| #include "hardware_composer.h" |
| |
| #include <cutils/properties.h> |
| #include <cutils/sched_policy.h> |
| #include <fcntl.h> |
| #include <log/log.h> |
| #include <poll.h> |
| #include <stdint.h> |
| #include <sync/sync.h> |
| #include <sys/eventfd.h> |
| #include <sys/prctl.h> |
| #include <sys/resource.h> |
| #include <sys/system_properties.h> |
| #include <sys/timerfd.h> |
| #include <sys/types.h> |
| #include <time.h> |
| #include <unistd.h> |
| #include <utils/Trace.h> |
| |
| #include <algorithm> |
| #include <chrono> |
| #include <functional> |
| #include <map> |
| #include <sstream> |
| #include <string> |
| #include <tuple> |
| |
| #include <dvr/dvr_display_types.h> |
| #include <dvr/performance_client_api.h> |
| #include <private/dvr/clock_ns.h> |
| #include <private/dvr/ion_buffer.h> |
| |
| using android::hardware::Return; |
| using android::hardware::Void; |
| using android::pdx::ErrorStatus; |
| using android::pdx::LocalHandle; |
| using android::pdx::Status; |
| using android::pdx::rpc::EmptyVariant; |
| using android::pdx::rpc::IfAnyOf; |
| |
| using namespace std::chrono_literals; |
| |
| namespace android { |
| namespace dvr { |
| |
| namespace { |
| |
| const char kBacklightBrightnessSysFile[] = |
| "/sys/class/leds/lcd-backlight/brightness"; |
| |
| const char kDvrPerformanceProperty[] = "sys.dvr.performance"; |
| const char kDvrStandaloneProperty[] = "ro.boot.vr"; |
| |
| const char kRightEyeOffsetProperty[] = "dvr.right_eye_offset_ns"; |
| |
| // Get time offset from a vsync to when the pose for that vsync should be |
| // predicted out to. For example, if scanout gets halfway through the frame |
| // at the halfway point between vsyncs, then this could be half the period. |
| // With global shutter displays, this should be changed to the offset to when |
| // illumination begins. Low persistence adds a frame of latency, so we predict |
| // to the center of the next frame. |
| inline int64_t GetPosePredictionTimeOffset(int64_t vsync_period_ns) { |
| return (vsync_period_ns * 150) / 100; |
| } |
| |
| // Attempts to set the scheduler class and partiton for the current thread. |
| // Returns true on success or false on failure. |
| bool SetThreadPolicy(const std::string& scheduler_class, |
| const std::string& partition) { |
| int error = dvrSetSchedulerClass(0, scheduler_class.c_str()); |
| if (error < 0) { |
| ALOGE( |
| "SetThreadPolicy: Failed to set scheduler class \"%s\" for " |
| "thread_id=%d: %s", |
| scheduler_class.c_str(), gettid(), strerror(-error)); |
| return false; |
| } |
| error = dvrSetCpuPartition(0, partition.c_str()); |
| if (error < 0) { |
| ALOGE( |
| "SetThreadPolicy: Failed to set cpu partiton \"%s\" for thread_id=%d: " |
| "%s", |
| partition.c_str(), gettid(), strerror(-error)); |
| return false; |
| } |
| return true; |
| } |
| |
| // Utility to generate scoped tracers with arguments. |
| // TODO(eieio): Move/merge this into utils/Trace.h? |
| class TraceArgs { |
| public: |
| template <typename... Args> |
| TraceArgs(const char* format, Args&&... args) { |
| std::array<char, 1024> buffer; |
| snprintf(buffer.data(), buffer.size(), format, std::forward<Args>(args)...); |
| atrace_begin(ATRACE_TAG, buffer.data()); |
| } |
| |
| ~TraceArgs() { atrace_end(ATRACE_TAG); } |
| |
| private: |
| TraceArgs(const TraceArgs&) = delete; |
| void operator=(const TraceArgs&) = delete; |
| }; |
| |
| // Macro to define a scoped tracer with arguments. Uses PASTE(x, y) macro |
| // defined in utils/Trace.h. |
| #define TRACE_FORMAT(format, ...) \ |
| TraceArgs PASTE(__tracer, __LINE__) { format, ##__VA_ARGS__ } |
| |
| } // anonymous namespace |
| |
| HardwareComposer::HardwareComposer() |
| : initialized_(false), request_display_callback_(nullptr) {} |
| |
| HardwareComposer::~HardwareComposer(void) { |
| UpdatePostThreadState(PostThreadState::Quit, true); |
| if (post_thread_.joinable()) |
| post_thread_.join(); |
| } |
| |
| bool HardwareComposer::Initialize( |
| Hwc2::Composer* composer, RequestDisplayCallback request_display_callback) { |
| if (initialized_) { |
| ALOGE("HardwareComposer::Initialize: already initialized."); |
| return false; |
| } |
| |
| is_standalone_device_ = property_get_bool(kDvrStandaloneProperty, false); |
| |
| request_display_callback_ = request_display_callback; |
| |
| HWC::Error error = HWC::Error::None; |
| |
| Hwc2::Config config; |
| error = composer->getActiveConfig(HWC_DISPLAY_PRIMARY, &config); |
| |
| if (error != HWC::Error::None) { |
| ALOGE("HardwareComposer: Failed to get current display config : %d", |
| config); |
| return false; |
| } |
| |
| error = GetDisplayMetrics(composer, HWC_DISPLAY_PRIMARY, config, |
| &native_display_metrics_); |
| |
| if (error != HWC::Error::None) { |
| ALOGE( |
| "HardwareComposer: Failed to get display attributes for current " |
| "configuration : %d", |
| error.value); |
| return false; |
| } |
| |
| ALOGI( |
| "HardwareComposer: primary display attributes: width=%d height=%d " |
| "vsync_period_ns=%d DPI=%dx%d", |
| native_display_metrics_.width, native_display_metrics_.height, |
| native_display_metrics_.vsync_period_ns, native_display_metrics_.dpi.x, |
| native_display_metrics_.dpi.y); |
| |
| // Set the display metrics but never use rotation to avoid the long latency of |
| // rotation processing in hwc. |
| display_transform_ = HWC_TRANSFORM_NONE; |
| display_metrics_ = native_display_metrics_; |
| |
| // Setup the display metrics used by all Layer instances. |
| Layer::SetDisplayMetrics(native_display_metrics_); |
