blob: b1b44f0b41028f2aab53dc233e39dc7579568c00 [file] [log] [blame]
/* ------------------------------------------------------------------
* Copyright (C) 1998-2009 PacketVideo
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied.
* See the License for the specific language governing permissions
* and limitations under the License.
* -------------------------------------------------------------------
*/
/*
Pathname: trans4m_time_2_freq_fxp.c
Function: trans4m_time_2_freq_fxp
------------------------------------------------------------------------------
REVISION HISTORY
Description:
Modified normalization, so it now happen per window basis, eliminated
shifts left or rigth to accomodate TNS inverse filtering. The output
is 32 bits but only the lowest 16 are being used.
Modified fuction interface
Description: Modified variable names with leading "p" for pointers
Description:
Modified call to mdct_fxp to reflect extended precision use. Added routine
buffer_adaptation to extract 16 MSB and keep highest precision.
Modify casting to ensure proper operations for different platforms
Description:
Added comments according to code review
Description:
Removed include file "buffer_normalization.h"
Description:
Eliminated buffer_adaptation() and embedded its functionality in other
functions. Commented out the short window section given that this is
not supported by the standards
Description:
Added shift down operation for case when the window was equal to one.
This was not needed previuosly because buffer_adaptation() was doing
it.
Description: Created local version of vectors Long_Window_fxp and
Short_Window_fxp. This solve linking problem when using the
/ropi option (Read-only position independent) for some
compilers.
Who: Date:
Description:
------------------------------------------------------------------------------
INPUT AND OUTPUT DEFINITIONS
Inputs:
Time2Freq_data = buffer with data in the time domain, it holds 2048
points of input time data
Output holds frequency (first 1024 points )
type Int32
wnd_seq = window sequence
type WINDOW_SEQUENCE
wnd_shape_prev_bk = previous window shape type
type Int
wnd_shape_this_bk = current window shape type
type Int
pQ_format = Holds the Q format of the data in, and data out
type Int *
mem_4_in_place_FFT[] = scratch memory for computing FFT, 1024 point
type Int32
Local Stores/Buffers/Pointers Needed:
None
Global Stores/Buffers/Pointers Needed:
None
Outputs:
None
Pointers and Buffers Modified:
Frequency information (1024 pts.) is returned in Time2Freq_data
pQ_format content spectral coefficients Q format
Local Stores Modified:
None
Global Stores Modified:
None
------------------------------------------------------------------------------
FUNCTION DESCRIPTION
The time/frequency representation of the signal is mapped onto the frequency
domain by feeding it into the filterbank module. This module consists of
a modified discrete cosine transform (MDCT), (windowing and DCT).
In order to adapt the time/frequency resolution of the filterbank to the
characteristics of the input signal, a block switching tool is also
adopted. N represents the window length, where N is a function of the
window_sequence. For each channel, the N time values are transformed into the
N/2 frequency domain values via the MDCT.
The adaptation of the time-frequency resolution of the filterbank to the
characteristics of the input signal is done by shifting between transforms
whose input lengths are either 2048 or 256 samples. By enabling the block
switching tool, the following transitions are meaningful:
from ONLY_LONG_SEQUENCE to { LONG_START_SEQUENCE
ONLY_LONG_SEQUENCE
from LONG_START_SEQUENCE to { LONG_STOP_SEQUENCE
EIGHT_SHORT_SEQUENCE
from LONG_STOP_SEQUENCE to { LONG_START_SEQUENCE
ONLY_LONG_SEQUENCE
from EIGHT_SHORT_SEQUENCE to { LONG_STOP_SEQUENCE
EIGHT_SHORT_SEQUENCE
Window shape decisions are made by the encoder on a frame-by-frame-basis.
The window selected is applicable to the second half of the window function
only, since the first half is constrained to use the appropriate window
shape from the preceding frame.
