blob: 5ffbd4328c35562d0786b8eacea155561e971f64 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_hidl_hal_test"
#include "1.0/Callbacks.h"
#include "1.0/Utils.h"
#include "GeneratedTestHarness.h"
#include "VtsHalNeuralnetworks.h"
#include <optional>
#include <type_traits>
#include <utility>
namespace android::hardware::neuralnetworks::V1_0::vts::functional {
using implementation::PreparedModelCallback;
using PrepareModelMutation = std::function<void(Model*)>;
///////////////////////// UTILITY FUNCTIONS /////////////////////////
static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
const Model& model) {
SCOPED_TRACE(message + " [getSupportedOperations]");
Return<void> ret =
device->getSupportedOperations(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
});
EXPECT_TRUE(ret.isOk());
}
static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
const Model& model) {
SCOPED_TRACE(message + " [prepareModel]");
sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
ASSERT_TRUE(prepareLaunchStatus.isOk());
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
preparedModelCallback->wait();
ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
ASSERT_EQ(nullptr, preparedModel.get());
}
// Primary validation function. This function will take a valid model, apply a
// mutation to invalidate the model, then pass these to supportedOperations and
// prepareModel.
static void validate(const sp<IDevice>& device, const std::string& message,
const Model& originalModel, const PrepareModelMutation& mutate) {
Model model = originalModel;
mutate(&model);
validateGetSupportedOperations(device, message, model);
validatePrepareModel(device, message, model);
}
static uint32_t addOperand(Model* model) {
return hidl_vec_push_back(&model->operands,
{
.type = OperandType::INT32,
.dimensions = {},
.numberOfConsumers = 0,
.scale = 0.0f,
.zeroPoint = 0,
.lifetime = OperandLifeTime::MODEL_INPUT,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
});
}
static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
uint32_t index = addOperand(model);
model->operands[index].numberOfConsumers = 1;
model->operands[index].lifetime = lifetime;
return index;
}
// If we introduce a CONSTANT_COPY for an operand of size operandSize,
// how much will this increase the size of the model? This assumes
// that we can (re)use all of model.operandValues for the operand
// value.
static size_t constantCopyExtraSize(const Model& model, size_t operandSize) {
const size_t operandValuesSize = model.operandValues.size();
return (operandValuesSize < operandSize) ? (operandSize - operandValuesSize) : 0;
}
// Highly specialized utility routine for converting an operand to
// CONSTANT_COPY lifetime.
//
// Expects that:
// - operand has a known size
// - operand->lifetime has already been set to CONSTANT_COPY
// - operand->location has been zeroed out
//
// Does the following:
// - initializes operand->location to point to the beginning of model->operandValues
// - resizes model->operandValues (if necessary) to be large enough for the operand
// value, padding it with zeroes on the end
//
// Potential problem:
// By changing the operand to CONSTANT_COPY lifetime, this function is effectively initializing the
// operand with unspecified (but deterministic) data. This means that the model may be invalidated
// in two ways: not only is the lifetime of CONSTANT_COPY invalid, but the operand's value in the
// graph may also be invalid (e.g., if the operand is used as an activation code and has an invalid
// value). For now, this should be fine because it just means we're not testing what we think we're
// testing in certain cases; but we can handwave this and assume we're probabilistically likely to
// exercise the validation code over the span of the entire test set and operand space.
//
// Aborts if the specified operand type is an extension type or OEM type.
static void becomeConstantCopy(Model* model, Operand* operand) {
// sizeOfData will abort if the specified type is an extension type or OEM type.
const size_t sizeOfOperand = sizeOfData(*operand);
EXPECT_NE(sizeOfOperand, size_t(0));
operand->location.poolIndex = 0;
operand->location.offset = 0;
operand->location.length = sizeOfOperand;
if (model->operandValues.size() < sizeOfOperand) {
model->operandValues.resize(sizeOfOperand);
}
}
// The sizeForBinder() functions estimate the size of the
// representation of a value when sent to binder. It's probably a bit
// of an under-estimate, because we don't know the size of the
// metadata in the binder format (e.g., representation of the size of
// a vector); but at least it adds up "big" things like vector
// contents. However, it doesn't treat inter-field or end-of-struct
// padding in a methodical way -- there's no attempt to be consistent
// in whether or not padding in the native (C++) representation
// contributes to the estimated size for the binder representation;
// and there's no attempt to understand what padding (if any) is
// needed in the binder representation.
