blob: a1d414c7009021cb4ed1cb2bb515e96492bccf43 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Conversions.h"
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.3/types.h>
#include <nnapi/OperandTypes.h>
#include <nnapi/OperationTypes.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/1.0/Conversions.h>
#include <nnapi/hal/1.2/Conversions.h>
#include <nnapi/hal/CommonUtils.h>
#include <algorithm>
#include <chrono>
#include <functional>
#include <iterator>
#include <limits>
#include <type_traits>
#include <utility>
#include "Utils.h"
namespace {
std::chrono::nanoseconds makeNanosFromUint64(uint64_t nanoseconds) {
constexpr auto kMaxCount = std::chrono::nanoseconds::max().count();
using CommonType = std::common_type_t<std::chrono::nanoseconds::rep, uint64_t>;
const auto count = std::min<CommonType>(kMaxCount, nanoseconds);
return std::chrono::nanoseconds{static_cast<std::chrono::nanoseconds::rep>(count)};
}
uint64_t makeUint64FromNanos(std::chrono::nanoseconds nanoseconds) {
if (nanoseconds < std::chrono::nanoseconds::zero()) {
return 0;
}
constexpr auto kMaxCount = std::numeric_limits<uint64_t>::max();
using CommonType = std::common_type_t<std::chrono::nanoseconds::rep, uint64_t>;
const auto count = std::min<CommonType>(kMaxCount, nanoseconds.count());
return static_cast<uint64_t>(count);
}
template <typename Type>
constexpr std::underlying_type_t<Type> underlyingType(Type value) {
return static_cast<std::underlying_type_t<Type>>(value);
}
} // namespace
namespace android::nn {
namespace {
using hardware::hidl_vec;
template <typename Input>
using UnvalidatedConvertOutput =
std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvert(
const hidl_vec<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(nn::unvalidatedConvert(argument)));
}
return canonical;
}
template <typename Type>
GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& halObject) {
auto canonical = NN_TRY(nn::unvalidatedConvert(halObject));
NN_TRY(hal::V1_3::utils::compliantVersion(canonical));
return canonical;
}
template <typename Type>
GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> validatedConvert(
const hidl_vec<Type>& arguments) {
std::vector<UnvalidatedConvertOutput<Type>> canonical;
canonical.reserve(arguments.size());
for (const auto& argument : arguments) {
canonical.push_back(NN_TRY(validatedConvert(argument)));
}
return canonical;
}
} // anonymous namespace
GeneralResult<OperandType> unvalidatedConvert(const hal::V1_3::OperandType& operandType) {
return static_cast<OperandType>(operandType);
}
GeneralResult<OperationType> unvalidatedConvert(const hal::V1_3::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
GeneralResult<Priority> unvalidatedConvert(const hal::V1_3::Priority& priority) {
return static_cast<Priority>(priority);
}
GeneralResult<Capabilities> unvalidatedConvert(const hal::V1_3::Capabilities& capabilities) {
const bool validOperandTypes = std::all_of(
capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(),
[](const hal::V1_3::Capabilities::OperandPerformance& operandPerformance) {
return validatedConvert(operandPerformance.type).has_value();
});
if (!validOperandTypes) {
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "Invalid OperandType when unvalidatedConverting OperandPerformance in "
"Capabilities";
}
auto operandPerformance = NN_TRY(unvalidatedConvert(capabilities.operandPerformance));
auto table =
NN_TRY(Capabilities::OperandPerformanceTable::create(std::move(operandPerformance)));
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
.relaxedFloat32toFloat16PerformanceTensor = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
.operandPerformance = std::move(table),
.ifPerformance = NN_TRY(unvalidatedConvert(capabilities.ifPerformance)),
.whilePerformance = NN_TRY(unvalidatedConvert(capabilities.whilePerformance)),
};
}
GeneralResult<Capabilities::OperandPerformance> unvalidatedConvert(
const hal::V1_3::Capabilities::OperandPerformance& operandPerformance) {
return Capabilities::OperandPerformance{
.type = NN_TRY(unvalidatedConvert(operandPerformance.type)),
.info = NN_TRY(unvalidatedConvert(operandPerformance.info)),
};
}
GeneralResult<Operation> unvalidatedConvert(const hal::V1_3::Operation& operation) {
return Operation{
.type = NN_TRY(unvalidatedConvert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
GeneralResult<Operand::LifeTime> unvalidatedConvert(
const hal::V1_3::OperandLifeTime& operandLifeTime) {
return static_cast<Operand::LifeTime>(operandLifeTime);
}
GeneralResult<Operand> unvalidatedConvert(const hal::V1_3::Operand& operand) {
return Operand{
.type = NN_TRY(unvalidatedConvert(operand.type)),
.dimensions = operand.dimensions,
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(unvalidatedConvert(operand.lifetime)),
.location = NN_TRY(unvalidatedConvert(operand.location)),
.extraParams = NN_TRY(unvalidatedConvert(operand.extraParams)),
};
}
GeneralResult<Model> unvalidatedConvert(const hal::V1_3::Model& model) {
return Model{
.main = NN_TRY(unvalidatedConvert(model.main)),
.referenced = NN_TRY(unvalidatedConvert(model.referenced)),
.operandValues = NN_TRY(unvalidatedConvert(model.operandValues)),
.pools = NN_TRY(unvalidatedConvert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(unvalidatedConvert(model.extensionNameToPrefix)),
};
}
GeneralResult<Model::Subgraph> unvalidatedConvert(const hal::V1_3::Subgraph& subgraph) {
auto operations = NN_TRY(unvalidatedConvert(subgraph.operations));
// Verify number of consumers.