| |
| post_thread_event_fd_.Reset(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); |
| LOG_ALWAYS_FATAL_IF( |
| !post_thread_event_fd_, |
| "HardwareComposer: Failed to create interrupt event fd : %s", |
| strerror(errno)); |
| |
| post_thread_ = std::thread(&HardwareComposer::PostThread, this); |
| |
| initialized_ = true; |
| |
| return initialized_; |
| } |
| |
| void HardwareComposer::Enable() { |
| UpdatePostThreadState(PostThreadState::Suspended, false); |
| } |
| |
| void HardwareComposer::Disable() { |
| UpdatePostThreadState(PostThreadState::Suspended, true); |
| } |
| |
| // Update the post thread quiescent state based on idle and suspended inputs. |
| void HardwareComposer::UpdatePostThreadState(PostThreadStateType state, |
| bool suspend) { |
| std::unique_lock<std::mutex> lock(post_thread_mutex_); |
| |
| // Update the votes in the state variable before evaluating the effective |
| // quiescent state. Any bits set in post_thread_state_ indicate that the post |
| // thread should be suspended. |
| if (suspend) { |
| post_thread_state_ |= state; |
| } else { |
| post_thread_state_ &= ~state; |
| } |
| |
| const bool quit = post_thread_state_ & PostThreadState::Quit; |
| const bool effective_suspend = post_thread_state_ != PostThreadState::Active; |
| if (quit) { |
| post_thread_quiescent_ = true; |
| eventfd_write(post_thread_event_fd_.Get(), 1); |
| post_thread_wait_.notify_one(); |
| } else if (effective_suspend && !post_thread_quiescent_) { |
| post_thread_quiescent_ = true; |
| eventfd_write(post_thread_event_fd_.Get(), 1); |
| } else if (!effective_suspend && post_thread_quiescent_) { |
| post_thread_quiescent_ = false; |
| eventfd_t value; |
| eventfd_read(post_thread_event_fd_.Get(), &value); |
| post_thread_wait_.notify_one(); |
| } |
| |
| // Wait until the post thread is in the requested state. |
| post_thread_ready_.wait(lock, [this, effective_suspend] { |
| return effective_suspend != post_thread_resumed_; |
| }); |
| } |
| |
| void HardwareComposer::OnPostThreadResumed() { |
| // Phones create a new composer client on resume and destroy it on pause. |
| // Standalones only create the composer client once and then use SetPowerMode |
| // to control the screen on pause/resume. |
| if (!is_standalone_device_ || !composer_) { |
| composer_.reset(new Hwc2::Composer("default")); |
| composer_callback_ = new ComposerCallback; |
| composer_->registerCallback(composer_callback_); |
| Layer::SetComposer(composer_.get()); |
| } else { |
| SetPowerMode(true); |
| } |
| |
| EnableVsync(true); |
| |
| // TODO(skiazyk): We need to do something about accessing this directly, |
| // supposedly there is a backlight service on the way. |
| // TODO(steventhomas): When we change the backlight setting, will surface |
| // flinger (or something else) set it back to its original value once we give |
| // control of the display back to surface flinger? |
| SetBacklightBrightness(255); |
| |
| // Trigger target-specific performance mode change. |
| property_set(kDvrPerformanceProperty, "performance"); |
| } |
| |
| void HardwareComposer::OnPostThreadPaused() { |
| retire_fence_fds_.clear(); |
| layers_.clear(); |
| |
| if (composer_) { |
| EnableVsync(false); |
| } |
| |
| if (!is_standalone_device_) { |
| composer_callback_ = nullptr; |
| composer_.reset(nullptr); |
| Layer::SetComposer(nullptr); |
| } else { |
| SetPowerMode(false); |
| } |
| |
| // Trigger target-specific performance mode change. |
| property_set(kDvrPerformanceProperty, "idle"); |
| } |
| |
| HWC::Error HardwareComposer::Validate(hwc2_display_t display) { |
| uint32_t num_types; |
| uint32_t num_requests; |
| HWC::Error error = |
| composer_->validateDisplay(display, &num_types, &num_requests); |
| |
| if (error == HWC2_ERROR_HAS_CHANGES) { |
| // TODO(skiazyk): We might need to inspect the requested changes first, but |
| // so far it seems like we shouldn't ever hit a bad state. |
| // error = hwc2_funcs_.accept_display_changes_fn_(hardware_composer_device_, |
| // display); |
| error = composer_->acceptDisplayChanges(display); |
| } |
| |
| return error; |
| } |
| |
| HWC::Error HardwareComposer::EnableVsync(bool enabled) { |
| return composer_->setVsyncEnabled( |
| HWC_DISPLAY_PRIMARY, |
| (Hwc2::IComposerClient::Vsync)(enabled ? HWC2_VSYNC_ENABLE |
| : HWC2_VSYNC_DISABLE)); |
| } |
| |
| HWC::Error HardwareComposer::SetPowerMode(bool active) { |
| HWC::PowerMode power_mode = active ? HWC::PowerMode::On : HWC::PowerMode::Off; |
| return composer_->setPowerMode( |
| HWC_DISPLAY_PRIMARY, power_mode.cast<Hwc2::IComposerClient::PowerMode>()); |
| } |
| |
| HWC::Error HardwareComposer::Present(hwc2_display_t display) { |
| int32_t present_fence; |
| HWC::Error error = composer_->presentDisplay(display, &present_fence); |
| |
| // According to the documentation, this fence is signaled at the time of |
| // vsync/DMA for physical displays. |
| if (error == HWC::Error::None) { |
| ATRACE_INT("HardwareComposer: VsyncFence", present_fence); |
| retire_fence_fds_.emplace_back(present_fence); |
| } else { |
| ATRACE_INT("HardwareComposer: PresentResult", error); |
| } |
| |
| return error; |
| } |
| |
| HWC::Error HardwareComposer::GetDisplayAttribute(Hwc2::Composer* composer, |
| hwc2_display_t display, |
| hwc2_config_t config, |
| hwc2_attribute_t attribute, |
| int32_t* out_value) const { |
| return composer->getDisplayAttribute( |
| display, config, (Hwc2::IComposerClient::Attribute)attribute, out_value); |
| } |
| |
| HWC::Error HardwareComposer::GetDisplayMetrics( |
