::android::status_t status = mDriver->transfer(
mDataBuffer.get(), byteCount / frameSize, &actualFrameCount, &latency);
status != ::android::OK) {
fatal = true;
LOG(ERROR) << __func__ << ": write failed: " << status;
}
auto streamDataProcessor = mContext->getStreamDataProcessor().lock();
if (streamDataProcessor != nullptr) {
streamDataProcessor->process(mDataBuffer.get(), actualFrameCount * frameSize);
}
} else {
if (mContext->getAsyncCallback() == nullptr) {
usleep(3000); // Simulate blocking transfer delay.
}
actualFrameCount = byteCount / frameSize;
}
const size_t actualByteCount = actualFrameCount * frameSize;
// Frames are consumed and counted regardless of the connection status.
reply->fmqByteCount += actualByteCount;
mContext->advanceFrameCount(actualFrameCount);
populateReply(reply, isConnected);
} else {
LOG(WARNING) << __func__ << ": reading of " << readByteCount
<< " bytes of data from MQ failed";
reply->status = STATUS_NOT_ENOUGH_DATA;
}
reply->latencyMs = latency;
return !fatal;
}
StreamCommonImpl::~StreamCommonImpl() {
if (!isClosed()) {
LOG(ERROR) << __func__ << ": stream was not closed prior to destruction, resource leak";
stopWorker();
// The worker and the context should clean up by themselves via destructors.
}
}
ndk::ScopedAStatus StreamCommonImpl::initInstance(
const std::shared_ptr<StreamCommonInterface>& delegate) {
mCommon = ndk::SharedRefBase::make<StreamCommonDelegator>(delegate);
if (!mWorker->start()) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (auto flags = getContext().getFlags();
(flags.getTag() == AudioIoFlags::Tag::input &&
isBitPositionFlagSet(flags.template get<AudioIoFlags::Tag::input>(),
AudioInputFlags::FAST)) ||
(flags.getTag() == AudioIoFlags::Tag::output &&
(isBitPositionFlagSet(flags.template get<AudioIoFlags::Tag::output>(),
AudioOutputFlags::FAST) ||
isBitPositionFlagSet(flags.template get<AudioIoFlags::Tag::output>(),
AudioOutputFlags::SPATIALIZER)))) {
// FAST workers should be run with a SCHED_FIFO scheduler, however the host process
// might be lacking the capability to request it, thus a failure to set is not an error.
pid_t workerTid = mWorker->getTid();
if (workerTid > 0) {
constexpr int32_t kRTPriorityMin = 1; // SchedulingPolicyService.PRIORITY_MIN (Java).
constexpr int32_t kRTPriorityMax = 3; // SchedulingPolicyService.PRIORITY_MAX (Java).
int priorityBoost = kRTPriorityMax;
if (flags.getTag() == AudioIoFlags::Tag::output &&
isBitPositionFlagSet(flags.template get<AudioIoFlags::Tag::output>(),
AudioOutputFlags::SPATIALIZER)) {
const int32_t sptPrio =
property_get_int32("audio.spatializer.priority", kRTPriorityMin);
if (sptPrio >= kRTPriorityMin && sptPrio <= kRTPriorityMax) {
priorityBoost = sptPrio;
} else {
LOG(WARNING) << __func__ << ": invalid spatializer priority: " << sptPrio;
return ndk::ScopedAStatus::ok();
}
}
struct sched_param param = {
.sched_priority = priorityBoost,
};
if (sched_setscheduler(workerTid, SCHED_FIFO | SCHED_RESET_ON_FORK, &param) != 0) {
PLOG(WARNING) << __func__ << ": failed to set FIFO scheduler and priority";
}
} else {
LOG(WARNING) << __func__ << ": invalid worker tid: " << workerTid;
}
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus StreamCommonImpl::getStreamCommonCommon(
std::shared_ptr<IStreamCommon>* _aidl_return) {
if (!mCommon) {
LOG(FATAL) << __func__ << ": the common interface was not created";
}
*_aidl_return = mCommon.getInstance();
LOG(DEBUG) << __func__ << ": returning " << _aidl_return->get()->asBinder().get();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus StreamCommonImpl::updateHwAvSyncId(int32_t in_hwAvSyncId) {
LOG(DEBUG) << __func__ << ": id " << in_hwAvSyncId;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamCommonImpl::getVendorParameters(
const std::vector<std::string>& in_ids, std::vector<VendorParameter>* _aidl_return) {
