blob: f435513221de85a5d33f575301cea6dcf672e59a [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "keymint_1_test"
#include <cutils/log.h>
#include <iostream>
#include <optional>
#include "KeyMintAidlTestBase.h"
#include <aidl/android/hardware/gatekeeper/GatekeeperEnrollResponse.h>
#include <aidl/android/hardware/gatekeeper/GatekeeperVerifyResponse.h>
#include <aidl/android/hardware/gatekeeper/IGatekeeper.h>
#include <aidl/android/hardware/security/secureclock/ISecureClock.h>
#include <android-base/logging.h>
#include <android/binder_manager.h>
using aidl::android::hardware::gatekeeper::GatekeeperEnrollResponse;
using aidl::android::hardware::gatekeeper::GatekeeperVerifyResponse;
using aidl::android::hardware::gatekeeper::IGatekeeper;
using aidl::android::hardware::security::keymint::HardwareAuthToken;
using aidl::android::hardware::security::secureclock::ISecureClock;
#include <android/hardware/gatekeeper/1.0/IGatekeeper.h>
#include <android/hardware/gatekeeper/1.0/types.h>
#include <gatekeeper/password_handle.h> // for password_handle_t
#include <hardware/hw_auth_token.h>
using ::android::sp;
using IHidlGatekeeper = ::android::hardware::gatekeeper::V1_0::IGatekeeper;
using HidlGatekeeperResponse = ::android::hardware::gatekeeper::V1_0::GatekeeperResponse;
using HidlGatekeeperStatusCode = ::android::hardware::gatekeeper::V1_0::GatekeeperStatusCode;
namespace aidl::android::hardware::security::keymint::test {
class AuthTest : public KeyMintAidlTestBase {
public:
void SetUp() {
KeyMintAidlTestBase::SetUp();
// Find the default Gatekeeper instance.
string gk_name = string(IGatekeeper::descriptor) + "/default";
if (AServiceManager_isDeclared(gk_name.c_str())) {
// Enroll a user with AIDL Gatekeeper.
::ndk::SpAIBinder binder(AServiceManager_waitForService(gk_name.c_str()));
gk_ = IGatekeeper::fromBinder(binder);
} else {
// Prior to Android U, Gatekeeper was HIDL not AIDL and so may not be present.
// Try to enroll user with HIDL Gatekeeper instead.
string gk_name = "default";
hidl_gk_ = IHidlGatekeeper::getService(gk_name.c_str());
if (hidl_gk_ == nullptr) {
std::cerr << "No HIDL Gatekeeper instance for '" << gk_name << "' found.\n";
return;
}
std::cerr << "No AIDL Gatekeeper instance for '" << gk_name << "' found, using HIDL.\n";
}
// If the device needs timestamps, find the default ISecureClock instance.
if (timestamp_token_required_) {
string clock_name = string(ISecureClock::descriptor) + "/default";
if (AServiceManager_isDeclared(clock_name.c_str())) {
::ndk::SpAIBinder binder(AServiceManager_waitForService(clock_name.c_str()));
clock_ = ISecureClock::fromBinder(binder);
} else {
std::cerr << "No ISecureClock instance for '" << clock_name << "' found.\n";
}
}
// Enroll a password for a user.