| Hwc2::Composer* composer, hwc2_display_t display, hwc2_config_t config, |
| HWCDisplayMetrics* out_metrics) const { |
| HWC::Error error; |
| |
| error = GetDisplayAttribute(composer, display, config, HWC2_ATTRIBUTE_WIDTH, |
| &out_metrics->width); |
| if (error != HWC::Error::None) { |
| ALOGE( |
| "HardwareComposer::GetDisplayMetrics: Failed to get display width: %s", |
| error.to_string().c_str()); |
| return error; |
| } |
| |
| error = GetDisplayAttribute(composer, display, config, HWC2_ATTRIBUTE_HEIGHT, |
| &out_metrics->height); |
| if (error != HWC::Error::None) { |
| ALOGE( |
| "HardwareComposer::GetDisplayMetrics: Failed to get display height: %s", |
| error.to_string().c_str()); |
| return error; |
| } |
| |
| error = GetDisplayAttribute(composer, display, config, |
| HWC2_ATTRIBUTE_VSYNC_PERIOD, |
| &out_metrics->vsync_period_ns); |
| if (error != HWC::Error::None) { |
| ALOGE( |
| "HardwareComposer::GetDisplayMetrics: Failed to get display height: %s", |
| error.to_string().c_str()); |
| return error; |
| } |
| |
| error = GetDisplayAttribute(composer, display, config, HWC2_ATTRIBUTE_DPI_X, |
| &out_metrics->dpi.x); |
| if (error != HWC::Error::None) { |
| ALOGE( |
| "HardwareComposer::GetDisplayMetrics: Failed to get display DPI X: %s", |
| error.to_string().c_str()); |
| return error; |
| } |
| |
| error = GetDisplayAttribute(composer, display, config, HWC2_ATTRIBUTE_DPI_Y, |
| &out_metrics->dpi.y); |
| if (error != HWC::Error::None) { |
| ALOGE( |
| "HardwareComposer::GetDisplayMetrics: Failed to get display DPI Y: %s", |
| error.to_string().c_str()); |
| return error; |
| } |
| |
| return HWC::Error::None; |
| } |
| |
| std::string HardwareComposer::Dump() { |
| std::unique_lock<std::mutex> lock(post_thread_mutex_); |
| std::ostringstream stream; |
| |
| stream << "Display metrics: " << display_metrics_.width << "x" |
| << display_metrics_.height << " " << (display_metrics_.dpi.x / 1000.0) |
| << "x" << (display_metrics_.dpi.y / 1000.0) << " dpi @ " |
| << (1000000000.0 / display_metrics_.vsync_period_ns) << " Hz" |
| << std::endl; |
| |
| stream << "Post thread resumed: " << post_thread_resumed_ << std::endl; |
| stream << "Active layers: " << layers_.size() << std::endl; |
| stream << std::endl; |
| |
| for (size_t i = 0; i < layers_.size(); i++) { |
| stream << "Layer " << i << ":"; |
| stream << " type=" << layers_[i].GetCompositionType().to_string(); |
| stream << " surface_id=" << layers_[i].GetSurfaceId(); |
| stream << " buffer_id=" << layers_[i].GetBufferId(); |
| stream << std::endl; |
| } |
| stream << std::endl; |
| |
| if (post_thread_resumed_) { |
| stream << "Hardware Composer Debug Info:" << std::endl; |
| stream << composer_->dumpDebugInfo(); |
| } |
| |
| return stream.str(); |
| } |
| |
| void HardwareComposer::PostLayers() { |
| ATRACE_NAME("HardwareComposer::PostLayers"); |
| |
| // Setup the hardware composer layers with current buffers. |
| for (auto& layer : layers_) { |
| layer.Prepare(); |
| } |
| |
| HWC::Error error = Validate(HWC_DISPLAY_PRIMARY); |
| if (error != HWC::Error::None) { |
| ALOGE("HardwareComposer::PostLayers: Validate failed: %s", |
| error.to_string().c_str()); |
| return; |
| } |
| |
| // Now that we have taken in a frame from the application, we have a chance |
| // to drop the frame before passing the frame along to HWC. |
| // If the display driver has become backed up, we detect it here and then |
| // react by skipping this frame to catch up latency. |
| while (!retire_fence_fds_.empty() && |
| (!retire_fence_fds_.front() || |
| sync_wait(retire_fence_fds_.front().Get(), 0) == 0)) { |
| // There are only 2 fences in here, no performance problem to shift the |
| // array of ints. |
| retire_fence_fds_.erase(retire_fence_fds_.begin()); |
| } |
| |
| const bool is_fence_pending = static_cast<int32_t>(retire_fence_fds_.size()) > |
| post_thread_config_.allowed_pending_fence_count; |
| |
| if (is_fence_pending) { |
| ATRACE_INT("frame_skip_count", ++frame_skip_count_); |
| |
| ALOGW_IF(is_fence_pending, |
| "Warning: dropping a frame to catch up with HWC (pending = %zd)", |
| retire_fence_fds_.size()); |
| |
| for (auto& layer : layers_) { |
| layer.Drop(); |
| } |
| return; |
| } else { |
| // Make the transition more obvious in systrace when the frame skip happens |
| // above. |
| ATRACE_INT("frame_skip_count", 0); |
| } |
| |
| #if TRACE > 1 |
| for (size_t i = 0; i < layers_.size(); i++) { |
| ALOGI("HardwareComposer::PostLayers: layer=%zu buffer_id=%d composition=%s", |
| i, layers_[i].GetBufferId(), |
| layers_[i].GetCompositionType().to_string().c_str()); |
| } |
| #endif |
| |
| error = Present(HWC_DISPLAY_PRIMARY); |
| if (error != HWC::Error::None) { |
| ALOGE("HardwareComposer::PostLayers: Present failed: %s", |
| error.to_string().c_str()); |
| return; |
| } |
| |
| std::vector<Hwc2::Layer> out_layers; |
| std::vector<int> out_fences; |
| error = composer_->getReleaseFences(HWC_DISPLAY_PRIMARY, &out_layers, |
| &out_fences); |
| ALOGE_IF(error != HWC::Error::None, |
| "HardwareComposer::PostLayers: Failed to get release fences: %s", |
| error.to_string().c_str()); |
| |
| // Perform post-frame bookkeeping. |
| uint32_t num_elements = out_layers.size(); |
| for (size_t i = 0; i < num_elements; ++i) { |
| for (auto& layer : layers_) { |
| if (layer.GetLayerHandle() == out_layers[i]) { |
| layer.Finish(out_fences[i]); |
| } |
| } |
| } |
| } |
| |
| void HardwareComposer::SetDisplaySurfaces( |
| std::vector<std::shared_ptr<DirectDisplaySurface>> surfaces) { |