//
// This assumes that non-metadata uses a fixed length encoding (e.g.,
// a uint32_t is always encoded in sizeof(uint32_t) bytes, rather than
// using an encoding whose length is related to the magnitude of the
// encoded value).
template <typename Type>
static size_t sizeForBinder(const Type& val) {
static_assert(std::is_trivially_copyable_v<std::remove_reference_t<Type>>,
"expected a trivially copyable type");
return sizeof(val);
}
template <typename Type>
static size_t sizeForBinder(const hidl_vec<Type>& vec) {
return std::accumulate(vec.begin(), vec.end(), 0,
[](size_t acc, const Type& x) { return acc + sizeForBinder(x); });
}
template <>
size_t sizeForBinder(const Operand& operand) {
size_t size = 0;
size += sizeForBinder(operand.type);
size += sizeForBinder(operand.dimensions);
size += sizeForBinder(operand.numberOfConsumers);
size += sizeForBinder(operand.scale);
size += sizeForBinder(operand.zeroPoint);
size += sizeForBinder(operand.lifetime);
size += sizeForBinder(operand.location);
return size;
}
template <>
size_t sizeForBinder(const Operation& operation) {
size_t size = 0;
size += sizeForBinder(operation.type);
size += sizeForBinder(operation.inputs);
size += sizeForBinder(operation.outputs);
return size;
}
template <>
size_t sizeForBinder(const hidl_string& name) {
return name.size();
}
template <>
size_t sizeForBinder(const hidl_memory& memory) {
// This is just a guess.
size_t size = 0;
if (const native_handle_t* handle = memory.handle()) {
size += sizeof(*handle);
size += sizeof(handle->data[0] * (handle->numFds + handle->numInts));
}
size += sizeForBinder(memory.name());
return size;
}
template <>
size_t sizeForBinder(const Model& model) {
size_t size = 0;
size += sizeForBinder(model.operands);
size += sizeForBinder(model.operations);
size += sizeForBinder(model.inputIndexes);
size += sizeForBinder(model.outputIndexes);
size += sizeForBinder(model.operandValues);
size += sizeForBinder(model.pools);
return size;
}
// https://developer.android.com/reference/android/os/TransactionTooLargeException.html
//
// "The Binder transaction buffer has a limited fixed size,
// currently 1Mb, which is shared by all transactions in progress
// for the process."
//
// Will our representation fit under this limit? There are two complications:
// - Our representation size is just approximate (see sizeForBinder()).
// - This object may not be the only occupant of the Binder transaction buffer.
// So we'll be very conservative: We want the representation size to be no
// larger than half the transaction buffer size.
//
// If our representation grows large enough that it still fits within
// the transaction buffer but combined with other transactions may
// exceed the buffer size, then we may see intermittent HAL transport
// errors.
static bool exceedsBinderSizeLimit(size_t representationSize) {
// Instead of using this fixed buffer size, we might instead be able to use
// ProcessState::self()->getMmapSize(). However, this has a potential
// problem: The binder/mmap size of the current process does not necessarily
// indicate the binder/mmap size of the service (i.e., the other process).
// The only way it would be a good indication is if both the current process
// and the service use the default size.
static const size_t kHalfBufferSize = 1024 * 1024 / 2;
return representationSize > kHalfBufferSize;
}
///////////////////////// VALIDATE EXECUTION ORDER ////////////////////////////
static void mutateExecutionOrderTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const Operation& operationObj = model.operations[operation];
for (uint32_t input : operationObj.inputs) {
if (model.operands[input].lifetime == OperandLifeTime::TEMPORARY_VARIABLE ||
model.operands[input].lifetime == OperandLifeTime::MODEL_OUTPUT) {
// This operation reads an operand written by some
// other operation. Move this operation to the
// beginning of the sequence, ensuring that it reads
// the operand before that operand is written, thereby
// violating execution order rules.