The 2048 time-domain values x'(i)(n), (i window, n sample) to be windowed are
the last 1024 values of the previous window_sequence concatenated with 1024
values of the current block. The formula below shows this fact:
| x(i-1)(n+1024) for 0 < n < 1024
x'(i)(n) {
| x(i)(n) for 1024 < n < 2048
Once the window shape is selected, the window_shape syntax element is
initialized. Together with the chosen window_sequence all information needed
for windowing exist.
With the window halves described below all window_sequences can be assembled.
For window_shape == 1, the window coefficients are given by the Kaiser -
Bessel derived (KBD) window.
Otherwise, for window_shape == 0, a sine window is employed.
The window length N can be 2048 or 256 for the KBD and the sine window.
All four window_sequences explained below have a total length of 2048
samples.
For all kinds of window_sequences the window_shape of the left half of
the first transform window is determined by the window shape of the previous
block.
------------------------------------------------------------------------------
REQUIREMENTS
This module shall implement a scheme to switch between window types and
in turn perform time to frequency transformations
------------------------------------------------------------------------------
REFERENCES
[1] ISO 14496-3:1999, pag 111
------------------------------------------------------------------------------
PSEUDO-CODE
IF ( wnd_seq == EIGHT_SHORT_SEQUENCE)
THEN
FOR ( wnd=0; wnd<NUM_SHORT_WINDOWS; wnd++)
time_info = &Time2Freq_data[ W_L_STOP_1 + wnd*SHORT_WINDOW]
FOR( i=0; i<SHORT_BLOCK1; i++)
aux_temp[i] = time_info[i]
ENDFOR
IF (wnd == 0)
THEN
pShort_Window_1 = &Short_Window[wnd_shape_prev_bk][0]
ELSE
pShort_Window_1 = &Short_Window[wnd_shape_this_bk][0]
ENDIF
pShort_Window_2 =
&Short_Window[wnd_shape->this_bk][SHORT_WINDOW_m_1]
FOR( i=0, j=SHORT_WINDOW; i<SHORT_WINDOW; i++, j--)
aux_temp[ i] *= pShort_Window_1[i]
aux_temp[SHORT_WINDOW+i] *= pShort_Window_2[j]
ENDFOR
CALL MDCT( aux_temp, SHORT_BLOCK1)
MODIFYING( aux_temp)
FOR( i=0; i<SHORT_WINDOW; i++)
Time2Freq_data[wnd*SHORT_WINDOW + i] = aux_temp[i];
ENDFOR
ENDFOR
ELSE
SWITCH ( wnd_seq)
CASE ( ONLY_LONG_SEQUENCE)
pLong_Window_1 = &Long_Window[wnd_shape_prev_bk][0]
pLong_Window_2 =
&Long_Window[wnd_shape_this_bk][LONG_WINDOW_m_1]
FOR (i=0; i<LONG_WINDOW; i++)
Time2Freq_data[ i] *= *pLong_Window_1++
Time2Freq_data[LONG_WINDOW+i] *= *pLong_Window_2--
ENDFOR
BREAK
CASE ( LONG_START_SEQUENCE)
pLong_Window_1 = &Long_Window[wnd_shape_prev_bk][0];
FOR ( i=0; i<LONG_WINDOW; i++)
Time2Freq_data[ i] *= *pLong_Window_1++;
ENDFOR
pShort_Window_1 =
&Short_Window[wnd_shape->this_bk][SHORT_WINDOW_m_1];
FOR ( i=0; i<SHORT_WINDOW; i++)
Time2Freq_data[W_L_START_1 + i] *= *pShort_Window_1--;
ENDFOR
FOR ( i=W_L_START_2; i<LONG_BLOCK1; i++)
Time2Freq_data[W_L_START_2 + i] = 0;
ENDFOR
BREAK
CASE ( LONG_STOP_SEQUENCE )
FOR ( i=0; i<W_L_STOP_1; i++)
Time2Freq_data[ i] = 0;
ENDFOR
pShort_Window_1 = &Short_Window[wnd_shape->prev_bk][0];
FOR ( i=0; i<SHORT_WINDOW; i++)
Time2Freq_data[W_L_STOP_1+ i] *= *pShort_Window_1++;
ENDFOR
pLong_Window_1 =
&Long_Window[wnd_shape->this_bk][LONG_WINDOW_m_1];
FOR ( i=0; i<LONG_WINDOW; i++)
Time2Freq_data[LONG_WINDOW + i] *= *pLong_Window_1--;
ENDFOR
BREAK
}
MDCT( Time2Freq_data, LONG_BLOCK1);
MODIFYING( Time2Freq_data)
ENDIF
------------------------------------------------------------------------------
RESOURCES USED
When the code is written for a specific target processor the
the resources used should be documented below.