const auto numberOfConsumers =
NN_TRY(countNumberOfConsumers(subgraph.operands.size(), operations));
CHECK(subgraph.operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < subgraph.operands.size(); ++i) {
if (subgraph.operands[i].numberOfConsumers != numberOfConsumers[i]) {
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "Invalid numberOfConsumers for operand " << i << ", expected "
<< numberOfConsumers[i] << " but found "
<< subgraph.operands[i].numberOfConsumers;
}
}
return Model::Subgraph{
.operands = NN_TRY(unvalidatedConvert(subgraph.operands)),
.operations = std::move(operations),
.inputIndexes = subgraph.inputIndexes,
.outputIndexes = subgraph.outputIndexes,
};
}
GeneralResult<BufferDesc> unvalidatedConvert(const hal::V1_3::BufferDesc& bufferDesc) {
return BufferDesc{.dimensions = bufferDesc.dimensions};
}
GeneralResult<BufferRole> unvalidatedConvert(const hal::V1_3::BufferRole& bufferRole) {
return BufferRole{
.modelIndex = bufferRole.modelIndex,
.ioIndex = bufferRole.ioIndex,
.probability = bufferRole.frequency,
};
}
GeneralResult<Request> unvalidatedConvert(const hal::V1_3::Request& request) {
return Request{
.inputs = NN_TRY(unvalidatedConvert(request.inputs)),
.outputs = NN_TRY(unvalidatedConvert(request.outputs)),
.pools = NN_TRY(unvalidatedConvert(request.pools)),
};
}
GeneralResult<Request::MemoryPool> unvalidatedConvert(
const hal::V1_3::Request::MemoryPool& memoryPool) {
using Discriminator = hal::V1_3::Request::MemoryPool::hidl_discriminator;
switch (memoryPool.getDiscriminator()) {
case Discriminator::hidlMemory:
return unvalidatedConvert(memoryPool.hidlMemory());
case Discriminator::token:
return static_cast<Request::MemoryDomainToken>(memoryPool.token());
}
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "Invalid Request::MemoryPool discriminator "
<< underlyingType(memoryPool.getDiscriminator());
}
GeneralResult<OptionalTimePoint> unvalidatedConvert(
const hal::V1_3::OptionalTimePoint& optionalTimePoint) {
using Discriminator = hal::V1_3::OptionalTimePoint::hidl_discriminator;
switch (optionalTimePoint.getDiscriminator()) {
case Discriminator::none:
return {};
case Discriminator::nanosecondsSinceEpoch: {
const auto currentSteadyTime = std::chrono::steady_clock::now();
const auto currentBootTime = Clock::now();
const auto timeSinceEpoch =
makeNanosFromUint64(optionalTimePoint.nanosecondsSinceEpoch());
const auto steadyTimePoint = std::chrono::steady_clock::time_point{timeSinceEpoch};
// Both steadyTimePoint and currentSteadyTime are guaranteed to be non-negative, so this
// subtraction will never overflow or underflow.
const auto timeRemaining = steadyTimePoint - currentSteadyTime;
// currentBootTime is guaranteed to be non-negative, so this code only protects against
// an overflow.