const std::string message = "mutateExecutionOrderTest: operation " +
std::to_string(operation) + " is a reader";
validate(device, message, model, [operation](Model* model) {
auto& operations = model->operations;
std::rotate(operations.begin(), operations.begin() + operation,
operations.begin() + operation + 1);
});
break; // only need to do this once per operation
}
}
for (uint32_t output : operationObj.outputs) {
if (model.operands[output].numberOfConsumers > 0) {
// This operation writes an operand read by some other
// operation. Move this operation to the end of the
// sequence, ensuring that it writes the operand after
// that operand is read, thereby violating execution
// order rules.
const std::string message = "mutateExecutionOrderTest: operation " +
std::to_string(operation) + " is a writer";
validate(device, message, model, [operation](Model* model) {
auto& operations = model->operations;
std::rotate(operations.begin() + operation, operations.begin() + operation + 1,
operations.end());
});
break; // only need to do this once per operation
}
}
}
}
///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
static const int32_t invalidOperandTypes[] = {
static_cast<int32_t>(OperandType::FLOAT32) - 1, // lower bound fundamental
static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) + 1, // upper bound fundamental
static_cast<int32_t>(OperandType::OEM) - 1, // lower bound OEM
static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) + 1, // upper bound OEM
};
static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
for (int32_t invalidOperandType : invalidOperandTypes) {
const std::string message = "mutateOperandTypeTest: operand " +
std::to_string(operand) + " set to value " +
std::to_string(invalidOperandType);
validate(device, message, model, [operand, invalidOperandType](Model* model) {
model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
});
}
}
}
///////////////////////// VALIDATE OPERAND RANK /////////////////////////
static uint32_t getInvalidRank(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
return 1;
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
case OperandType::TENSOR_QUANT8_ASYMM:
return 0;
default:
return 0;
}
}
static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
" has rank of " + std::to_string(invalidRank);
validate(device, message, model, [operand, invalidRank](Model* model) {
model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
});
}
}
///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
static float getInvalidScale(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
return 1.0f;
case OperandType::TENSOR_INT32:
return -1.0f;
case OperandType::TENSOR_QUANT8_ASYMM:
return 0.0f;
default:
return 0.0f;
}
}
static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const float invalidScale = getInvalidScale(model.operands[operand].type);
const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
" has scale of " + std::to_string(invalidScale);
validate(device, message, model, [operand, invalidScale](Model* model) {
model->operands[operand].scale = invalidScale;
});
}
}
///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
return {1};
case OperandType::TENSOR_QUANT8_ASYMM:
return {-1, 256};
default:
return {};
}
}
static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const std::vector<int32_t> invalidZeroPoints =
getInvalidZeroPoints(model.operands[operand].type);
for (int32_t invalidZeroPoint : invalidZeroPoints) {
const std::string message = "mutateOperandZeroPointTest: operand " +
std::to_string(operand) + " has zero point of " +
std::to_string(invalidZeroPoint);
validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
model->operands[operand].zeroPoint = invalidZeroPoint;
});
}
}
}
///////////////////////// VALIDATE OPERAND LIFETIME /////////////////////////////////////////////
static std::vector<OperandLifeTime> getInvalidLifeTimes(const Model& model, size_t modelSize,
const Operand& operand) {
// TODO: Support OperandLifeTime::CONSTANT_REFERENCE as an invalid lifetime
// TODO: Support OperandLifeTime::NO_VALUE as an invalid lifetime
// Ways to get an invalid lifetime:
// - change whether a lifetime means an operand should have a writer
std::vector<OperandLifeTime> ret;
switch (operand.lifetime) {
case OperandLifeTime::MODEL_OUTPUT:
case OperandLifeTime::TEMPORARY_VARIABLE:
ret = {
OperandLifeTime::MODEL_INPUT,
OperandLifeTime::CONSTANT_COPY,
};
break;
case OperandLifeTime::CONSTANT_COPY:
case OperandLifeTime::CONSTANT_REFERENCE:
case OperandLifeTime::MODEL_INPUT:
ret = {
OperandLifeTime::TEMPORARY_VARIABLE,
OperandLifeTime::MODEL_OUTPUT,
};
break;
case OperandLifeTime::NO_VALUE:
// Not enough information to know whether
// TEMPORARY_VARIABLE or CONSTANT_COPY would be invalid --
// is this operand written (then CONSTANT_COPY would be
// invalid) or not (then TEMPORARY_VARIABLE would be
// invalid)?