uid_ = 10001;
password_ = "correcthorsebatterystaple";
std::optional<GatekeeperEnrollResponse> rsp = doEnroll(password_);
ASSERT_TRUE(rsp.has_value());
sid_ = rsp->secureUserId;
handle_ = rsp->data;
}
void TearDown() {
if (gk_ == nullptr) return;
gk_->deleteUser(uid_);
if (alt_uid_ != 0) {
gk_->deleteUser(alt_uid_);
}
}
bool GatekeeperAvailable() { return (gk_ != nullptr) || (hidl_gk_ != nullptr); }
std::optional<GatekeeperEnrollResponse> doEnroll(uint32_t uid,
const std::vector<uint8_t>& newPwd,
const std::vector<uint8_t>& curHandle = {},
const std::vector<uint8_t>& curPwd = {}) {
if (gk_ != nullptr) {
while (true) {
GatekeeperEnrollResponse rsp;
Status status = gk_->enroll(uid, curHandle, curPwd, newPwd, &rsp);
if (!status.isOk() && status.getExceptionCode() == EX_SERVICE_SPECIFIC &&
status.getServiceSpecificError() == IGatekeeper::ERROR_RETRY_TIMEOUT) {
sleep(1);
continue;
}
if (status.isOk()) {
return std::move(rsp);
} else {
GTEST_LOG_(ERROR) << "doEnroll(AIDL) failed: " << status;
return std::nullopt;
}
}
} else if (hidl_gk_ != nullptr) {
while (true) {
HidlGatekeeperResponse rsp;
auto status = hidl_gk_->enroll(
uid, curHandle, curPwd, newPwd,
[&rsp](const HidlGatekeeperResponse& cbRsp) { rsp = cbRsp; });
if (!status.isOk()) {
GTEST_LOG_(ERROR) << "doEnroll(HIDL) failed";
return std::nullopt;
}
if (rsp.code == HidlGatekeeperStatusCode::ERROR_RETRY_TIMEOUT) {
sleep(1);
continue;
}
if (rsp.code != HidlGatekeeperStatusCode::STATUS_OK) {
GTEST_LOG_(ERROR) << "doEnroll(HIDL) failed with " << int(rsp.code);
return std::nullopt;
}
// "Parse" the returned data to get at the secure user ID.
if (rsp.data.size() != sizeof(::gatekeeper::password_handle_t)) {
GTEST_LOG_(ERROR)
<< "HAL returned password handle of invalid length " << rsp.data.size();
return std::nullopt;
}
const ::gatekeeper::password_handle_t* handle =
reinterpret_cast<const ::gatekeeper::password_handle_t*>(rsp.data.data());
// Translate HIDL response to look like an AIDL response.
GatekeeperEnrollResponse aidl_rsp;
aidl_rsp.statusCode = IGatekeeper::STATUS_OK;
aidl_rsp.data = rsp.data;
aidl_rsp.secureUserId = handle->user_id;
return aidl_rsp;
}
} else {
return std::nullopt;
}
}
std::optional<GatekeeperEnrollResponse> doEnroll(uint32_t uid, const string& newPwd,
const std::vector<uint8_t>& curHandle = {},
const string& curPwd = {}) {
return doEnroll(uid, std::vector<uint8_t>(newPwd.begin(), newPwd.end()), curHandle,
std::vector<uint8_t>(curPwd.begin(), curPwd.end()));
}
std::optional<GatekeeperEnrollResponse> doEnroll(const string& newPwd) {
return doEnroll(uid_, newPwd);
}
std::optional<HardwareAuthToken> doVerify(uint32_t uid, uint64_t challenge,
const std::vector<uint8_t>& handle,
const std::vector<uint8_t>& pwd) {
if (gk_ != nullptr) {
while (true) {
GatekeeperVerifyResponse rsp;
Status status = gk_->verify(uid, challenge, handle, pwd, &rsp);
if (!status.isOk() && status.getExceptionCode() == EX_SERVICE_SPECIFIC &&
status.getServiceSpecificError() == IGatekeeper::ERROR_RETRY_TIMEOUT) {
sleep(1);
continue;
}
if (status.isOk()) {
return rsp.hardwareAuthToken;
} else {
GTEST_LOG_(ERROR) << "doVerify(AIDL) failed: " << status;
return std::nullopt;
}
}
} else if (hidl_gk_ != nullptr) {
while (true) {
HidlGatekeeperResponse rsp;
auto status = hidl_gk_->verify(
uid, challenge, handle, pwd,
[&rsp](const HidlGatekeeperResponse& cbRsp) { rsp = cbRsp; });
if (!status.isOk()) {
GTEST_LOG_(ERROR) << "doVerify(HIDL) failed";
return std::nullopt;
}
if (rsp.code == HidlGatekeeperStatusCode::ERROR_RETRY_TIMEOUT) {
sleep(1);
continue;
}
if (rsp.code != HidlGatekeeperStatusCode::STATUS_OK) {
GTEST_LOG_(ERROR) << "doVerify(HIDL) failed with " << int(rsp.code);
return std::nullopt;
}
// "Parse" the returned data to get auth token contents.