| ALOGI("HardwareComposer::SetDisplaySurfaces: surface count=%zd", |
| surfaces.size()); |
| const bool display_idle = surfaces.size() == 0; |
| { |
| std::unique_lock<std::mutex> lock(post_thread_mutex_); |
| pending_surfaces_ = std::move(surfaces); |
| } |
| |
| if (request_display_callback_ && (!is_standalone_device_ || !composer_)) |
| request_display_callback_(!display_idle); |
| |
| // Set idle state based on whether there are any surfaces to handle. |
| UpdatePostThreadState(PostThreadState::Idle, display_idle); |
| } |
| |
| int HardwareComposer::OnNewGlobalBuffer(DvrGlobalBufferKey key, |
| IonBuffer& ion_buffer) { |
| if (key == DvrGlobalBuffers::kVsyncBuffer) { |
| vsync_ring_ = std::make_unique<CPUMappedBroadcastRing<DvrVsyncRing>>( |
| &ion_buffer, CPUUsageMode::WRITE_OFTEN); |
| |
| if (vsync_ring_->IsMapped() == false) { |
| return -EPERM; |
| } |
| } |
| |
| if (key == DvrGlobalBuffers::kVrFlingerConfigBufferKey) { |
| return MapConfigBuffer(ion_buffer); |
| } |
| |
| return 0; |
| } |
| |
| void HardwareComposer::OnDeletedGlobalBuffer(DvrGlobalBufferKey key) { |
| if (key == DvrGlobalBuffers::kVrFlingerConfigBufferKey) { |
| ConfigBufferDeleted(); |
| } |
| } |
| |
| int HardwareComposer::MapConfigBuffer(IonBuffer& ion_buffer) { |
| std::lock_guard<std::mutex> lock(shared_config_mutex_); |
| shared_config_ring_ = DvrConfigRing(); |
| |
| if (ion_buffer.width() < DvrConfigRing::MemorySize()) { |
| ALOGE("HardwareComposer::MapConfigBuffer: invalid buffer size."); |
| return -EINVAL; |
| } |
| |
| void* buffer_base = 0; |
| int result = ion_buffer.Lock(ion_buffer.usage(), 0, 0, ion_buffer.width(), |
| ion_buffer.height(), &buffer_base); |
| if (result != 0) { |
| ALOGE( |
| "HardwareComposer::MapConfigBuffer: Failed to map vrflinger config " |
| "buffer."); |
| return -EPERM; |
| } |
| |
| shared_config_ring_ = DvrConfigRing::Create(buffer_base, ion_buffer.width()); |
| ion_buffer.Unlock(); |
| |
| return 0; |
| } |
| |
| void HardwareComposer::ConfigBufferDeleted() { |
| std::lock_guard<std::mutex> lock(shared_config_mutex_); |
| shared_config_ring_ = DvrConfigRing(); |
| } |
| |
| void HardwareComposer::UpdateConfigBuffer() { |
| std::lock_guard<std::mutex> lock(shared_config_mutex_); |
| if (!shared_config_ring_.is_valid()) |
| return; |
| // Copy from latest record in shared_config_ring_ to local copy. |
| DvrConfig record; |
| if (shared_config_ring_.GetNewest(&shared_config_ring_sequence_, &record)) { |
| post_thread_config_ = record; |
| } |
| } |
| |
| int HardwareComposer::PostThreadPollInterruptible( |
| const pdx::LocalHandle& event_fd, int requested_events, int timeout_ms) { |
| pollfd pfd[2] = { |
| { |
| .fd = event_fd.Get(), |
| .events = static_cast<short>(requested_events), |
| .revents = 0, |
| }, |
| { |
| .fd = post_thread_event_fd_.Get(), |
| .events = POLLPRI | POLLIN, |
| .revents = 0, |
| }, |
| }; |
| int ret, error; |
| do { |
| ret = poll(pfd, 2, timeout_ms); |
| error = errno; |
| ALOGW_IF(ret < 0, |
| "HardwareComposer::PostThreadPollInterruptible: Error during " |
| "poll(): %s (%d)", |
| strerror(error), error); |
| } while (ret < 0 && error == EINTR); |
| |
| if (ret < 0) { |
| return -error; |
| } else if (ret == 0) { |
| return -ETIMEDOUT; |
| } else if (pfd[0].revents != 0) { |
| return 0; |
| } else if (pfd[1].revents != 0) { |
| ALOGI("VrHwcPost thread interrupted: revents=%x", pfd[1].revents); |
| return kPostThreadInterrupted; |
| } else { |
| return 0; |
| } |
| } |
| |
| Status<int64_t> HardwareComposer::GetVSyncTime() { |
| auto status = composer_callback_->GetVsyncTime(HWC_DISPLAY_PRIMARY); |
| ALOGE_IF(!status, |
| "HardwareComposer::GetVSyncTime: Failed to get vsync timestamp: %s", |
| status.GetErrorMessage().c_str()); |
| return status; |
| } |
| |
| // Waits for the next vsync and returns the timestamp of the vsync event. If |
| // vsync already passed since the last call, returns the latest vsync timestamp |
| // instead of blocking. |
| Status<int64_t> HardwareComposer::WaitForVSync() { |
| const int64_t predicted_vsync_time = |
| last_vsync_timestamp_ + |
| display_metrics_.vsync_period_ns * vsync_prediction_interval_; |
| const int error = SleepUntil(predicted_vsync_time); |
| if (error < 0) { |
| ALOGE("HardwareComposer::WaifForVSync:: Failed to sleep: %s", |
| strerror(-error)); |
| return error; |
| } |
| return {predicted_vsync_time}; |
| } |
| |
| int HardwareComposer::SleepUntil(int64_t wakeup_timestamp) { |
| const int timer_fd = vsync_sleep_timer_fd_.Get(); |
| const itimerspec wakeup_itimerspec = { |
| .it_interval = {.tv_sec = 0, .tv_nsec = 0}, |
| .it_value = NsToTimespec(wakeup_timestamp), |
| }; |
| int ret = |
| timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &wakeup_itimerspec, nullptr); |
| int error = errno; |
| if (ret < 0) { |
| ALOGE("HardwareComposer::SleepUntil: Failed to set timerfd: %s", |
| strerror(error)); |
| return -error; |
| } |
| |
| return PostThreadPollInterruptible(vsync_sleep_timer_fd_, POLLIN, |
| /*timeout_ms*/ -1); |
| } |
| |
| void HardwareComposer::PostThread() { |
| // NOLINTNEXTLINE(runtime/int) |
| prctl(PR_SET_NAME, reinterpret_cast<unsigned long>("VrHwcPost"), 0, 0, 0); |
| |
| // Set the scheduler to SCHED_FIFO with high priority. If this fails here |
| // there may have been a startup timing issue between this thread and |
| // performanced. Try again later when this thread becomes active. |
| bool thread_policy_setup = |
| SetThreadPolicy("graphics:high", "/system/performance"); |