break;
default:
ADD_FAILURE();
break;
}
const size_t operandSize = sizeOfData(operand); // will be zero if shape is unknown
if (!operandSize ||
exceedsBinderSizeLimit(modelSize + constantCopyExtraSize(model, operandSize))) {
// Unknown size or too-large size
ret.erase(std::remove(ret.begin(), ret.end(), OperandLifeTime::CONSTANT_COPY), ret.end());
}
return ret;
}
static void mutateOperandLifeTimeTest(const sp<IDevice>& device, const V1_0::Model& model) {
const size_t modelSize = sizeForBinder(model);
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const std::vector<OperandLifeTime> invalidLifeTimes =
getInvalidLifeTimes(model, modelSize, model.operands[operand]);
for (OperandLifeTime invalidLifeTime : invalidLifeTimes) {
const std::string message = "mutateOperandLifetimeTest: operand " +
std::to_string(operand) + " has lifetime " +
toString(invalidLifeTime) + " instead of lifetime " +
toString(model.operands[operand].lifetime);
validate(device, message, model, [operand, invalidLifeTime](Model* model) {
static const DataLocation kZeroDataLocation = {};
Operand& operandObj = model->operands[operand];
switch (operandObj.lifetime) {
case OperandLifeTime::MODEL_INPUT: {
hidl_vec_remove(&model->inputIndexes, uint32_t(operand));
break;
}
case OperandLifeTime::MODEL_OUTPUT: {
hidl_vec_remove(&model->outputIndexes, uint32_t(operand));
break;
}
default:
break;
}
operandObj.lifetime = invalidLifeTime;
operandObj.location = kZeroDataLocation;
switch (invalidLifeTime) {
case OperandLifeTime::CONSTANT_COPY: {
becomeConstantCopy(model, &operandObj);
break;
}
case OperandLifeTime::MODEL_INPUT:
hidl_vec_push_back(&model->inputIndexes, uint32_t(operand));
break;
case OperandLifeTime::MODEL_OUTPUT:
hidl_vec_push_back(&model->outputIndexes, uint32_t(operand));
break;
default:
break;
}
});
}
}
}
///////////////////////// VALIDATE OPERAND INPUT-or-OUTPUT //////////////////////////////////////
static std::optional<OperandLifeTime> getInputOutputLifeTime(const Model& model, size_t modelSize,
const Operand& operand) {
// Ways to get an invalid lifetime (with respect to model inputIndexes and outputIndexes):
// - change whether a lifetime means an operand is a model input, a model output, or neither
// - preserve whether or not a lifetime means an operand should have a writer
switch (operand.lifetime) {
case OperandLifeTime::CONSTANT_COPY:
case OperandLifeTime::CONSTANT_REFERENCE:
return OperandLifeTime::MODEL_INPUT;
case OperandLifeTime::MODEL_INPUT: {
const size_t operandSize = sizeOfData(operand); // will be zero if shape is unknown
if (!operandSize ||
exceedsBinderSizeLimit(modelSize + constantCopyExtraSize(model, operandSize))) {
// Unknown size or too-large size
break;
}
return OperandLifeTime::CONSTANT_COPY;
}
case OperandLifeTime::MODEL_OUTPUT:
return OperandLifeTime::TEMPORARY_VARIABLE;
case OperandLifeTime::TEMPORARY_VARIABLE:
return OperandLifeTime::MODEL_OUTPUT;
case OperandLifeTime::NO_VALUE:
// Not enough information to know whether
// TEMPORARY_VARIABLE or CONSTANT_COPY would be an
// appropriate choice -- is this operand written (then
// TEMPORARY_VARIABLE would be appropriate) or not (then
// CONSTANT_COPY would be appropriate)?