nn::TimePoint bootTimePoint;
constexpr auto kZeroNano = std::chrono::nanoseconds::zero();
constexpr auto kMaxTime = nn::TimePoint::max();
if (timeRemaining > kZeroNano && currentBootTime > kMaxTime - timeRemaining) {
bootTimePoint = kMaxTime;
} else {
bootTimePoint = currentBootTime + timeRemaining;
}
constexpr auto kZeroTime = nn::TimePoint{};
return std::max(bootTimePoint, kZeroTime);
}
}
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "Invalid OptionalTimePoint discriminator "
<< underlyingType(optionalTimePoint.getDiscriminator());
}
GeneralResult<OptionalDuration> unvalidatedConvert(
const hal::V1_3::OptionalTimeoutDuration& optionalTimeoutDuration) {
using Discriminator = hal::V1_3::OptionalTimeoutDuration::hidl_discriminator;
switch (optionalTimeoutDuration.getDiscriminator()) {
case Discriminator::none:
return {};
case Discriminator::nanoseconds:
return Duration(optionalTimeoutDuration.nanoseconds());
}
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "Invalid OptionalTimeoutDuration discriminator "
<< underlyingType(optionalTimeoutDuration.getDiscriminator());
}
GeneralResult<ErrorStatus> unvalidatedConvert(const hal::V1_3::ErrorStatus& status) {
switch (status) {
case hal::V1_3::ErrorStatus::NONE:
case hal::V1_3::ErrorStatus::DEVICE_UNAVAILABLE:
case hal::V1_3::ErrorStatus::GENERAL_FAILURE:
case hal::V1_3::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case hal::V1_3::ErrorStatus::INVALID_ARGUMENT:
case hal::V1_3::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case hal::V1_3::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case hal::V1_3::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case hal::V1_3::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(status);
}
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE)
<< "Invalid ErrorStatus " << underlyingType(status);
}
GeneralResult<Priority> convert(const hal::V1_3::Priority& priority) {
return validatedConvert(priority);
}
GeneralResult<Capabilities> convert(const hal::V1_3::Capabilities& capabilities) {
return validatedConvert(capabilities);
}
GeneralResult<Model> convert(const hal::V1_3::Model& model) {
return validatedConvert(model);
}
GeneralResult<BufferDesc> convert(const hal::V1_3::BufferDesc& bufferDesc) {
return validatedConvert(bufferDesc);
}
GeneralResult<Request> convert(const hal::V1_3::Request& request) {
return validatedConvert(request);
}
GeneralResult<OptionalTimePoint> convert(const hal::V1_3::OptionalTimePoint& optionalTimePoint) {
return validatedConvert(optionalTimePoint);
}
GeneralResult<OptionalDuration> convert(
const hal::V1_3::OptionalTimeoutDuration& optionalTimeoutDuration) {
return validatedConvert(optionalTimeoutDuration);
}
GeneralResult<ErrorStatus> convert(const hal::V1_3::ErrorStatus& errorStatus) {
return validatedConvert(errorStatus);
}
GeneralResult<SharedHandle> convert(const hardware::hidl_handle& handle) {
return validatedConvert(handle);
}
GeneralResult<std::vector<BufferRole>> convert(
const hardware::hidl_vec<hal::V1_3::BufferRole>& bufferRoles) {
return validatedConvert(bufferRoles);
}
} // namespace android::nn
namespace android::hardware::neuralnetworks::V1_3::utils {
namespace {
using utils::unvalidatedConvert;
nn::GeneralResult<V1_0::PerformanceInfo> unvalidatedConvert(
const nn::Capabilities::PerformanceInfo& performanceInfo) {
return V1_0::utils::unvalidatedConvert(performanceInfo);
}
nn::GeneralResult<V1_0::DataLocation> unvalidatedConvert(const nn::DataLocation& dataLocation) {
return V1_0::utils::unvalidatedConvert(dataLocation);
}
nn::GeneralResult<hidl_vec<uint8_t>> unvalidatedConvert(
const nn::Model::OperandValues& operandValues) {
return V1_0::utils::unvalidatedConvert(operandValues);
}
nn::GeneralResult<hidl_handle> unvalidatedConvert(const nn::SharedHandle& handle) {
return V1_0::utils::unvalidatedConvert(handle);
}
nn::GeneralResult<hidl_memory> unvalidatedConvert(const nn::SharedMemory& memory) {