STACK USAGE: [stack count for this module] + [variable to represent
stack usage for each subroutine called]
where: [stack usage variable] = stack usage for [subroutine
name] (see [filename].ext)
DATA MEMORY USED: x words
PROGRAM MEMORY USED: x words
CLOCK CYCLES: [cycle count equation for this module] + [variable
used to represent cycle count for each subroutine
called]
where: [cycle count variable] = cycle count for [subroutine
name] (see [filename].ext)
------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
; INCLUDES
----------------------------------------------------------------------------*/
#include "pv_audio_type_defs.h"
#include "aac_mem_funcs.h"
#include "window_block_fxp.h"
#include "mdct_fxp.h"
#include "long_term_prediction.h"
#include "fxp_mul32.h"
/*----------------------------------------------------------------------------
; MACROS
; Define module specific macros here
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; DEFINES
; Include all pre-processor statements here. Include conditional
; compile variables also.
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; LOCAL FUNCTION DEFINITIONS
; Function Prototype declaration
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; LOCAL VARIABLE DEFINITIONS
; Variable declaration - defined here and used outside this module
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; EXTERNAL FUNCTION REFERENCES
; Declare functions defined elsewhere and referenced in this module
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; EXTERNAL VARIABLES REFERENCES
; Declare variables used in this module but defined elsewhere
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; EXTERNAL GLOBAL STORE/BUFFER/POINTER REFERENCES
; Declare variables used in this module but defined elsewhere
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; FUNCTION CODE
----------------------------------------------------------------------------*/
void trans4m_time_2_freq_fxp(
Int32 Time2Freq_data[], /* time data size 2048 */
WINDOW_SEQUENCE wnd_seq, /* window sequence */
Int wnd_shape_prev_bk, /* window shape, current and previous */
Int wnd_shape_this_bk,
Int *pQ_format,
Int32 mem_4_in_place_FFT[]) /* scratch memory for computing FFT */
{
Int i;
Int32 *pAux_temp_1;
Int32 *pAux_temp_2;
Int32 *pAux_temp;
// Int32 temp;
const Int16 *pLong_Window_1;
const Int16 *pLong_Window_2;
const Int16 *pShort_Window_1;
const Int16 *pShort_Window_2;
Int shift = *pQ_format - 1;
const Int16 * Long_Window_fxp[NUM_WINDOW_SHAPES];
const Int16 * Short_Window_fxp[NUM_WINDOW_SHAPES];
Long_Window_fxp[0] = Long_Window_sine_fxp;
