blob: 29e247177706d2bb6b3b68a9a03fcd5981e5c736 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "neuralnetworks_aidl_hal_test"
#include <aidl/android/hardware/neuralnetworks/RequestMemoryPool.h>
#include <android/binder_auto_utils.h>
#include <variant>
#include <chrono>
#include <TestHarness.h>
#include <nnapi/hal/aidl/Utils.h>
#include "Callbacks.h"
#include "GeneratedTestHarness.h"
#include "Utils.h"
#include "VtsHalNeuralnetworks.h"
namespace aidl::android::hardware::neuralnetworks::vts::functional {
using ExecutionMutation = std::function<void(Request*)>;
///////////////////////// UTILITY FUNCTIONS /////////////////////////
// Primary validation function. This function will take a valid request, apply a
// mutation to it to invalidate the request, then pass it to interface calls
// that use the request.
static void validate(const std::shared_ptr<IPreparedModel>& preparedModel,
const std::string& message, const Request& originalRequest,
const ExecutionMutation& mutate) {
Request request = utils::clone(originalRequest).value();
mutate(&request);
// We'd like to test both with timing requested and without timing
// requested. Rather than running each test both ways, we'll decide whether
// to request timing by hashing the message. We do not use std::hash because
// it is not guaranteed stable across executions.
char hash = 0;
for (auto c : message) {
hash ^= c;
};
bool measure = (hash & 1);
// synchronous
{
SCOPED_TRACE(message + " [executeSynchronously]");
ExecutionResult executionResult;
const auto executeStatus = preparedModel->executeSynchronously(
request, measure, kNoDeadline, kOmittedTimeoutDuration, &executionResult);
ASSERT_FALSE(executeStatus.isOk());
ASSERT_EQ(executeStatus.getExceptionCode(), EX_SERVICE_SPECIFIC);
ASSERT_EQ(static_cast<ErrorStatus>(executeStatus.getServiceSpecificError()),
ErrorStatus::INVALID_ARGUMENT);
}
// fenced
{
SCOPED_TRACE(message + " [executeFenced]");
FencedExecutionResult executionResult;
const auto executeStatus = preparedModel->executeFenced(request, {}, false, kNoDeadline,
kOmittedTimeoutDuration,
kNoDuration, &executionResult);
ASSERT_FALSE(executeStatus.isOk());
ASSERT_EQ(executeStatus.getExceptionCode(), EX_SERVICE_SPECIFIC);
ASSERT_EQ(static_cast<ErrorStatus>(executeStatus.getServiceSpecificError()),
ErrorStatus::INVALID_ARGUMENT);
}
// burst
{
SCOPED_TRACE(message + " [burst]");
// create burst
std::shared_ptr<IBurst> burst;
auto ret = preparedModel->configureExecutionBurst(&burst);
ASSERT_TRUE(ret.isOk()) << ret.getDescription();
ASSERT_NE(nullptr, burst.get());
// use -1 for all memory identifier tokens
const std::vector<int64_t> slots(request.pools.size(), -1);
ExecutionResult executionResult;
const auto executeStatus = burst->executeSynchronously(
request, slots, measure, kNoDeadline, kOmittedTimeoutDuration, &executionResult);
ASSERT_FALSE(executeStatus.isOk());
ASSERT_EQ(executeStatus.getExceptionCode(), EX_SERVICE_SPECIFIC);
ASSERT_EQ(static_cast<ErrorStatus>(executeStatus.getServiceSpecificError()),
ErrorStatus::INVALID_ARGUMENT);
}
}
std::shared_ptr<IBurst> createBurst(const std::shared_ptr<IPreparedModel>& preparedModel) {
std::shared_ptr<IBurst> burst;
const auto ret = preparedModel->configureExecutionBurst(&burst);
if (!ret.isOk()) return nullptr;
return burst;
}
///////////////////////// REMOVE INPUT ////////////////////////////////////
static void removeInputTest(const std::shared_ptr<IPreparedModel>& preparedModel,
const Request& request) {
for (size_t input = 0; input < request.inputs.size(); ++input) {