return V1_0::utils::unvalidatedConvert(memory);
}
nn::GeneralResult<V1_0::RequestArgument> unvalidatedConvert(const nn::Request::Argument& argument) {
return V1_0::utils::unvalidatedConvert(argument);
}
nn::GeneralResult<V1_2::Operand::ExtraParams> unvalidatedConvert(
const nn::Operand::ExtraParams& extraParams) {
return V1_2::utils::unvalidatedConvert(extraParams);
}
nn::GeneralResult<V1_2::Model::ExtensionNameAndPrefix> unvalidatedConvert(
const nn::Model::ExtensionNameAndPrefix& extensionNameAndPrefix) {
return V1_2::utils::unvalidatedConvert(extensionNameAndPrefix);
}
template <typename Input>
using UnvalidatedConvertOutput =
std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>;
template <typename Type>
nn::GeneralResult<hidl_vec<UnvalidatedConvertOutput<Type>>> unvalidatedConvert(
const std::vector<Type>& arguments) {
hidl_vec<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(unvalidatedConvert(arguments[i]));
}
return halObject;
}
nn::GeneralResult<Request::MemoryPool> makeMemoryPool(const nn::SharedMemory& memory) {
Request::MemoryPool ret;
ret.hidlMemory(NN_TRY(unvalidatedConvert(memory)));
return ret;
}
nn::GeneralResult<Request::MemoryPool> makeMemoryPool(const nn::Request::MemoryDomainToken& token) {
Request::MemoryPool ret;
ret.token(underlyingType(token));
return ret;
}
nn::GeneralResult<Request::MemoryPool> makeMemoryPool(const nn::SharedBuffer& /*buffer*/) {
return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "Unable to make memory pool from IBuffer";
}
using utils::unvalidatedConvert;
template <typename Type>
nn::GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& canonical) {
NN_TRY(compliantVersion(canonical));
return unvalidatedConvert(canonical);
}
template <typename Type>
nn::GeneralResult<hidl_vec<UnvalidatedConvertOutput<Type>>> validatedConvert(
const std::vector<Type>& arguments) {
hidl_vec<UnvalidatedConvertOutput<Type>> halObject(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i) {
halObject[i] = NN_TRY(validatedConvert(arguments[i]));
}
return halObject;
}
} // anonymous namespace
nn::GeneralResult<OperandType> unvalidatedConvert(const nn::OperandType& operandType) {
return static_cast<OperandType>(operandType);
}
nn::GeneralResult<OperationType> unvalidatedConvert(const nn::OperationType& operationType) {
return static_cast<OperationType>(operationType);
}
nn::GeneralResult<Priority> unvalidatedConvert(const nn::Priority& priority) {
return static_cast<Priority>(priority);
}
nn::GeneralResult<Capabilities> unvalidatedConvert(const nn::Capabilities& capabilities) {
std::vector<nn::Capabilities::OperandPerformance> operandPerformance;
operandPerformance.reserve(capabilities.operandPerformance.asVector().size());
std::copy_if(capabilities.operandPerformance.asVector().begin(),
capabilities.operandPerformance.asVector().end(),
std::back_inserter(operandPerformance),
[](const nn::Capabilities::OperandPerformance& operandPerformance) {
return compliantVersion(operandPerformance.type).has_value();
});
return Capabilities{
.relaxedFloat32toFloat16PerformanceScalar = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceScalar)),
.relaxedFloat32toFloat16PerformanceTensor = NN_TRY(
unvalidatedConvert(capabilities.relaxedFloat32toFloat16PerformanceTensor)),
.operandPerformance = NN_TRY(unvalidatedConvert(operandPerformance)),
.ifPerformance = NN_TRY(unvalidatedConvert(capabilities.ifPerformance)),
.whilePerformance = NN_TRY(unvalidatedConvert(capabilities.whilePerformance)),
};
}
nn::GeneralResult<Capabilities::OperandPerformance> unvalidatedConvert(
const nn::Capabilities::OperandPerformance& operandPerformance) {
return Capabilities::OperandPerformance{
.type = NN_TRY(unvalidatedConvert(operandPerformance.type)),
.info = NN_TRY(unvalidatedConvert(operandPerformance.info)),
};
}
nn::GeneralResult<Operation> unvalidatedConvert(const nn::Operation& operation) {
return Operation{