LOG(DEBUG) << __func__ << ": id count: " << in_ids.size();
(void)_aidl_return;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamCommonImpl::setVendorParameters(
const std::vector<VendorParameter>& in_parameters, bool in_async) {
LOG(DEBUG) << __func__ << ": parameters count " << in_parameters.size()
<< ", async: " << in_async;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamCommonImpl::addEffect(
const std::shared_ptr<::aidl::android::hardware::audio::effect::IEffect>& in_effect) {
if (in_effect == nullptr) {
LOG(DEBUG) << __func__ << ": null effect";
} else {
LOG(DEBUG) << __func__ << ": effect Binder" << in_effect->asBinder().get();
}
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamCommonImpl::removeEffect(
const std::shared_ptr<::aidl::android::hardware::audio::effect::IEffect>& in_effect) {
if (in_effect == nullptr) {
LOG(DEBUG) << __func__ << ": null effect";
} else {
LOG(DEBUG) << __func__ << ": effect Binder" << in_effect->asBinder().get();
}
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamCommonImpl::close() {
LOG(DEBUG) << __func__;
if (!isClosed()) {
stopWorker();
LOG(DEBUG) << __func__ << ": joining the worker thread...";
mWorker->stop();
LOG(DEBUG) << __func__ << ": worker thread joined";
onClose(mWorker->setClosed());
return ndk::ScopedAStatus::ok();
} else {
LOG(ERROR) << __func__ << ": stream was already closed";
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
}
ndk::ScopedAStatus StreamCommonImpl::prepareToClose() {
LOG(DEBUG) << __func__;
if (!isClosed()) {
return ndk::ScopedAStatus::ok();
}
LOG(ERROR) << __func__ << ": stream was closed";
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
void StreamCommonImpl::stopWorker() {
if (auto commandMQ = mContext.getCommandMQ(); commandMQ != nullptr) {
LOG(DEBUG) << __func__ << ": asking the worker to exit...";
auto cmd = StreamDescriptor::Command::make<StreamDescriptor::Command::Tag::halReservedExit>(
mContext.getInternalCommandCookie() ^ mWorker->getTid());
// Note: never call 'pause' and 'resume' methods of StreamWorker
// in the HAL implementation. These methods are to be used by
// the client side only. Preventing the worker loop from running
// on the HAL side can cause a deadlock.
if (!commandMQ->writeBlocking(&cmd, 1)) {
LOG(ERROR) << __func__ << ": failed to write exit command to the MQ";
}
LOG(DEBUG) << __func__ << ": done";
}
}
ndk::ScopedAStatus StreamCommonImpl::updateMetadataCommon(const Metadata& metadata) {
LOG(DEBUG) << __func__;
if (!isClosed()) {
if (metadata.index() != mMetadata.index()) {
LOG(FATAL) << __func__ << ": changing metadata variant is not allowed";
}
mMetadata = metadata;
return ndk::ScopedAStatus::ok();
}
LOG(ERROR) << __func__ << ": stream was closed";
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
ndk::ScopedAStatus StreamCommonImpl::setConnectedDevices(
const std::vector<::aidl::android::media::audio::common::AudioDevice>& devices) {
mWorker->setIsConnected(!devices.empty());
mConnectedDevices = devices;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus StreamCommonImpl::bluetoothParametersUpdated() {
LOG(DEBUG) << __func__;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
namespace {
static std::map<AudioDevice, std::string> transformMicrophones(
const std::vector<MicrophoneInfo>& microphones) {
std::map<AudioDevice, std::string> result;
std::transform(microphones.begin(), microphones.end(), std::inserter(result, result.begin()),
[](const auto& mic) { return std::make_pair(mic.device, mic.id); });
return result;
}
} // namespace
StreamIn::StreamIn(StreamContext&& context, const std::vector<MicrophoneInfo>& microphones)
: mContextInstance(std::move(context)), mMicrophones(transformMicrophones(microphones)) {
LOG(DEBUG) << __func__;
}
void StreamIn::defaultOnClose() {