Long_Window_fxp[1] = Long_Window_KBD_fxp;
Short_Window_fxp[0] = Short_Window_sine_fxp;
Short_Window_fxp[1] = Short_Window_KBD_fxp;
if (wnd_seq != EIGHT_SHORT_SEQUENCE)
{
pAux_temp = Time2Freq_data;
*pQ_format = LTP_Q_FORMAT - *pQ_format;
pAux_temp_1 = pAux_temp;
switch (wnd_seq)
{
case LONG_START_SEQUENCE:
pAux_temp_2 = &pAux_temp_1[HALF_LONG_WINDOW];
pLong_Window_1 = &Long_Window_fxp[wnd_shape_prev_bk][0];
pLong_Window_2 = &pLong_Window_1[ HALF_LONG_WINDOW];
for (i = HALF_LONG_WINDOW; i > 0; i--)
{
*pAux_temp_1 = fxp_mul32_by_16((*pAux_temp_1), *pLong_Window_1++) >> shift;
pAux_temp_1++;
*pAux_temp_2 = fxp_mul32_by_16((*pAux_temp_2), *pLong_Window_2++) >> shift;
pAux_temp_2++;
}
/* data unchanged from LONG_WINDOW to W_L_START_1 */
pAux_temp_1 = &pAux_temp[LONG_WINDOW];
if (shift)
{
for (i = (W_L_START_1 - LONG_WINDOW) >> 1; i != 0; i--)
{
*(pAux_temp_1++) >>= shift;
*(pAux_temp_1++) >>= shift;
}
}
pAux_temp_1 = &pAux_temp[W_L_START_1];
pAux_temp_2 = &pAux_temp_1[HALF_SHORT_WINDOW];
pShort_Window_1 =
&Short_Window_fxp[wnd_shape_this_bk][SHORT_WINDOW_m_1];
pShort_Window_2 = pShort_Window_1 - HALF_SHORT_WINDOW;
for (i = HALF_SHORT_WINDOW; i > 0; i--)
{
*pAux_temp_1 = fxp_mul32_by_16((*pAux_temp_1), *pShort_Window_1--) >> shift;
pAux_temp_1++;
*pAux_temp_2 = fxp_mul32_by_16((*pAux_temp_2), *pShort_Window_2--) >> shift;
pAux_temp_2++;
}
pAux_temp_1 = &pAux_temp[W_L_START_2];
pv_memset(
pAux_temp_1,
0,
(LONG_BLOCK1 - W_L_START_2)*sizeof(*pAux_temp_1));
break;
case LONG_STOP_SEQUENCE:
pv_memset(
pAux_temp_1,
0,
(W_L_STOP_1)*sizeof(*pAux_temp_1));
pShort_Window_1 = &Short_Window_fxp[wnd_shape_prev_bk][0];
pShort_Window_2 = &pShort_Window_1[HALF_SHORT_WINDOW];
pAux_temp_1 = &pAux_temp_1[W_L_STOP_1];
pAux_temp_2 = pAux_temp_1 + HALF_SHORT_WINDOW;
for (i = HALF_SHORT_WINDOW; i > 0; i--)
{
*pAux_temp_1 = fxp_mul32_by_16((*pAux_temp_1), *pShort_Window_1++) >> shift;
pAux_temp_1++;
*pAux_temp_2 = fxp_mul32_by_16((*pAux_temp_2), *pShort_Window_2++) >> shift;
pAux_temp_2++;
}
/* data unchanged from W_L_STOP_2 to LONG_WINDOW */
pAux_temp_1 = &pAux_temp[W_L_STOP_2];
if (shift)
{
for (i = ((LONG_WINDOW - W_L_STOP_2) >> 1); i != 0; i--)
{
*(pAux_temp_1++) >>= shift;
*(pAux_temp_1++) >>= shift;
}
}
pAux_temp_1 = &pAux_temp[LONG_WINDOW];
pAux_temp_2 = pAux_temp_1 + HALF_LONG_WINDOW;
pLong_Window_1 =
&Long_Window_fxp[wnd_shape_this_bk][LONG_WINDOW_m_1];
pLong_Window_2 = &pLong_Window_1[-HALF_LONG_WINDOW];
for (i = HALF_LONG_WINDOW; i > 0; i--)
{
*pAux_temp_1 = fxp_mul32_by_16((*pAux_temp_1), *pLong_Window_1--) >> shift;
pAux_temp_1++;
*pAux_temp_2 = fxp_mul32_by_16((*pAux_temp_2), *pLong_Window_2--) >> shift;