break;
default:
ADD_FAILURE();
break;
}
return std::nullopt;
}
static void mutateOperandInputOutputTest(const sp<IDevice>& device, const V1_0::Model& model) {
const size_t modelSize = sizeForBinder(model);
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const std::optional<OperandLifeTime> changedLifeTime =
getInputOutputLifeTime(model, modelSize, model.operands[operand]);
if (changedLifeTime) {
const std::string message = "mutateOperandInputOutputTest: operand " +
std::to_string(operand) + " has lifetime " +
toString(*changedLifeTime) + " instead of lifetime " +
toString(model.operands[operand].lifetime);
validate(device, message, model, [operand, changedLifeTime](Model* model) {
static const DataLocation kZeroDataLocation = {};
Operand& operandObj = model->operands[operand];
operandObj.lifetime = *changedLifeTime;
operandObj.location = kZeroDataLocation;
if (*changedLifeTime == OperandLifeTime::CONSTANT_COPY) {
becomeConstantCopy(model, &operandObj);
}
});
}
}
}
///////////////////////// VALIDATE OPERAND NUMBER OF CONSUMERS //////////////////////////////////
static std::vector<uint32_t> getInvalidNumberOfConsumers(uint32_t numberOfConsumers) {
if (numberOfConsumers == 0) {
return {1};
} else {
return {numberOfConsumers - 1, numberOfConsumers + 1};
}
}
static void mutateOperandNumberOfConsumersTest(const sp<IDevice>& device,
const V1_0::Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const std::vector<uint32_t> invalidNumberOfConsumersVec =
getInvalidNumberOfConsumers(model.operands[operand].numberOfConsumers);
for (uint32_t invalidNumberOfConsumers : invalidNumberOfConsumersVec) {
const std::string message =
"mutateOperandNumberOfConsumersTest: operand " + std::to_string(operand) +
" numberOfConsumers = " + std::to_string(invalidNumberOfConsumers);
validate(device, message, model, [operand, invalidNumberOfConsumers](Model* model) {
model->operands[operand].numberOfConsumers = invalidNumberOfConsumers;
});
}
}
}
///////////////////////// VALIDATE OPERAND NUMBER OF WRITERS ////////////////////////////////////
static void mutateOperandAddWriterTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (size_t badOutputNum = 0; badOutputNum < model.operations[operation].outputs.size();
++badOutputNum) {
const uint32_t outputOperandIndex = model.operations[operation].outputs[badOutputNum];
const std::string message = "mutateOperandAddWriterTest: operation " +
std::to_string(operation) + " writes to " +
std::to_string(outputOperandIndex);
// We'll insert a copy of the operation, all of whose
// OTHER output operands are newly-created -- i.e.,
// there'll only be a duplicate write of ONE of that
// operation's output operands.
validate(device, message, model, [operation, badOutputNum](Model* model) {
Operation newOperation = model->operations[operation];
for (uint32_t input : newOperation.inputs) {
++model->operands[input].numberOfConsumers;
}
for (size_t outputNum = 0; outputNum < newOperation.outputs.size(); ++outputNum) {
if (outputNum == badOutputNum) continue;
Operand operandValue = model->operands[newOperation.outputs[outputNum]];
operandValue.numberOfConsumers = 0;
if (operandValue.lifetime == OperandLifeTime::MODEL_OUTPUT) {
operandValue.lifetime = OperandLifeTime::TEMPORARY_VARIABLE;
} else {
ASSERT_EQ(operandValue.lifetime, OperandLifeTime::TEMPORARY_VARIABLE);
}
newOperation.outputs[outputNum] =
hidl_vec_push_back(&model->operands, operandValue);
}
// Where do we insert the extra writer (a new
// operation)? It has to be later than all the
// writers of its inputs. The easiest thing to do
// is to insert it at the end of the operation
// sequence.
hidl_vec_push_back(&model->operations, newOperation);
});
}
}
}
///////////////////////// VALIDATE EXTRA ??? /////////////////////////
// TODO: Operand::location
///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
static void mutateOperand(Operand* operand, OperandType type) {
Operand newOperand = *operand;
newOperand.type = type;
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
newOperand.dimensions = hidl_vec<uint32_t>();
newOperand.scale = 0.0f;
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_FLOAT32:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.scale = 0.0f;
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_INT32:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.zeroPoint = 0;
break;
case OperandType::TENSOR_QUANT8_ASYMM:
newOperand.dimensions =
operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
break;
case OperandType::OEM:
case OperandType::TENSOR_OEM_BYTE:
default:
break;
}
*operand = newOperand;
}
static bool mutateOperationOperandTypeSkip(size_t operand, const Model& model) {
// LSH_PROJECTION's second argument is allowed to have any type. This is the
// only operation that currently has a type that can be anything independent
// from any other type. Changing the operand type to any other type will
// result in a valid model for LSH_PROJECTION. If this is the case, skip the
// test.