mContextInstance.reset();
}
ndk::ScopedAStatus StreamIn::getActiveMicrophones(
std::vector<MicrophoneDynamicInfo>* _aidl_return) {
std::vector<MicrophoneDynamicInfo> result;
std::vector<MicrophoneDynamicInfo::ChannelMapping> channelMapping{
getChannelCount(getContext().getChannelLayout()),
MicrophoneDynamicInfo::ChannelMapping::DIRECT};
for (auto it = getConnectedDevices().begin(); it != getConnectedDevices().end(); ++it) {
if (auto micIt = mMicrophones.find(*it); micIt != mMicrophones.end()) {
MicrophoneDynamicInfo dynMic;
dynMic.id = micIt->second;
dynMic.channelMapping = channelMapping;
result.push_back(std::move(dynMic));
}
}
*_aidl_return = std::move(result);
LOG(DEBUG) << __func__ << ": returning " << ::android::internal::ToString(*_aidl_return);
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus StreamIn::getMicrophoneDirection(MicrophoneDirection* _aidl_return) {
LOG(DEBUG) << __func__;
(void)_aidl_return;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamIn::setMicrophoneDirection(MicrophoneDirection in_direction) {
LOG(DEBUG) << __func__ << ": direction " << toString(in_direction);
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamIn::getMicrophoneFieldDimension(float* _aidl_return) {
LOG(DEBUG) << __func__;
(void)_aidl_return;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamIn::setMicrophoneFieldDimension(float in_zoom) {
LOG(DEBUG) << __func__ << ": zoom " << in_zoom;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamIn::getHwGain(std::vector<float>* _aidl_return) {
LOG(DEBUG) << __func__;
(void)_aidl_return;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamIn::setHwGain(const std::vector<float>& in_channelGains) {
LOG(DEBUG) << __func__ << ": gains " << ::android::internal::ToString(in_channelGains);
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
StreamInHwGainHelper::StreamInHwGainHelper(const StreamContext* context)
: mChannelCount(getChannelCount(context->getChannelLayout())), mHwGains(mChannelCount, 0.0f) {}
ndk::ScopedAStatus StreamInHwGainHelper::getHwGainImpl(std::vector<float>* _aidl_return) {
*_aidl_return = mHwGains;
LOG(DEBUG) << __func__ << ": returning " << ::android::internal::ToString(*_aidl_return);
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus StreamInHwGainHelper::setHwGainImpl(const std::vector<float>& in_channelGains) {
LOG(DEBUG) << __func__ << ": gains " << ::android::internal::ToString(in_channelGains);
if (in_channelGains.size() != mChannelCount) {
LOG(ERROR) << __func__
<< ": channel count does not match stream channel count: " << mChannelCount;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
for (float gain : in_channelGains) {
if (gain < StreamIn::HW_GAIN_MIN || gain > StreamIn::HW_GAIN_MAX) {
LOG(ERROR) << __func__ << ": gain value out of range: " << gain;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
}
mHwGains = in_channelGains;
return ndk::ScopedAStatus::ok();
}
StreamOut::StreamOut(StreamContext&& context, const std::optional<AudioOffloadInfo>& offloadInfo)
: mContextInstance(std::move(context)), mOffloadInfo(offloadInfo) {
LOG(DEBUG) << __func__;
}
void StreamOut::defaultOnClose() {
mContextInstance.reset();
}
ndk::ScopedAStatus StreamOut::updateOffloadMetadata(
const AudioOffloadMetadata& in_offloadMetadata) {
LOG(DEBUG) << __func__;
if (isClosed()) {
LOG(ERROR) << __func__ << ": stream was closed";
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (!mOffloadInfo.has_value()) {
LOG(ERROR) << __func__ << ": not a compressed offload stream";
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
if (in_offloadMetadata.sampleRate < 0) {
LOG(ERROR) << __func__ << ": invalid sample rate value: " << in_offloadMetadata.sampleRate;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (in_offloadMetadata.averageBitRatePerSecond < 0) {