| |
| #if ENABLE_BACKLIGHT_BRIGHTNESS |
| // TODO(hendrikw): This isn't required at the moment. It's possible that there |
| // is another method to access this when needed. |
| // Open the backlight brightness control sysfs node. |
| backlight_brightness_fd_ = LocalHandle(kBacklightBrightnessSysFile, O_RDWR); |
| ALOGW_IF(!backlight_brightness_fd_, |
| "HardwareComposer: Failed to open backlight brightness control: %s", |
| strerror(errno)); |
| #endif // ENABLE_BACKLIGHT_BRIGHTNESS |
| |
| // Create a timerfd based on CLOCK_MONOTINIC. |
| vsync_sleep_timer_fd_.Reset(timerfd_create(CLOCK_MONOTONIC, 0)); |
| LOG_ALWAYS_FATAL_IF( |
| !vsync_sleep_timer_fd_, |
| "HardwareComposer: Failed to create vsync sleep timerfd: %s", |
| strerror(errno)); |
| |
| const int64_t ns_per_frame = display_metrics_.vsync_period_ns; |
| const int64_t photon_offset_ns = GetPosePredictionTimeOffset(ns_per_frame); |
| |
| // TODO(jbates) Query vblank time from device, when such an API is available. |
| // This value (6.3%) was measured on A00 in low persistence mode. |
| int64_t vblank_ns = ns_per_frame * 63 / 1000; |
| int64_t right_eye_photon_offset_ns = (ns_per_frame - vblank_ns) / 2; |
| |
| // Check property for overriding right eye offset value. |
| right_eye_photon_offset_ns = |
| property_get_int64(kRightEyeOffsetProperty, right_eye_photon_offset_ns); |
| |
| bool was_running = false; |
| |
| while (1) { |
| ATRACE_NAME("HardwareComposer::PostThread"); |
| |
| // Check for updated config once per vsync. |
| UpdateConfigBuffer(); |
| |
| while (post_thread_quiescent_) { |
| std::unique_lock<std::mutex> lock(post_thread_mutex_); |
| ALOGI("HardwareComposer::PostThread: Entering quiescent state."); |
| |
| // Tear down resources if necessary. |
| if (was_running) |
| OnPostThreadPaused(); |
| |
| was_running = false; |
| post_thread_resumed_ = false; |
| post_thread_ready_.notify_all(); |
| |
| if (post_thread_state_ & PostThreadState::Quit) { |
| ALOGI("HardwareComposer::PostThread: Quitting."); |
| return; |
| } |
| |
| post_thread_wait_.wait(lock, [this] { return !post_thread_quiescent_; }); |
| |
| post_thread_resumed_ = true; |
| post_thread_ready_.notify_all(); |
| |
| ALOGI("HardwareComposer::PostThread: Exiting quiescent state."); |
| } |
| |
| if (!was_running) { |
| // Setup resources. |
| OnPostThreadResumed(); |
| was_running = true; |
| |
| // Try to setup the scheduler policy if it failed during startup. Only |
| // attempt to do this on transitions from inactive to active to avoid |
| // spamming the system with RPCs and log messages. |
| if (!thread_policy_setup) { |
| thread_policy_setup = |
| SetThreadPolicy("graphics:high", "/system/performance"); |
| } |
| |
| // Initialize the last vsync timestamp with the current time. The |
| // predictor below uses this time + the vsync interval in absolute time |
| // units for the initial delay. Once the driver starts reporting vsync the |
| // predictor will sync up with the real vsync. |
| last_vsync_timestamp_ = GetSystemClockNs(); |
| } |
| |
| int64_t vsync_timestamp = 0; |
| { |
| TRACE_FORMAT("wait_vsync|vsync=%u;last_timestamp=%" PRId64 |
| ";prediction_interval=%d|", |
| vsync_count_ + 1, last_vsync_timestamp_, |
| vsync_prediction_interval_); |
| |
| auto status = WaitForVSync(); |
| ALOGE_IF( |
| !status, |
| "HardwareComposer::PostThread: Failed to wait for vsync event: %s", |
| status.GetErrorMessage().c_str()); |
| |
| // If there was an error either sleeping was interrupted due to pausing or |
| // there was an error getting the latest timestamp. |
| if (!status) |
| continue; |
| |
| // Predicted vsync timestamp for this interval. This is stable because we |
| // use absolute time for the wakeup timer. |
| vsync_timestamp = status.get(); |
| } |
| |
| // Advance the vsync counter only if the system is keeping up with hardware |
| // vsync to give clients an indication of the delays. |
| if (vsync_prediction_interval_ == 1) |
| ++vsync_count_; |
| |
| const bool layer_config_changed = UpdateLayerConfig(); |
| |
| // Publish the vsync event. |
| if (vsync_ring_) { |
| DvrVsync vsync; |
| vsync.vsync_count = vsync_count_; |
| vsync.vsync_timestamp_ns = vsync_timestamp; |
| vsync.vsync_left_eye_offset_ns = photon_offset_ns; |
| vsync.vsync_right_eye_offset_ns = right_eye_photon_offset_ns; |
| vsync.vsync_period_ns = ns_per_frame; |
| |
| vsync_ring_->Publish(vsync); |
| } |
| |
| // Signal all of the vsync clients. Because absolute time is used for the |
| // wakeup time below, this can take a little time if necessary. |
| if (vsync_callback_) |
| vsync_callback_(HWC_DISPLAY_PRIMARY, vsync_timestamp, |
| /*frame_time_estimate*/ 0, vsync_count_); |
| |
| { |
| // Sleep until shortly before vsync. |
| ATRACE_NAME("sleep"); |
| |
| const int64_t display_time_est_ns = vsync_timestamp + ns_per_frame; |
| const int64_t now_ns = GetSystemClockNs(); |
| const int64_t sleep_time_ns = display_time_est_ns - now_ns - |
| post_thread_config_.frame_post_offset_ns; |
| const int64_t wakeup_time_ns = |
| display_time_est_ns - post_thread_config_.frame_post_offset_ns; |
| |
| ATRACE_INT64("sleep_time_ns", sleep_time_ns); |
| if (sleep_time_ns > 0) { |
| int error = SleepUntil(wakeup_time_ns); |
| ALOGE_IF(error < 0, "HardwareComposer::PostThread: Failed to sleep: %s", |
| strerror(-error)); |
| if (error == kPostThreadInterrupted) { |
| if (layer_config_changed) { |
| // If the layer config changed we need to validateDisplay() even if |
| // we're going to drop the frame, to flush the Composer object's |