for (const Operation& operation : model.operations) {
if (operation.type == OperationType::LSH_PROJECTION && operand == operation.inputs[1]) {
return true;
}
}
return false;
}
static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
if (mutateOperationOperandTypeSkip(operand, model)) {
continue;
}
for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
// Do not test OEM types
if (invalidOperandType == model.operands[operand].type ||
invalidOperandType == OperandType::OEM ||
invalidOperandType == OperandType::TENSOR_OEM_BYTE) {
continue;
}
const std::string message = "mutateOperationOperandTypeTest: operand " +
std::to_string(operand) + " set to type " +
toString(invalidOperandType);
validate(device, message, model, [operand, invalidOperandType](Model* model) {
mutateOperand(&model->operands[operand], invalidOperandType);
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
static const int32_t invalidOperationTypes[] = {
static_cast<int32_t>(OperationType::ADD) - 1, // lower bound fundamental
static_cast<int32_t>(OperationType::TANH) + 1, // upper bound fundamental
static_cast<int32_t>(OperationType::OEM_OPERATION) - 1, // lower bound OEM
static_cast<int32_t>(OperationType::OEM_OPERATION) + 1, // upper bound OEM
};
static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (int32_t invalidOperationType : invalidOperationTypes) {
const std::string message = "mutateOperationTypeTest: operation " +
std::to_string(operation) + " set to value " +
std::to_string(invalidOperationType);
validate(device, message, model, [operation, invalidOperationType](Model* model) {
model->operations[operation].type =
static_cast<OperationType>(invalidOperationType);
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const uint32_t invalidOperand = model.operands.size();
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
const std::string message = "mutateOperationInputOperandIndexTest: operation " +
std::to_string(operation) + " input " +
std::to_string(input);
validate(device, message, model, [operation, input, invalidOperand](Model* model) {
model->operations[operation].inputs[input] = invalidOperand;
});
}
}
}
///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const uint32_t invalidOperand = model.operands.size();
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
std::to_string(operation) + " output " +
std::to_string(output);
validate(device, message, model, [operation, output, invalidOperand](Model* model) {
model->operations[operation].outputs[output] = invalidOperand;
});
}
}
}
///////////////////////// VALIDATE MODEL OPERANDS WRITTEN ///////////////////////////////////////
static void mutateOperationRemoveWriteTest(const sp<IDevice>& device, const V1_0::Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (size_t outputNum = 0; outputNum < model.operations[operation].outputs.size();
++outputNum) {
const uint32_t outputOperandIndex = model.operations[operation].outputs[outputNum];
if (model.operands[outputOperandIndex].numberOfConsumers > 0) {
const std::string message = "mutateOperationRemoveWriteTest: operation " +
std::to_string(operation) + " writes to " +
std::to_string(outputOperandIndex);
validate(device, message, model, [operation, outputNum](Model* model) {
uint32_t& outputOperandIndex = model->operations[operation].outputs[outputNum];
Operand operandValue = model->operands[outputOperandIndex];
operandValue.numberOfConsumers = 0;
if (operandValue.lifetime == OperandLifeTime::MODEL_OUTPUT) {
operandValue.lifetime = OperandLifeTime::TEMPORARY_VARIABLE;
} else {
ASSERT_EQ(operandValue.lifetime, OperandLifeTime::TEMPORARY_VARIABLE);
}
outputOperandIndex = hidl_vec_push_back(&model->operands, operandValue);
});
}
}
}
}
///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
if (vec) {
// remove elements matching "value"
auto last = std::remove(vec->begin(), vec->end(), value);
vec->resize(std::distance(vec->begin(), last));
// decrement elements exceeding "value"
std::transform(vec->begin(), vec->end(), vec->begin(),
[value](uint32_t v) { return v > value ? v-- : v; });
}
}
static void removeOperand(Model* model, uint32_t index) {
hidl_vec_removeAt(&model->operands, index);
for (Operation& operation : model->operations) {
removeValueAndDecrementGreaterValues(&operation.inputs, index);