LOG(ERROR) << __func__
<< ": invalid average BPS value: " << in_offloadMetadata.averageBitRatePerSecond;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (in_offloadMetadata.delayFrames < 0) {
LOG(ERROR) << __func__
<< ": invalid delay frames value: " << in_offloadMetadata.delayFrames;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (in_offloadMetadata.paddingFrames < 0) {
LOG(ERROR) << __func__
<< ": invalid padding frames value: " << in_offloadMetadata.paddingFrames;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
mOffloadMetadata = in_offloadMetadata;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus StreamOut::getHwVolume(std::vector<float>* _aidl_return) {
LOG(DEBUG) << __func__;
(void)_aidl_return;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamOut::setHwVolume(const std::vector<float>& in_channelVolumes) {
LOG(DEBUG) << __func__ << ": gains " << ::android::internal::ToString(in_channelVolumes);
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamOut::getAudioDescriptionMixLevel(float* _aidl_return) {
LOG(DEBUG) << __func__;
(void)_aidl_return;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamOut::setAudioDescriptionMixLevel(float in_leveldB) {
LOG(DEBUG) << __func__ << ": description mix level " << in_leveldB;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamOut::getDualMonoMode(AudioDualMonoMode* _aidl_return) {
LOG(DEBUG) << __func__;
(void)_aidl_return;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamOut::setDualMonoMode(AudioDualMonoMode in_mode) {
LOG(DEBUG) << __func__ << ": dual mono mode " << toString(in_mode);
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamOut::getRecommendedLatencyModes(
std::vector<AudioLatencyMode>* _aidl_return) {
LOG(DEBUG) << __func__;
(void)_aidl_return;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamOut::setLatencyMode(AudioLatencyMode in_mode) {
LOG(DEBUG) << __func__ << ": latency mode " << toString(in_mode);
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamOut::getPlaybackRateParameters(AudioPlaybackRate* _aidl_return) {
LOG(DEBUG) << __func__;
(void)_aidl_return;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamOut::setPlaybackRateParameters(const AudioPlaybackRate& in_playbackRate) {
LOG(DEBUG) << __func__ << ": " << in_playbackRate.toString();
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
ndk::ScopedAStatus StreamOut::selectPresentation(int32_t in_presentationId, int32_t in_programId) {
LOG(DEBUG) << __func__ << ": presentationId " << in_presentationId << ", programId "
<< in_programId;
return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
}
StreamOutHwVolumeHelper::StreamOutHwVolumeHelper(const StreamContext* context)
: mChannelCount(getChannelCount(context->getChannelLayout())),
mHwVolumes(mChannelCount, 0.0f) {}
ndk::ScopedAStatus StreamOutHwVolumeHelper::getHwVolumeImpl(std::vector<float>* _aidl_return) {
*_aidl_return = mHwVolumes;
LOG(DEBUG) << __func__ << ": returning " << ::android::internal::ToString(*_aidl_return);
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus StreamOutHwVolumeHelper::setHwVolumeImpl(
const std::vector<float>& in_channelVolumes) {
LOG(DEBUG) << __func__ << ": volumes " << ::android::internal::ToString(in_channelVolumes);
if (in_channelVolumes.size() != mChannelCount) {
LOG(ERROR) << __func__
<< ": channel count does not match stream channel count: " << mChannelCount;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
for (float volume : in_channelVolumes) {
if (volume < StreamOut::HW_VOLUME_MIN || volume > StreamOut::HW_VOLUME_MAX) {
LOG(ERROR) << __func__ << ": volume value out of range: " << volume;
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
}
mHwVolumes = in_channelVolumes;
return ndk::ScopedAStatus::ok();
}
} // namespace aidl::android::hardware::audio::core