const std::string message = "removeInput: removed input " + std::to_string(input);
validate(preparedModel, message, request, [input](Request* request) {
request->inputs.erase(request->inputs.begin() + input);
});
}
}
///////////////////////// REMOVE OUTPUT ////////////////////////////////////
static void removeOutputTest(const std::shared_ptr<IPreparedModel>& preparedModel,
const Request& request) {
for (size_t output = 0; output < request.outputs.size(); ++output) {
const std::string message = "removeOutput: removed Output " + std::to_string(output);
validate(preparedModel, message, request, [output](Request* request) {
request->outputs.erase(request->outputs.begin() + output);
});
}
}
///////////////////////////// ENTRY POINT //////////////////////////////////
void validateRequest(const std::shared_ptr<IPreparedModel>& preparedModel, const Request& request) {
removeInputTest(preparedModel, request);
removeOutputTest(preparedModel, request);
}
void validateBurst(const std::shared_ptr<IPreparedModel>& preparedModel, const Request& request) {
// create burst
std::shared_ptr<IBurst> burst;
auto ret = preparedModel->configureExecutionBurst(&burst);
ASSERT_TRUE(ret.isOk()) << ret.getDescription();
ASSERT_NE(nullptr, burst.get());
const auto test = [&burst, &request](const std::vector<int64_t>& slots) {
ExecutionResult executionResult;
const auto executeStatus =
burst->executeSynchronously(request, slots, /*measure=*/false, kNoDeadline,
kOmittedTimeoutDuration, &executionResult);
ASSERT_FALSE(executeStatus.isOk());
ASSERT_EQ(executeStatus.getExceptionCode(), EX_SERVICE_SPECIFIC);
ASSERT_EQ(static_cast<ErrorStatus>(executeStatus.getServiceSpecificError()),
ErrorStatus::INVALID_ARGUMENT);
};
int64_t currentSlot = 0;
std::vector<int64_t> slots;
slots.reserve(request.pools.size());
for (const auto& pool : request.pools) {
if (pool.getTag() == RequestMemoryPool::Tag::pool) {
slots.push_back(currentSlot++);
} else {
slots.push_back(-1);
}
}
constexpr int64_t invalidSlot = -2;
// validate failure when invalid memory identifier token value
for (size_t i = 0; i < request.pools.size(); ++i) {
const int64_t oldSlotValue = slots[i];
slots[i] = invalidSlot;
test(slots);
slots[i] = oldSlotValue;
}
// validate failure when request.pools.size() != memoryIdentifierTokens.size()
if (request.pools.size() > 0) {
slots = std::vector<int64_t>(request.pools.size() - 1, -1);
test(slots);
}
// validate failure when request.pools.size() != memoryIdentifierTokens.size()
slots = std::vector<int64_t>(request.pools.size() + 1, -1);
test(slots);
// validate failure when invalid memory identifier token value
const auto freeStatus = burst->releaseMemoryResource(invalidSlot);
ASSERT_FALSE(freeStatus.isOk());
ASSERT_EQ(freeStatus.getExceptionCode(), EX_SERVICE_SPECIFIC);
ASSERT_EQ(static_cast<ErrorStatus>(freeStatus.getServiceSpecificError()),
ErrorStatus::INVALID_ARGUMENT);
}
void validateRequestFailure(const std::shared_ptr<IPreparedModel>& preparedModel,
const Request& request) {
SCOPED_TRACE("Expecting request to fail [executeSynchronously]");
ExecutionResult executionResult;
const auto executeStatus = preparedModel->executeSynchronously(
request, false, kNoDeadline, kOmittedTimeoutDuration, &executionResult);
ASSERT_FALSE(executeStatus.isOk());
ASSERT_EQ(executeStatus.getExceptionCode(), EX_SERVICE_SPECIFIC);
ASSERT_NE(static_cast<ErrorStatus>(executeStatus.getServiceSpecificError()), ErrorStatus::NONE);
}
} // namespace aidl::android::hardware::neuralnetworks::vts::functional