if (rsp.data.size() != sizeof(hw_auth_token_t)) {
GTEST_LOG_(ERROR) << "Incorrect size of AuthToken payload.";
return std::nullopt;
}
const hw_auth_token_t* hwAuthToken =
reinterpret_cast<const hw_auth_token_t*>(rsp.data.data());
HardwareAuthToken authToken;
authToken.timestamp.milliSeconds = betoh64(hwAuthToken->timestamp);
authToken.challenge = hwAuthToken->challenge;
authToken.userId = hwAuthToken->user_id;
authToken.authenticatorId = hwAuthToken->authenticator_id;
authToken.authenticatorType = static_cast<HardwareAuthenticatorType>(
betoh32(hwAuthToken->authenticator_type));
authToken.mac.assign(&hwAuthToken->hmac[0], &hwAuthToken->hmac[32]);
return authToken;
}
} else {
return std::nullopt;
}
}
std::optional<HardwareAuthToken> doVerify(uint32_t uid, uint64_t challenge,
const std::vector<uint8_t>& handle,
const string& pwd) {
return doVerify(uid, challenge, handle, std::vector<uint8_t>(pwd.begin(), pwd.end()));
}
std::optional<HardwareAuthToken> doVerify(uint64_t challenge,
const std::vector<uint8_t>& handle,
const string& pwd) {
return doVerify(uid_, challenge, handle, pwd);
}
// Variants of the base class methods but with authentication information included.
string ProcessMessage(const vector<uint8_t>& key_blob, KeyPurpose operation,
const string& message, const AuthorizationSet& in_params,
AuthorizationSet* out_params, const HardwareAuthToken& hat) {
AuthorizationSet begin_out_params;
ErrorCode result = Begin(operation, key_blob, in_params, out_params, hat);
EXPECT_EQ(ErrorCode::OK, result);
if (result != ErrorCode::OK) {
return "";
}
std::optional<secureclock::TimeStampToken> time_token = std::nullopt;
if (timestamp_token_required_ && clock_ != nullptr) {
// Ask a secure clock instance for a timestamp, including the per-op challenge.
secureclock::TimeStampToken token;
EXPECT_EQ(ErrorCode::OK,
GetReturnErrorCode(clock_->generateTimeStamp(challenge_, &token)));
time_token = token;
}
string output;
EXPECT_EQ(ErrorCode::OK, Finish(message, {} /* signature */, &output, hat, time_token));
return output;
}
string EncryptMessage(const vector<uint8_t>& key_blob, const string& message,
const AuthorizationSet& in_params, AuthorizationSet* out_params,
const HardwareAuthToken& hat) {
SCOPED_TRACE("EncryptMessage");
return ProcessMessage(key_blob, KeyPurpose::ENCRYPT, message, in_params, out_params, hat);
}
string DecryptMessage(const vector<uint8_t>& key_blob, const string& ciphertext,
const AuthorizationSet& params, const HardwareAuthToken& hat) {
SCOPED_TRACE("DecryptMessage");
AuthorizationSet out_params;
string plaintext =
ProcessMessage(key_blob, KeyPurpose::DECRYPT, ciphertext, params, &out_params, hat);
EXPECT_TRUE(out_params.empty());
return plaintext;
}
string SignMessage(const vector<uint8_t>& key_blob, const string& message,
const AuthorizationSet& in_params, AuthorizationSet* out_params,
const HardwareAuthToken& hat) {
SCOPED_TRACE("SignMessage");
return ProcessMessage(key_blob, KeyPurpose::SIGN, message, in_params, out_params, hat);
}
protected:
std::shared_ptr<IGatekeeper> gk_;
sp<IHidlGatekeeper> hidl_gk_;
std::shared_ptr<ISecureClock> clock_;
string password_;
uint32_t uid_;
int64_t sid_;
uint32_t alt_uid_;
int64_t alt_sid_;
std::vector<uint8_t> handle_;
};
// Test use of a key that requires user-authentication within recent history.