.type = NN_TRY(unvalidatedConvert(operation.type)),
.inputs = operation.inputs,
.outputs = operation.outputs,
};
}
nn::GeneralResult<OperandLifeTime> unvalidatedConvert(
const nn::Operand::LifeTime& operandLifeTime) {
if (operandLifeTime == nn::Operand::LifeTime::POINTER) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT)
<< "Model cannot be unvalidatedConverted because it contains pointer-based memory";
}
return static_cast<OperandLifeTime>(operandLifeTime);
}
nn::GeneralResult<Operand> unvalidatedConvert(const nn::Operand& operand) {
return Operand{
.type = NN_TRY(unvalidatedConvert(operand.type)),
.dimensions = operand.dimensions,
.numberOfConsumers = 0,
.scale = operand.scale,
.zeroPoint = operand.zeroPoint,
.lifetime = NN_TRY(unvalidatedConvert(operand.lifetime)),
.location = NN_TRY(unvalidatedConvert(operand.location)),
.extraParams = NN_TRY(unvalidatedConvert(operand.extraParams)),
};
}
nn::GeneralResult<Model> unvalidatedConvert(const nn::Model& model) {
if (!hal::utils::hasNoPointerData(model)) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT)
<< "Model cannot be unvalidatedConverted because it contains pointer-based memory";
}
return Model{
.main = NN_TRY(unvalidatedConvert(model.main)),
.referenced = NN_TRY(unvalidatedConvert(model.referenced)),
.operandValues = NN_TRY(unvalidatedConvert(model.operandValues)),
.pools = NN_TRY(unvalidatedConvert(model.pools)),
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16,
.extensionNameToPrefix = NN_TRY(unvalidatedConvert(model.extensionNameToPrefix)),
};
}
nn::GeneralResult<Subgraph> unvalidatedConvert(const nn::Model::Subgraph& subgraph) {
auto operands = NN_TRY(unvalidatedConvert(subgraph.operands));
// Update number of consumers.
const auto numberOfConsumers =
NN_TRY(countNumberOfConsumers(operands.size(), subgraph.operations));
CHECK(operands.size() == numberOfConsumers.size());
for (size_t i = 0; i < operands.size(); ++i) {
operands[i].numberOfConsumers = numberOfConsumers[i];
}
return Subgraph{
.operands = std::move(operands),
.operations = NN_TRY(unvalidatedConvert(subgraph.operations)),
.inputIndexes = subgraph.inputIndexes,
.outputIndexes = subgraph.outputIndexes,
};
}
nn::GeneralResult<BufferDesc> unvalidatedConvert(const nn::BufferDesc& bufferDesc) {
return BufferDesc{.dimensions = bufferDesc.dimensions};
}
nn::GeneralResult<BufferRole> unvalidatedConvert(const nn::BufferRole& bufferRole) {
return BufferRole{
.modelIndex = bufferRole.modelIndex,
.ioIndex = bufferRole.ioIndex,
.frequency = bufferRole.probability,
};
}
nn::GeneralResult<Request> unvalidatedConvert(const nn::Request& request) {
if (!hal::utils::hasNoPointerData(request)) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT)
<< "Request cannot be unvalidatedConverted because it contains pointer-based memory";
}
return Request{
.inputs = NN_TRY(unvalidatedConvert(request.inputs)),
.outputs = NN_TRY(unvalidatedConvert(request.outputs)),
.pools = NN_TRY(unvalidatedConvert(request.pools)),
};
}
nn::GeneralResult<Request::MemoryPool> unvalidatedConvert(
const nn::Request::MemoryPool& memoryPool) {
return std::visit([](const auto& o) { return makeMemoryPool(o); }, memoryPool);
}
nn::GeneralResult<OptionalTimePoint> unvalidatedConvert(
const nn::OptionalTimePoint& optionalTimePoint) {
const auto currentSteadyTime = std::chrono::steady_clock::now();
const auto currentBootTime = nn::Clock::now();
OptionalTimePoint ret;
if (optionalTimePoint.has_value()) {
const auto bootTimePoint = optionalTimePoint.value();
if (bootTimePoint < nn::TimePoint{}) {
return NN_ERROR() << "Trying to cast invalid time point";
}
// Both bootTimePoint and currentBootTime are guaranteed to be non-negative, so this
// subtraction will never overflow or underflow.
const auto timeRemaining = bootTimePoint - currentBootTime;
// currentSteadyTime is guaranteed to be non-negative, so this code only protects against an
// overflow.