| // internal command buffer and apply our layer changes. |
| Validate(HWC_DISPLAY_PRIMARY); |
| } |
| continue; |
| } |
| } |
| } |
| |
| { |
| auto status = GetVSyncTime(); |
| if (!status) { |
| ALOGE("HardwareComposer::PostThread: Failed to get VSYNC time: %s", |
| status.GetErrorMessage().c_str()); |
| } |
| |
| // If we failed to read vsync there might be a problem with the driver. |
| // Since there's nothing we can do just behave as though we didn't get an |
| // updated vsync time and let the prediction continue. |
| const int64_t current_vsync_timestamp = |
| status ? status.get() : last_vsync_timestamp_; |
| |
| const bool vsync_delayed = |
| last_vsync_timestamp_ == current_vsync_timestamp; |
| ATRACE_INT("vsync_delayed", vsync_delayed); |
| |
| // If vsync was delayed advance the prediction interval and allow the |
| // fence logic in PostLayers() to skip the frame. |
| if (vsync_delayed) { |
| ALOGW( |
| "HardwareComposer::PostThread: VSYNC timestamp did not advance " |
| "since last frame: timestamp=%" PRId64 " prediction_interval=%d", |
| current_vsync_timestamp, vsync_prediction_interval_); |
| vsync_prediction_interval_++; |
| } else { |
| // We have an updated vsync timestamp, reset the prediction interval. |
| last_vsync_timestamp_ = current_vsync_timestamp; |
| vsync_prediction_interval_ = 1; |
| } |
| } |
| |
| PostLayers(); |
| } |
| } |
| |
| // Checks for changes in the surface stack and updates the layer config to |
| // accomodate the new stack. |
| bool HardwareComposer::UpdateLayerConfig() { |
| std::vector<std::shared_ptr<DirectDisplaySurface>> surfaces; |
| { |
| std::unique_lock<std::mutex> lock(post_thread_mutex_); |
| if (pending_surfaces_.empty()) |
| return false; |
| |
| surfaces = std::move(pending_surfaces_); |
| } |
| |
| ATRACE_NAME("UpdateLayerConfig_HwLayers"); |
| |
| // Sort the new direct surface list by z-order to determine the relative order |
| // of the surfaces. This relative order is used for the HWC z-order value to |
| // insulate VrFlinger and HWC z-order semantics from each other. |
| std::sort(surfaces.begin(), surfaces.end(), [](const auto& a, const auto& b) { |
| return a->z_order() < b->z_order(); |
| }); |
| |
| // Prepare a new layer stack, pulling in layers from the previous |
| // layer stack that are still active and updating their attributes. |
| std::vector<Layer> layers; |
| size_t layer_index = 0; |
| for (const auto& surface : surfaces) { |
| // The bottom layer is opaque, other layers blend. |
| HWC::BlendMode blending = |
| layer_index == 0 ? HWC::BlendMode::None : HWC::BlendMode::Coverage; |
| |
| // Try to find a layer for this surface in the set of active layers. |
| auto search = |
| std::lower_bound(layers_.begin(), layers_.end(), surface->surface_id()); |
| const bool found = search != layers_.end() && |
| search->GetSurfaceId() == surface->surface_id(); |
| if (found) { |
| // Update the attributes of the layer that may have changed. |
| search->SetBlending(blending); |
| search->SetZOrder(layer_index); // Relative z-order. |
| |
| // Move the existing layer to the new layer set and remove the empty layer |
| // object from the current set. |
| layers.push_back(std::move(*search)); |
| layers_.erase(search); |
| } else { |
| // Insert a layer for the new surface. |
| layers.emplace_back(surface, blending, display_transform_, |
| HWC::Composition::Device, layer_index); |
| } |
| |
| ALOGI_IF( |
| TRACE, |
| "HardwareComposer::UpdateLayerConfig: layer_index=%zu surface_id=%d", |
| layer_index, layers[layer_index].GetSurfaceId()); |
| |
| layer_index++; |
| } |
| |
| // Sort the new layer stack by ascending surface id. |
| std::sort(layers.begin(), layers.end()); |
| |
| // Replace the previous layer set with the new layer set. The destructor of |
| // the previous set will clean up the remaining Layers that are not moved to |
| // the new layer set. |
| layers_ = std::move(layers); |
| |
| ALOGD_IF(TRACE, "HardwareComposer::UpdateLayerConfig: %zd active layers", |
| layers_.size()); |
| return true; |
| } |
| |
| void HardwareComposer::SetVSyncCallback(VSyncCallback callback) { |
| vsync_callback_ = callback; |
| } |
| |
| void HardwareComposer::SetBacklightBrightness(int brightness) { |
| if (backlight_brightness_fd_) { |
| std::array<char, 32> text; |
| const int length = snprintf(text.data(), text.size(), "%d", brightness); |
| write(backlight_brightness_fd_.Get(), text.data(), length); |
| } |
| } |
| |
| Return<void> HardwareComposer::ComposerCallback::onHotplug( |
| Hwc2::Display display, IComposerCallback::Connection /*conn*/) { |
| // See if the driver supports the vsync_event node in sysfs. |
| if (display < HWC_NUM_PHYSICAL_DISPLAY_TYPES && |
| !displays_[display].driver_vsync_event_fd) { |
| std::array<char, 1024> buffer; |
| snprintf(buffer.data(), buffer.size(), |
| "/sys/class/graphics/fb%" PRIu64 "/vsync_event", display); |
| if (LocalHandle handle{buffer.data(), O_RDONLY}) { |
| ALOGI( |
| "HardwareComposer::ComposerCallback::onHotplug: Driver supports " |
| "vsync_event node for display %" PRIu64, |
| display); |
| displays_[display].driver_vsync_event_fd = std::move(handle); |
| } else { |
| ALOGI( |
| "HardwareComposer::ComposerCallback::onHotplug: Driver does not " |
| "support vsync_event node for display %" PRIu64, |
| display); |
| } |
| } |
| |
| return Void(); |
| } |
| |
| Return<void> HardwareComposer::ComposerCallback::onRefresh( |
| Hwc2::Display /*display*/) { |
| return hardware::Void(); |
| } |
| |