TEST_P(AuthTest, TimeoutAuthentication) {
if (!GatekeeperAvailable()) {
GTEST_SKIP() << "No Gatekeeper available";
}
if (timestamp_token_required_ && clock_ == nullptr) {
GTEST_SKIP() << "Device requires timestamps and no ISecureClock available";
}
// Create an AES key that requires authentication within the last 3 seconds.
const uint32_t timeout_secs = 3;
auto builder = AuthorizationSetBuilder()
.AesEncryptionKey(256)
.BlockMode(BlockMode::ECB)
.Padding(PaddingMode::PKCS7)
.Authorization(TAG_USER_SECURE_ID, sid_)
.Authorization(TAG_USER_AUTH_TYPE, HardwareAuthenticatorType::PASSWORD)
.Authorization(TAG_AUTH_TIMEOUT, timeout_secs);
vector<uint8_t> keyblob;
vector<KeyCharacteristics> key_characteristics;
vector<Certificate> cert_chain;
ASSERT_EQ(ErrorCode::OK,
GenerateKey(builder, std::nullopt, &keyblob, &key_characteristics, &cert_chain));
// Attempt to use the AES key without authentication.
const string message = "Hello World!";
AuthorizationSet out_params;
auto params = AuthorizationSetBuilder().BlockMode(BlockMode::ECB).Padding(PaddingMode::PKCS7);
EXPECT_EQ(ErrorCode::KEY_USER_NOT_AUTHENTICATED,
Begin(KeyPurpose::ENCRYPT, keyblob, params, &out_params));
// Verify to get a HAT, arbitrary challenge.
const uint64_t challenge = 42;
const std::optional<HardwareAuthToken> hat = doVerify(challenge, handle_, password_);
ASSERT_TRUE(hat.has_value());
EXPECT_EQ(hat->userId, sid_);
// Adding the auth token makes it possible to use the AES key.
const string ciphertext = EncryptMessage(keyblob, message, params, &out_params, hat.value());
const string plaintext = DecryptMessage(keyblob, ciphertext, params, hat.value());
EXPECT_EQ(message, plaintext);
// Altering a single bit in the MAC means no auth.
HardwareAuthToken dodgy_hat = hat.value();
ASSERT_GT(dodgy_hat.mac.size(), 0);
dodgy_hat.mac[0] ^= 0x01;
EXPECT_EQ(ErrorCode::KEY_USER_NOT_AUTHENTICATED,
Begin(KeyPurpose::ENCRYPT, keyblob, params, &out_params, dodgy_hat));
// Wait for long enough that the hardware auth token expires.
sleep(timeout_secs + 1);
auto begin_result = Begin(KeyPurpose::ENCRYPT, keyblob, params, &out_params, hat);
if (begin_result == ErrorCode::OK) {
// If begin() succeeds despite the out-of-date HAT, that must mean that the KeyMint
// device doesn't have its own clock. In that case, it only detects timeout via a
// timestamp token provided on update()/finish()
ASSERT_TRUE(timestamp_token_required_);
secureclock::TimeStampToken time_token;
EXPECT_EQ(ErrorCode::OK,
GetReturnErrorCode(clock_->generateTimeStamp(challenge_, &time_token)));
string output;
EXPECT_EQ(ErrorCode::KEY_USER_NOT_AUTHENTICATED,
Finish(message, {} /* signature */, &output, hat, time_token));
} else {
// The KeyMint implementation may have its own clock that can immediately detect timeout.
ASSERT_EQ(ErrorCode::KEY_USER_NOT_AUTHENTICATED, begin_result);
}
}
// Test use of a key that requires user-authentication within recent history, but where
// the `TimestampToken` provided to the device is unrelated to the in-progress operation.