pAux_temp_2++;
}
break;
case ONLY_LONG_SEQUENCE:
default:
pAux_temp_2 = &pAux_temp[LONG_WINDOW];
pLong_Window_1 = &Long_Window_fxp[wnd_shape_prev_bk][0];
pLong_Window_2 =
&Long_Window_fxp[wnd_shape_this_bk][LONG_WINDOW_m_1];
for (i = LONG_WINDOW; i > 0; i--)
{
*pAux_temp_1 = fxp_mul32_by_16((*pAux_temp_1), *pLong_Window_1++) >> shift;
pAux_temp_1++;
*pAux_temp_2 = fxp_mul32_by_16((*pAux_temp_2), *pLong_Window_2--) >> shift;
pAux_temp_2++;
}
break;
} /* end switch ( wnd_seq) */
*pQ_format += mdct_fxp(
pAux_temp,
mem_4_in_place_FFT,
LONG_BLOCK1);
} /* end if( wnd_seq != EIGHT_SHORT_SEQUENCE) */
/*****************************************/
/* decoding process for short window */
/*****************************************/
/*
* For short window the following code will be applied
* in the future when short window is supported in the
* standards
*/
/*-------------------------------------------------------------------------
* pAux_temp = &mem_4_in_place_FFT[(2*SHORT_BLOCK1)];
*
* for ( wnd=0; wnd<NUM_SHORT_WINDOWS; wnd++)
* {
*
* pShort_Window_1 = &Short_Window_fxp[wnd_shape_this_bk][0];
*
* if (wnd == 0)
* {
* pShort_Window_1 = &Short_Window_fxp[wnd_shape_prev_bk][0];
* }
*
* pShort_Window_2 =
* &Short_Window_fxp[wnd_shape_this_bk][SHORT_WINDOW_m_1];
*
* pAux_temp_1 = pAux_temp;
* pAux_temp_2 = pAux_temp_1 + SHORT_WINDOW;
*
* Q_aux = 0;
*
* buffer_adaptation (
* &Q_aux,
* &Time2Freq_data[ W_L_STOP_1 + wnd*SHORT_WINDOW],
* (void *) pAux_temp,
* SHORT_BLOCK1,
* USING_INT,
* 16);
*
*
* for ( i=SHORT_WINDOW; i>0; i--)
* {
* temp = (*pAux_temp_1) * *pShort_Window_1++;
* *pAux_temp_1++ = (temp + 0x08000L) >> 16;
*
* temp = (*pAux_temp_2) * *pShort_Window_2--;
* *pAux_temp_2++ = (temp + 0x08000L) >> 16;
*
* }
*
*
* exp = mdct_fxp(
* pAux_temp,
* mem_4_in_place_FFT,
* SHORT_BLOCK1);
*
*
* exp += Q_aux;
*
* pAux_temp_1 = pAux_temp;
* pAux_temp_2 = pAux_temp_1 + HALF_SHORT_WINDOW;
* pTime_data_1 = &Time2Freq_data[wnd*SHORT_WINDOW];
* pTime_data_2 = pTime_data_1 + HALF_SHORT_WINDOW;
*
*
* if (exp > 0)
* {
* for ( i=HALF_SHORT_WINDOW; i>0; i--)
* {
* *pTime_data_1++ = (*pAux_temp_1++>>exp);
* *pTime_data_2++ = (*pAux_temp_2++>>exp);
* }
* }
* else if (exp < 0)
* {
* exp = -exp;
* for ( i=HALF_SHORT_WINDOW; i>0; i--)
* {
* *pTime_data_1++ = (*pAux_temp_1++<<exp);
* *pTime_data_2++ = (*pAux_temp_2++<<exp);
* }
* }
* else
* {
* for ( i=HALF_SHORT_WINDOW; i>0; i--)
* {
* *pTime_data_1++ = (*pAux_temp_1++);
* *pTime_data_2++ = (*pAux_temp_2++);
* }
* }
*
* }
*
* }
*
*--------------------------------------------------------------------------*/
} /* trans4m_time_2_freq_fxp */