| Return<void> HardwareComposer::ComposerCallback::onVsync(Hwc2::Display display, |
| int64_t timestamp) { |
| TRACE_FORMAT("vsync_callback|display=%" PRIu64 ";timestamp=%" PRId64 "|", |
| display, timestamp); |
| if (display < HWC_NUM_PHYSICAL_DISPLAY_TYPES) { |
| displays_[display].callback_vsync_timestamp = timestamp; |
| } else { |
| ALOGW( |
| "HardwareComposer::ComposerCallback::onVsync: Received vsync on " |
| "non-physical display: display=%" PRId64, |
| display); |
| } |
| return Void(); |
| } |
| |
| Status<int64_t> HardwareComposer::ComposerCallback::GetVsyncTime( |
| Hwc2::Display display) { |
| if (display >= HWC_NUM_PHYSICAL_DISPLAY_TYPES) { |
| ALOGE( |
| "HardwareComposer::ComposerCallback::GetVsyncTime: Invalid physical " |
| "display requested: display=%" PRIu64, |
| display); |
| return ErrorStatus(EINVAL); |
| } |
| |
| // See if the driver supports direct vsync events. |
| LocalHandle& event_fd = displays_[display].driver_vsync_event_fd; |
| if (!event_fd) { |
| // Fall back to returning the last timestamp returned by the vsync |
| // callback. |
| std::lock_guard<std::mutex> autolock(vsync_mutex_); |
| return displays_[display].callback_vsync_timestamp; |
| } |
| |
| // When the driver supports the vsync_event sysfs node we can use it to |
| // determine the latest vsync timestamp, even if the HWC callback has been |
| // delayed. |
| |
| // The driver returns data in the form "VSYNC=<timestamp ns>". |
| std::array<char, 32> data; |
| data.fill('\0'); |
| |
| // Seek back to the beginning of the event file. |
| int ret = lseek(event_fd.Get(), 0, SEEK_SET); |
| if (ret < 0) { |
| const int error = errno; |
| ALOGE( |
| "HardwareComposer::ComposerCallback::GetVsyncTime: Failed to seek " |
| "vsync event fd: %s", |
| strerror(error)); |
| return ErrorStatus(error); |
| } |
| |
| // Read the vsync event timestamp. |
| ret = read(event_fd.Get(), data.data(), data.size()); |
| if (ret < 0) { |
| const int error = errno; |
| ALOGE_IF(error != EAGAIN, |
| "HardwareComposer::ComposerCallback::GetVsyncTime: Error " |
| "while reading timestamp: %s", |
| strerror(error)); |
| return ErrorStatus(error); |
| } |
| |
| int64_t timestamp; |
| ret = sscanf(data.data(), "VSYNC=%" PRIu64, |
| reinterpret_cast<uint64_t*>(×tamp)); |
| if (ret < 0) { |
| const int error = errno; |
| ALOGE( |
| "HardwareComposer::ComposerCallback::GetVsyncTime: Error while " |
| "parsing timestamp: %s", |
| strerror(error)); |
| return ErrorStatus(error); |
| } |
| |
| return {timestamp}; |
| } |
| |
| Hwc2::Composer* Layer::composer_{nullptr}; |
| HWCDisplayMetrics Layer::display_metrics_{0, 0, {0, 0}, 0}; |
| |
| void Layer::Reset() { |
| if (hardware_composer_layer_) { |
| composer_->destroyLayer(HWC_DISPLAY_PRIMARY, hardware_composer_layer_); |
| hardware_composer_layer_ = 0; |
| } |
| |
| z_order_ = 0; |
| blending_ = HWC::BlendMode::None; |
| transform_ = HWC::Transform::None; |
| composition_type_ = HWC::Composition::Invalid; |
| target_composition_type_ = composition_type_; |
| source_ = EmptyVariant{}; |
| acquire_fence_.Close(); |
| surface_rect_functions_applied_ = false; |
| pending_visibility_settings_ = true; |
| cached_buffer_map_.clear(); |
| } |
| |
| Layer::Layer(const std::shared_ptr<DirectDisplaySurface>& surface, |
| HWC::BlendMode blending, HWC::Transform transform, |
| HWC::Composition composition_type, size_t z_order) |
| : z_order_{z_order}, |
| blending_{blending}, |
| transform_{transform}, |
| target_composition_type_{composition_type}, |
| source_{SourceSurface{surface}} { |
| CommonLayerSetup(); |
| } |
| |
| Layer::Layer(const std::shared_ptr<IonBuffer>& buffer, HWC::BlendMode blending, |
| HWC::Transform transform, HWC::Composition composition_type, |
| size_t z_order) |
| : z_order_{z_order}, |
| blending_{blending}, |
| transform_{transform}, |
| target_composition_type_{composition_type}, |
| source_{SourceBuffer{buffer}} { |
| CommonLayerSetup(); |
| } |
| |
| Layer::~Layer() { Reset(); } |
| |
| Layer::Layer(Layer&& other) { *this = std::move(other); } |
| |
| Layer& Layer::operator=(Layer&& other) { |
| if (this != &other) { |
| Reset(); |
| using std::swap; |
| swap(hardware_composer_layer_, other.hardware_composer_layer_); |
| swap(z_order_, other.z_order_); |
| swap(blending_, other.blending_); |
| swap(transform_, other.transform_); |
| swap(composition_type_, other.composition_type_); |
| swap(target_composition_type_, other.target_composition_type_); |
| swap(source_, other.source_); |
| swap(acquire_fence_, other.acquire_fence_); |
| swap(surface_rect_functions_applied_, |
| other.surface_rect_functions_applied_); |
| swap(pending_visibility_settings_, other.pending_visibility_settings_); |
| swap(cached_buffer_map_, other.cached_buffer_map_); |
| } |
| return *this; |
| } |
| |
| void Layer::UpdateBuffer(const std::shared_ptr<IonBuffer>& buffer) { |
| if (source_.is<SourceBuffer>()) |
| std::get<SourceBuffer>(source_) = {buffer}; |
| } |
| |
| void Layer::SetBlending(HWC::BlendMode blending) { |
| if (blending_ != blending) { |
| blending_ = blending; |
| pending_visibility_settings_ = true; |
| } |
| } |
| |
| void Layer::SetZOrder(size_t z_order) { |
| if (z_order_ != z_order) { |
| z_order_ = z_order; |
| pending_visibility_settings_ = true; |
| } |
| } |
| |
| IonBuffer* Layer::GetBuffer() { |
| struct Visitor { |
| IonBuffer* operator()(SourceSurface& source) { return source.GetBuffer(); } |
| IonBuffer* operator()(SourceBuffer& source) { return source.GetBuffer(); } |
| IonBuffer* operator()(EmptyVariant) { return nullptr; } |