TEST_P(AuthTest, TimeoutAuthenticationIncorrectTimestampToken) {
if (!GatekeeperAvailable()) {
GTEST_SKIP() << "No Gatekeeper available";
}
if (!timestamp_token_required_) {
GTEST_SKIP() << "Test only applies to devices with no secure clock";
}
if (clock_ == nullptr) {
GTEST_SKIP() << "Device requires timestamps and no ISecureClock available";
}
// Create an AES key that requires authentication within the last 3 seconds.
const uint32_t timeout_secs = 3;
auto builder = AuthorizationSetBuilder()
.AesEncryptionKey(256)
.BlockMode(BlockMode::ECB)
.Padding(PaddingMode::PKCS7)
.Authorization(TAG_USER_SECURE_ID, sid_)
.Authorization(TAG_USER_AUTH_TYPE, HardwareAuthenticatorType::PASSWORD)
.Authorization(TAG_AUTH_TIMEOUT, timeout_secs);
vector<uint8_t> keyblob;
vector<KeyCharacteristics> key_characteristics;
vector<Certificate> cert_chain;
ASSERT_EQ(ErrorCode::OK,
GenerateKey(builder, std::nullopt, &keyblob, &key_characteristics, &cert_chain));
// Verify to get a HAT, arbitrary challenge.
const uint64_t challenge = 42;
const std::optional<HardwareAuthToken> hat = doVerify(challenge, handle_, password_);
ASSERT_TRUE(hat.has_value());
EXPECT_EQ(hat->userId, sid_);
// KeyMint implementation has no clock, so only detects timeout via timestamp token provided
// on update()/finish(). However, for this test we ensure that that the timestamp token has a
// *different* challenge value.
const string message = "Hello World!";
auto params = AuthorizationSetBuilder().BlockMode(BlockMode::ECB).Padding(PaddingMode::PKCS7);
AuthorizationSet out_params;
ASSERT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, keyblob, params, &out_params, hat));
secureclock::TimeStampToken time_token;
EXPECT_EQ(ErrorCode::OK,
GetReturnErrorCode(clock_->generateTimeStamp(challenge_ + 1, &time_token)));
string output;
EXPECT_EQ(ErrorCode::KEY_USER_NOT_AUTHENTICATED,
Finish(message, {} /* signature */, &output, hat, time_token));
}
// Test use of a key with multiple USER_SECURE_ID values. For variety, use an EC signing key
// generated with attestation.
TEST_P(AuthTest, TimeoutAuthenticationMultiSid) {
if (!GatekeeperAvailable()) {
GTEST_SKIP() << "No Gatekeeper available";
}
if (timestamp_token_required_ && clock_ == nullptr) {
GTEST_SKIP() << "Device requires timestamps and no ISecureClock available";
}
// Enroll a password for a second user.
alt_uid_ = 20001;
const string alt_password = "correcthorsebatterystaple2";
std::optional<GatekeeperEnrollResponse> rsp = doEnroll(alt_uid_, alt_password);
ASSERT_TRUE(rsp.has_value());
alt_sid_ = rsp->secureUserId;
const std::vector<uint8_t> alt_handle = rsp->data;
// Create an attested EC key that requires authentication within the last 3 seconds from either
// secure ID. Also allow any authenticator type.
const uint32_t timeout_secs = 3;
auto builder = AuthorizationSetBuilder()
.EcdsaSigningKey(EcCurve::P_256)
.Digest(Digest::NONE)
.Digest(Digest::SHA_2_256)
.SetDefaultValidity()
.AttestationChallenge("challenge")
.AttestationApplicationId("app_id")
.Authorization(TAG_USER_SECURE_ID, alt_sid_)
.Authorization(TAG_USER_SECURE_ID, sid_)
.Authorization(TAG_USER_AUTH_TYPE, HardwareAuthenticatorType::ANY)
.Authorization(TAG_AUTH_TIMEOUT, timeout_secs);
vector<uint8_t> keyblob;
vector<KeyCharacteristics> key_characteristics;
auto result = GenerateKey(builder, &keyblob, &key_characteristics);
ASSERT_EQ(ErrorCode::OK, result);
// Verify first user to get a HAT that should work.
const uint64_t challenge = 42;
const std::optional<HardwareAuthToken> hat = doVerify(uid_, challenge, handle_, password_);
ASSERT_TRUE(hat.has_value());
EXPECT_EQ(hat->userId, sid_);
const string message = "Hello World!";
auto params = AuthorizationSetBuilder().Digest(Digest::SHA_2_256);
AuthorizationSet out_params;
const string signature = SignMessage(keyblob, message, params, &out_params, hat.value());
// Verify second user to get a HAT that should work.