removeValueAndDecrementGreaterValues(&operation.outputs, index);
}
removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
}
static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
for (size_t operand = 0; operand < model.operands.size(); ++operand) {
const std::string message = "removeOperandTest: operand " + std::to_string(operand);
validate(device, message, model,
[operand](Model* model) { removeOperand(model, operand); });
}
}
///////////////////////// REMOVE OPERATION /////////////////////////
static void removeOperation(Model* model, uint32_t index) {
for (uint32_t operand : model->operations[index].inputs) {
model->operands[operand].numberOfConsumers--;
}
hidl_vec_removeAt(&model->operations, index);
}
static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message = "removeOperationTest: operation " + std::to_string(operation);
validate(device, message, model,
[operation](Model* model) { removeOperation(model, operation); });
}
}
///////////////////////// REMOVE OPERATION INPUT /////////////////////////
static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
const Operation& op = model.operations[operation];
// CONCATENATION has at least 2 inputs, with the last element being
// INT32. Skip this test if removing one of CONCATENATION's
// inputs still produces a valid model.
if (op.type == OperationType::CONCATENATION && op.inputs.size() > 2 &&
input != op.inputs.size() - 1) {
continue;
}
const std::string message = "removeOperationInputTest: operation " +
std::to_string(operation) + ", input " +
std::to_string(input);
validate(device, message, model, [operation, input](Model* model) {
uint32_t operand = model->operations[operation].inputs[input];
model->operands[operand].numberOfConsumers--;
hidl_vec_removeAt(&model->operations[operation].inputs, input);
});
}
}
}
///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
const std::string message = "removeOperationOutputTest: operation " +
std::to_string(operation) + ", output " +
std::to_string(output);
validate(device, message, model, [operation, output](Model* model) {
hidl_vec_removeAt(&model->operations[operation].outputs, output);
});
}
}
}
///////////////////////// MODEL VALIDATION /////////////////////////
// TODO: remove model input
// TODO: remove model output
// TODO: add unused operation
///////////////////////// ADD OPERATION INPUT /////////////////////////
static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
validate(device, message, model, [operation](Model* model) {
uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
hidl_vec_push_back(&model->operations[operation].inputs, index);
hidl_vec_push_back(&model->inputIndexes, index);
});
}
}
///////////////////////// ADD OPERATION OUTPUT /////////////////////////
static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
for (size_t operation = 0; operation < model.operations.size(); ++operation) {
const std::string message =
"addOperationOutputTest: operation " + std::to_string(operation);
validate(device, message, model, [operation](Model* model) {
uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
hidl_vec_push_back(&model->operations[operation].outputs, index);
hidl_vec_push_back(&model->outputIndexes, index);
});
}
}
////////////////////////// ENTRY POINT //////////////////////////////
void validateModel(const sp<IDevice>& device, const Model& model) {
mutateExecutionOrderTest(device, model);
mutateOperandTypeTest(device, model);
mutateOperandRankTest(device, model);
mutateOperandScaleTest(device, model);
mutateOperandZeroPointTest(device, model);
mutateOperandLifeTimeTest(device, model);
mutateOperandInputOutputTest(device, model);
mutateOperandNumberOfConsumersTest(device, model);
mutateOperandAddWriterTest(device, model);
mutateOperationOperandTypeTest(device, model);
mutateOperationTypeTest(device, model);
mutateOperationInputOperandIndexTest(device, model);
mutateOperationOutputOperandIndexTest(device, model);
mutateOperationRemoveWriteTest(device, model);
removeOperandTest(device, model);
removeOperationTest(device, model);
removeOperationInputTest(device, model);
removeOperationOutputTest(device, model);
addOperationInputTest(device, model);
addOperationOutputTest(device, model);
}
} // namespace android::hardware::neuralnetworks::V1_0::vts::functional