| }; |
| return source_.Visit(Visitor{}); |
| } |
| |
| void Layer::UpdateVisibilitySettings() { |
| if (pending_visibility_settings_) { |
| pending_visibility_settings_ = false; |
| |
| HWC::Error error; |
| hwc2_display_t display = HWC_DISPLAY_PRIMARY; |
| |
| error = composer_->setLayerBlendMode( |
| display, hardware_composer_layer_, |
| blending_.cast<Hwc2::IComposerClient::BlendMode>()); |
| ALOGE_IF(error != HWC::Error::None, |
| "Layer::UpdateLayerSettings: Error setting layer blend mode: %s", |
| error.to_string().c_str()); |
| |
| error = |
| composer_->setLayerZOrder(display, hardware_composer_layer_, z_order_); |
| ALOGE_IF(error != HWC::Error::None, |
| "Layer::UpdateLayerSettings: Error setting z_ order: %s", |
| error.to_string().c_str()); |
| } |
| } |
| |
| void Layer::UpdateLayerSettings() { |
| HWC::Error error; |
| hwc2_display_t display = HWC_DISPLAY_PRIMARY; |
| |
| UpdateVisibilitySettings(); |
| |
| // TODO(eieio): Use surface attributes or some other mechanism to control |
| // the layer display frame. |
| error = composer_->setLayerDisplayFrame( |
| display, hardware_composer_layer_, |
| {0, 0, display_metrics_.width, display_metrics_.height}); |
| ALOGE_IF(error != HWC::Error::None, |
| "Layer::UpdateLayerSettings: Error setting layer display frame: %s", |
| error.to_string().c_str()); |
| |
| error = composer_->setLayerVisibleRegion( |
| display, hardware_composer_layer_, |
| {{0, 0, display_metrics_.width, display_metrics_.height}}); |
| ALOGE_IF(error != HWC::Error::None, |
| "Layer::UpdateLayerSettings: Error setting layer visible region: %s", |
| error.to_string().c_str()); |
| |
| error = |
| composer_->setLayerPlaneAlpha(display, hardware_composer_layer_, 1.0f); |
| ALOGE_IF(error != HWC::Error::None, |
| "Layer::UpdateLayerSettings: Error setting layer plane alpha: %s", |
| error.to_string().c_str()); |
| } |
| |
| void Layer::CommonLayerSetup() { |
| HWC::Error error = |
| composer_->createLayer(HWC_DISPLAY_PRIMARY, &hardware_composer_layer_); |
| ALOGE_IF(error != HWC::Error::None, |
| "Layer::CommonLayerSetup: Failed to create layer on primary " |
| "display: %s", |
| error.to_string().c_str()); |
| UpdateLayerSettings(); |
| } |
| |
| bool Layer::CheckAndUpdateCachedBuffer(std::size_t slot, int buffer_id) { |
| auto search = cached_buffer_map_.find(slot); |
| if (search != cached_buffer_map_.end() && search->second == buffer_id) |
| return true; |
| |
| // Assign or update the buffer slot. |
| if (buffer_id >= 0) |
| cached_buffer_map_[slot] = buffer_id; |
| return false; |
| } |
| |
| void Layer::Prepare() { |
| int right, bottom, id; |
| sp<GraphicBuffer> handle; |
| std::size_t slot; |
| |
| // Acquire the next buffer according to the type of source. |
| IfAnyOf<SourceSurface, SourceBuffer>::Call(&source_, [&](auto& source) { |
| std::tie(right, bottom, id, handle, acquire_fence_, slot) = |
| source.Acquire(); |
| }); |
| |
| TRACE_FORMAT("Layer::Prepare|buffer_id=%d;slot=%zu|", id, slot); |
| |
| // Update any visibility (blending, z-order) changes that occurred since |
| // last prepare. |
| UpdateVisibilitySettings(); |
| |
| // When a layer is first setup there may be some time before the first |
| // buffer arrives. Setup the HWC layer as a solid color to stall for time |
| // until the first buffer arrives. Once the first buffer arrives there will |
| // always be a buffer for the frame even if it is old. |
| if (!handle.get()) { |
| if (composition_type_ == HWC::Composition::Invalid) { |
| composition_type_ = HWC::Composition::SolidColor; |
| composer_->setLayerCompositionType( |
| HWC_DISPLAY_PRIMARY, hardware_composer_layer_, |
| composition_type_.cast<Hwc2::IComposerClient::Composition>()); |
| Hwc2::IComposerClient::Color layer_color = {0, 0, 0, 0}; |
| composer_->setLayerColor(HWC_DISPLAY_PRIMARY, hardware_composer_layer_, |
| layer_color); |
| } else { |
| // The composition type is already set. Nothing else to do until a |
| // buffer arrives. |
| } |
| } else { |
| if (composition_type_ != target_composition_type_) { |
| composition_type_ = target_composition_type_; |
| composer_->setLayerCompositionType( |
| HWC_DISPLAY_PRIMARY, hardware_composer_layer_, |
| composition_type_.cast<Hwc2::IComposerClient::Composition>()); |
| } |
| |
| // See if the HWC cache already has this buffer. |
| const bool cached = CheckAndUpdateCachedBuffer(slot, id); |
| if (cached) |
| handle = nullptr; |
| |
| HWC::Error error{HWC::Error::None}; |
| error = |
| composer_->setLayerBuffer(HWC_DISPLAY_PRIMARY, hardware_composer_layer_, |
| slot, handle, acquire_fence_.Get()); |
| |
| ALOGE_IF(error != HWC::Error::None, |
| "Layer::Prepare: Error setting layer buffer: %s", |
| error.to_string().c_str()); |
| |
| if (!surface_rect_functions_applied_) { |
| const float float_right = right; |
| const float float_bottom = bottom; |
| error = composer_->setLayerSourceCrop(HWC_DISPLAY_PRIMARY, |
| hardware_composer_layer_, |
| {0, 0, float_right, float_bottom}); |
| |
| ALOGE_IF(error != HWC::Error::None, |
| "Layer::Prepare: Error setting layer source crop: %s", |
| error.to_string().c_str()); |
| |
| surface_rect_functions_applied_ = true; |
| } |
| } |
| } |
| |
| void Layer::Finish(int release_fence_fd) { |
| IfAnyOf<SourceSurface, SourceBuffer>::Call( |
| &source_, [release_fence_fd](auto& source) { |
| source.Finish(LocalHandle(release_fence_fd)); |
| }); |
| } |
| |
| void Layer::Drop() { acquire_fence_.Close(); } |
| |
| } // namespace dvr |
| } // namespace android |