const uint64_t alt_challenge = 43;
const std::optional<HardwareAuthToken> alt_hat =
doVerify(alt_uid_, alt_challenge, alt_handle, alt_password);
ASSERT_TRUE(alt_hat.has_value());
EXPECT_EQ(alt_hat->userId, alt_sid_);
const string alt_signature =
SignMessage(keyblob, message, params, &out_params, alt_hat.value());
}
// Test use of a key that requires an auth token for each action on the operation, with
// a per-operation challenge value included.
TEST_P(AuthTest, AuthPerOperation) {
if (!GatekeeperAvailable()) {
GTEST_SKIP() << "No Gatekeeper available";
}
// Create an AES key that requires authentication per-action.
auto builder = AuthorizationSetBuilder()
.AesEncryptionKey(256)
.BlockMode(BlockMode::ECB)
.Padding(PaddingMode::PKCS7)
.Authorization(TAG_USER_SECURE_ID, sid_)
.Authorization(TAG_USER_AUTH_TYPE, HardwareAuthenticatorType::PASSWORD);
vector<uint8_t> keyblob;
vector<KeyCharacteristics> key_characteristics;
vector<Certificate> cert_chain;
ASSERT_EQ(ErrorCode::OK,
GenerateKey(builder, std::nullopt, &keyblob, &key_characteristics, &cert_chain));
// Attempt to use the AES key without authentication fails after begin.
const string message = "Hello World!";
AuthorizationSet out_params;
auto params = AuthorizationSetBuilder().BlockMode(BlockMode::ECB).Padding(PaddingMode::PKCS7);
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, keyblob, params, &out_params));
string output;
EXPECT_EQ(ErrorCode::KEY_USER_NOT_AUTHENTICATED, Finish(message, {} /* signature */, &output));
// Verify to get a HAT, but with an arbitrary challenge.
const uint64_t unrelated_challenge = 42;
const std::optional<HardwareAuthToken> unrelated_hat =
doVerify(unrelated_challenge, handle_, password_);
ASSERT_TRUE(unrelated_hat.has_value());
EXPECT_EQ(unrelated_hat->userId, sid_);
// Attempt to use the AES key with an unrelated authentication fails after begin.
EXPECT_EQ(ErrorCode::OK,
Begin(KeyPurpose::ENCRYPT, keyblob, params, &out_params, unrelated_hat.value()));
EXPECT_EQ(ErrorCode::KEY_USER_NOT_AUTHENTICATED,
Finish(message, {} /* signature */, &output, unrelated_hat.value()));
// Now get a HAT with the challenge from an in-progress operation.
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, keyblob, params, &out_params));
const std::optional<HardwareAuthToken> hat = doVerify(challenge_, handle_, password_);
ASSERT_TRUE(hat.has_value());
EXPECT_EQ(hat->userId, sid_);
string ciphertext;
EXPECT_EQ(ErrorCode::OK, Finish(message, {} /* signature */, &ciphertext, hat.value()));
// Altering a single bit in the MAC means no auth.
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, keyblob, params, &out_params));
std::optional<HardwareAuthToken> dodgy_hat = doVerify(challenge_, handle_, password_);
ASSERT_TRUE(dodgy_hat.has_value());
EXPECT_EQ(dodgy_hat->userId, sid_);
ASSERT_GT(dodgy_hat->mac.size(), 0);
dodgy_hat->mac[0] ^= 0x01;
EXPECT_EQ(ErrorCode::KEY_USER_NOT_AUTHENTICATED,
Finish(message, {} /* signature */, &ciphertext, dodgy_hat.value()));
}
// Test use of a key that requires an auth token for each action on the operation, with
// a per-operation challenge value included, with multiple secure IDs allowed.