std::chrono::steady_clock::time_point steadyTimePoint;
constexpr auto kZeroNano = std::chrono::nanoseconds::zero();
constexpr auto kMaxTime = std::chrono::steady_clock::time_point::max();
if (timeRemaining > kZeroNano && currentSteadyTime > kMaxTime - timeRemaining) {
steadyTimePoint = kMaxTime;
} else {
steadyTimePoint = currentSteadyTime + timeRemaining;
}
const uint64_t count = makeUint64FromNanos(steadyTimePoint.time_since_epoch());
ret.nanosecondsSinceEpoch(count);
}
return ret;
}
nn::GeneralResult<OptionalTimeoutDuration> unvalidatedConvert(
const nn::OptionalDuration& optionalTimeoutDuration) {
OptionalTimeoutDuration ret;
if (optionalTimeoutDuration.has_value()) {
const auto count = optionalTimeoutDuration.value().count();
ret.nanoseconds(count);
}
return ret;
}
nn::GeneralResult<ErrorStatus> unvalidatedConvert(const nn::ErrorStatus& errorStatus) {
switch (errorStatus) {
case nn::ErrorStatus::NONE:
case nn::ErrorStatus::DEVICE_UNAVAILABLE:
case nn::ErrorStatus::GENERAL_FAILURE:
case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
case nn::ErrorStatus::INVALID_ARGUMENT:
case nn::ErrorStatus::MISSED_DEADLINE_TRANSIENT:
case nn::ErrorStatus::MISSED_DEADLINE_PERSISTENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
case nn::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
return static_cast<ErrorStatus>(errorStatus);
default:
return ErrorStatus::GENERAL_FAILURE;
}
}
nn::GeneralResult<Priority> convert(const nn::Priority& priority) {
return validatedConvert(priority);
}
nn::GeneralResult<Capabilities> convert(const nn::Capabilities& capabilities) {
return validatedConvert(capabilities);
}
nn::GeneralResult<Model> convert(const nn::Model& model) {
return validatedConvert(model);
}
nn::GeneralResult<BufferDesc> convert(const nn::BufferDesc& bufferDesc) {
return validatedConvert(bufferDesc);
}
nn::GeneralResult<Request> convert(const nn::Request& request) {
return validatedConvert(request);
}
nn::GeneralResult<OptionalTimePoint> convert(const nn::OptionalTimePoint& optionalTimePoint) {
return validatedConvert(optionalTimePoint);
}
nn::GeneralResult<OptionalTimeoutDuration> convert(
const nn::OptionalDuration& optionalTimeoutDuration) {
return validatedConvert(optionalTimeoutDuration);
}
nn::GeneralResult<ErrorStatus> convert(const nn::ErrorStatus& errorStatus) {
return validatedConvert(errorStatus);
}
nn::GeneralResult<hidl_handle> convert(const nn::SharedHandle& handle) {
return validatedConvert(handle);
}
nn::GeneralResult<hidl_memory> convert(const nn::SharedMemory& memory) {
return validatedConvert(memory);
}
nn::GeneralResult<hidl_vec<BufferRole>> convert(const std::vector<nn::BufferRole>& bufferRoles) {
return validatedConvert(bufferRoles);
}
nn::GeneralResult<V1_0::DeviceStatus> convert(const nn::DeviceStatus& deviceStatus) {
return V1_2::utils::convert(deviceStatus);
}
nn::GeneralResult<V1_1::ExecutionPreference> convert(
const nn::ExecutionPreference& executionPreference) {
return V1_2::utils::convert(executionPreference);
}
nn::GeneralResult<hidl_vec<V1_2::Extension>> convert(const std::vector<nn::Extension>& extensions) {
return V1_2::utils::convert(extensions);
}
nn::GeneralResult<hidl_vec<hidl_handle>> convert(const std::vector<nn::SharedHandle>& handles) {
return V1_2::utils::convert(handles);
}
nn::GeneralResult<hidl_vec<V1_2::OutputShape>> convert(
const std::vector<nn::OutputShape>& outputShapes) {
return V1_2::utils::convert(outputShapes);
}
nn::GeneralResult<V1_2::DeviceType> convert(const nn::DeviceType& deviceType) {
return V1_2::utils::convert(deviceType);
}
nn::GeneralResult<V1_2::MeasureTiming> convert(const nn::MeasureTiming& measureTiming) {
return V1_2::utils::convert(measureTiming);
}
nn::GeneralResult<V1_2::Timing> convert(const nn::Timing& timing) {
return V1_2::utils::convert(timing);
}
nn::GeneralResult<hidl_vec<hidl_handle>> convertSyncFences(
const std::vector<nn::SyncFence>& syncFences) {
std::vector<nn::SharedHandle> handles;
handles.reserve(syncFences.size());
std::transform(syncFences.begin(), syncFences.end(), std::back_inserter(handles),
[](const nn::SyncFence& syncFence) { return syncFence.getSharedHandle(); });
return convert(handles);
}
} // namespace android::hardware::neuralnetworks::V1_3::utils