TEST_P(AuthTest, AuthPerOperationMultiSid) {
if (!GatekeeperAvailable()) {
GTEST_SKIP() << "No Gatekeeper available";
}
// Enroll a password for a second user.
alt_uid_ = 20001;
const string alt_password = "correcthorsebatterystaple2";
std::optional<GatekeeperEnrollResponse> rsp = doEnroll(alt_uid_, alt_password);
ASSERT_TRUE(rsp.has_value());
alt_sid_ = rsp->secureUserId;
const std::vector<uint8_t> alt_handle = rsp->data;
// Create an AES key that requires authentication per-action.
auto builder = AuthorizationSetBuilder()
.AesEncryptionKey(256)
.BlockMode(BlockMode::ECB)
.Padding(PaddingMode::PKCS7)
.Authorization(TAG_USER_SECURE_ID, sid_)
.Authorization(TAG_USER_SECURE_ID, alt_sid_)
.Authorization(TAG_USER_AUTH_TYPE, HardwareAuthenticatorType::ANY);
vector<uint8_t> keyblob;
vector<KeyCharacteristics> key_characteristics;
vector<Certificate> cert_chain;
ASSERT_EQ(ErrorCode::OK,
GenerateKey(builder, std::nullopt, &keyblob, &key_characteristics, &cert_chain));
// Get a HAT for first user with the challenge from an in-progress operation.
const string message = "Hello World!";
auto params = AuthorizationSetBuilder().BlockMode(BlockMode::ECB).Padding(PaddingMode::PKCS7);
AuthorizationSet out_params;
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, keyblob, params, &out_params));
const std::optional<HardwareAuthToken> hat = doVerify(uid_, challenge_, handle_, password_);
ASSERT_TRUE(hat.has_value());
EXPECT_EQ(hat->userId, sid_);
string ciphertext;
EXPECT_EQ(ErrorCode::OK, Finish(message, {} /* signature */, &ciphertext, hat.value()));
// Get a HAT for second user with the challenge from an in-progress operation.
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, keyblob, params, &out_params));
const std::optional<HardwareAuthToken> alt_hat =
doVerify(alt_uid_, challenge_, alt_handle, alt_password);
ASSERT_TRUE(alt_hat.has_value());
EXPECT_EQ(alt_hat->userId, alt_sid_);
string alt_ciphertext;
EXPECT_EQ(ErrorCode::OK, Finish(message, {} /* signature */, &ciphertext, alt_hat.value()));
}
// Test use of a key that requires an auth token for each action on the operation, but
// which gets passed a HAT of the wrong type
TEST_P(AuthTest, AuthPerOperationWrongAuthType) {
if (!GatekeeperAvailable()) {
GTEST_SKIP() << "No Gatekeeper available";
}
// Create an AES key that requires authentication per-action, but with no valid authenticator
// types.
auto builder =
AuthorizationSetBuilder()
.AesEncryptionKey(256)
.BlockMode(BlockMode::ECB)
.Padding(PaddingMode::PKCS7)
.Authorization(TAG_USER_SECURE_ID, sid_)
.Authorization(TAG_USER_AUTH_TYPE, HardwareAuthenticatorType::FINGERPRINT);
vector<uint8_t> keyblob;
vector<KeyCharacteristics> key_characteristics;
vector<Certificate> cert_chain;
ASSERT_EQ(ErrorCode::OK,
GenerateKey(builder, std::nullopt, &keyblob, &key_characteristics, &cert_chain));
// Get a HAT with the challenge from an in-progress operation.
const string message = "Hello World!";
auto params = AuthorizationSetBuilder().BlockMode(BlockMode::ECB).Padding(PaddingMode::PKCS7);
AuthorizationSet out_params;
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, keyblob, params, &out_params));
const std::optional<HardwareAuthToken> hat = doVerify(challenge_, handle_, password_);
ASSERT_TRUE(hat.has_value());
EXPECT_EQ(hat->userId, sid_);
// Should fail because auth type doesn't (can't) match.
string ciphertext;
EXPECT_EQ(ErrorCode::KEY_USER_NOT_AUTHENTICATED,
Finish(message, {} /* signature */, &ciphertext, hat.value()));
}
INSTANTIATE_KEYMINT_AIDL_TEST(AuthTest);
} // namespace aidl::android::hardware::security::keymint::test